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Effects of inertia and high-frequency harmonic vibrations
on the lift and friction forces in viscoelastic slider-bearing flows

S. ZAHORSKI (WARSZAWA)

IN THIS PAPER, being a direct continuation of the previous considerations [1] for low-frequency
harmonic vibrations, we take into account the inertia terms in the corresponding equations of
motion. Applying a perturbation method, particular solutions are discussed for small-ampli-
tude but high-frequency vibrations superposed on the fundamental flow. A comparison of
the results with those obtained for low-frequency vibrations is also presented.

W obecnej pracy, bedacej bezposrednig kontynuacja poprzednich rozwazan [1] dla drgan
o niskich czestosciach, uwzgledniono czlony inercyjne w odpowiednich réwnaniach ruchu. Sto-
sujac metode perturbacyjna, przedyskutowano szczegdlowe rozwiazania dla drgafi o malych
amplitudach lecz wysokich czgstosciach, nalozonych na przeplyw podstawowy. Przedstawiono
takze poréwnanie wynikow 2z wynikami uzyskanymi poprzednio dla drgan o niskich czgs-
tosciach.

B uacrosuleit pabore, spasiomelica npojomkeHueM paborsl [1] — 0 HH3KOYACTOTHBIX KoJle-
GaHMAX, YUHTHIBAIOTCA HHEPLMAIBHBIC WIEHbl B COOTBETCTBYIOIIHMX YPaBHEHMAX ABHIYKECHHA.
IIpnmeHeH nepTypOauMOHHLIN METON M PAacCMAaTPHBAIOTCS YACTHBIE PEINEHHA A Konebanmii'
C MaJbIMH AMIUIHTYaMH, HO BBICOKOH 4YacTOTBI, HAJIOXKEHHBIX Ha OCHOBHOe TeueHHe. IIpe-
JICTaBJIEHO CPaBHEHHE PE3YJIbTATOB C paHee IOJIyYeHHBIMH JUIA HU3KOYaCTOTHBIX KosleGaHwmi.

1. Introduction

IN OUR PREVIOUS paper [1] we considered the case of small-amplitude harmonic vibrations
superposed on slow steady-state flows in a plane slider bearing (wedge flows). To discuss
the behaviour of lift and friction forces acting on the upper or lower part of the bearing,
we used the model of incompressible second-order fluid as well as the model of general-
ized Newtonian fluid with shear-dependent (decreasing) viscosity. We assumed, more-
over, that intertia effects in the equations of motion considered could be disregarded for
very low frequencies of superposed vibrations. Thus, all the results discussed in paper [1]
were valid for suffiently slow, inertialess motions.

In the present paper, being a direct continuation of the previous considerations, we
use the same models of fluids and take into account the linearized inertia terms in the
equations of motion (cf. [2]). Particular solutions are discussed for small-amplitude but
high-frequency harmonic vibrations, or more exactly, for large values of “the frequenta-
tive Reynolds number” (cf. Sect. 2.1). On applying a perturbation method, similar to
that proposed by JONEs and WALTERs [3], the case of moving and vibrating slider is pre-
sented in greater detail.

The results concerning the behaviour of the dynamic lift forces caused by normal
stresses and shear-dependent (decreasing) viscosities are very similar to those obtained
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in [1].-On the contrary, the behaviour of dynamic friction forces is quite different from
that in the previous case; an evident reduction is observed instead of enhancement. A di-
rect comparison of the results [obtained in both cases gives some information on the
validity of the methods applied.

2. Basic solutions for small-amplitude harmonic vibrations superposed on steady flows

In the situation shown in Fig. 1, the upper part of the bearing, hereafter called the
slider, moves horizontally with velocity U(l+ eexpiwt), while the lower one, hereafter
called the base, remains stationary. U denotes a constant velocity of steady fundamental
motion, w — a constant angular frequency of superposed harmonic vibrations, and

[+
(2-1) E = ?,
where « is a small amplitude of disturbances. It is assumed, moreover, that /,/l < 1
and hg/h, is close to unity for the lubrication approximation to be valid.

Fi1G. 1.

2.1. Newtonian fluids

Solutions of the problem considered for steady flows of an incompressible Newtonian
fluid were presented elsewhere [1]. In the case of unsteady flows, the equations of motion
with linearized inertia terms, under the assumption of lubrication approximation (cf. [4]),
viz,
dp *u du op

2.2 L S e |
22 ox 175y2 e oy

=0

are to be solved with the following boundary conditions:

u(x,0) =0, u(x,h) =U(l+eexpiwt),

e 20, = p(, ) = 0.
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It is worth noting that the inertia terms in Egs. (2.2) written in nondimensional forms
are proportional to the quantity

2.4) R&, & oeUh, _ pawhg ,

] ]
which may be called “the vibrational Reynolds number” (cf. [5]). This number is usually
small if the amplitude « is sufficiently small and the frequency w not too high.

We scek a solution of the problem in the form

(2.5) U = up+ eusexpiot, p = po+ ep;expiot,

where the subscripts O refer to steady-state parts of Newtonian solutions. Substituting
Egs. (2.5) into Egs. (2.2), we obtain a system of differential equations, the solution of
which is the following:

U 1 dpo dpo GqU( H)
25 o =3y 2n dx =h)y, dx = h? I_T -
where
_ _ 2hoh,
2.7 h = ho+ax, H = hor b
and
= Achky+ Bhky+— - 4Pt
u, = Achky shiky 0w -
(2.8)
k=v+iv, 2= —Qg-,
27
where
i dp, U i dp, chky—1
2 = e P T i . B-i-mc e
(2.9) ow dx’ B shky i oo dx  shky
A constant volume-discharge along the slit, viz.
h
dQ,
(2.10) 0= ful y =const, —-—=0,

0
leads to the differential equation
d’p, chkh—

h’kh 2

where a = (h;—ho)/l. A solution of the homogeneous equation (2.11) can be presented
in the form

(2.11) (kh—2cthkh) + <2 d”‘ ak = iakoawU S22

2.12) ___d(kh) )

1 — —
ax C""P( kh—2cthkh

Further integration, however, leads to very complex expressions which are not necessary
for our present considerations.

In what follows we shall be interested in simplified solutions valid for sufficiently high
frequencies, i.e. for the cases in which k2 > 1 or »h > 1. Then, shkh, chkh, and cthkh

10 Arch. Mech. Stos. nr 3/82
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can be replaced by 1expkh and 1, respectively. The above conditions are equivalent to
the assumption that

2
(2-1 3) Real - Qwho

>1,

or, more exactly, that

1 1/2 ow 1/2
(2.14) (-i" Rem) - (-2-’}') hg > 13

where Re, may be called “the frequentative Reynolds number”. This number is entirely
independent of the amplitude «. It can be checked that

(2.15) Re, » 1, Re, <1 if alhy <1.

Therefore we may consider the case of small-amplitude and high-frequency superposed
vibrations if the amplitude of disturbances is much smaller than the distance between both
parts of the bearing.

Under the above assumptions Egs. (2.11) and (2. ]2) lead to

d’p, , dp, a .
o >l
and
dp, il d(kh)) . g

On taking into account the boundary conditions (2.3) we arrive at the approximate sol-
ution

(2.18) p1 =0,
(2.19) uy = Ue *®=» = Ue~"*N[cosy(h—y) —isinr(h—y)].

The corresponding lift force acting on the slider can be obtained by integration of the
pressure p, viz.

(2.20) Py = fpa‘x = fpadx = [l A 2%—%],
where
@.21) i sl

hy

In a similar way the mean friction forces acting on the slider and base can be deter-
mined by integration of the shear stresses. To his end, however, an averaging process
over one cycle of vibrations should be aaplied, viz.

2n

2.22) (D> = %af [sﬁ](Reu,ch—:, ...)dr,
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where [@] denotes a function of real parts of the kinematic quantities being variables
in @ (cf.[1]).
Thus we arrive at the following mean values of friction forces:

2
@ i
=2 ( (rre - _nw _g -1
(2.23) CRa = 2"! J[TN Pasdxdt = 1= |4inz—6 A+l]
for the moving and vibrating slider (S), and
2n
= 3 Y .
w -1
(2.24) Frp = 2= af of [T -odxds = 22 [—21n2+6T+T]

for the stationary base (B). Since for Newtonian fluids
du du
127 — o 1 i
(2.25) [Ta%] = quc( 3 )+ que( 3 expmut),
the friction forces are identical with those obtained for steady flows (cf.[1]).
2.2. Second-order viscoelastic fluids

The model of an incompressible second-order fluid can be used either in the case of
slow flows or in the case of very short memory effects (slightly non-Newtonian fluids).
If the Deborah number defined as
a, U
nho ’

(2.26) = — for «, <0,

is sufficiently small, we can use the following constitutive equation:
(2.27) T= —~p1+?}A1+alAz+m2Af, tl‘A; = 0,

where «, and «, are material constants, p denotes a hydrostatic pressure. The Rivlin—
—Ericksen kinematic tensors are defined by the recurrence formulae

(2.28) Ay = W+ (W97, A, = A, +A,Vv+ (VV)7A,.
If the velocity field v and the pressure p can be presented in the form
(2.29) V=vy+V, p=pytp)

where the subscripts N denote Newtonian quantities and primes refer to second-order terms,
the equations of motion with linearized inertia terms lead to

i
Vpy—nV3vy = —p i VN>
(2.30) ;
Vp' —nV3 = —p ~§!— V' + oy div (A (vy) —AT(Vy)) + () + @) divAi(vy).
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For plane isochoric flows with boundary conditions determined in velocities, the
Tanner theorem is valid if only linearized inertia effects are involved (cf. [6, 2]). This means
that v’ = 0 satisfies Eq. (2.30),, if

3 1
(2.31) p= %1- %-N— + (7 d1+a2)x2, 2 = & trA2(vy).
Thus, under the assumption of lubrication approximation, we have
2
—T22 — o dpy 1 (Oux
(2'32) T =7 pN+ n dt ) al( ay ) ’

while the shear stresses are exactly the same as those for Newtonian fluids.

2.3. Fluids with shear-dependent viscosity

The model of generalized Newtonian fluid with shear-dependent viscosity (decreas-
ing, if 5, > 0) (cf.[1]), viz.

(2.33) T=—pl+ (n - % n;trA})Al, trA, = 0
leads to
(2.39) Vp, =V = —p —%—- —n2div(%*A,(vy)), #* = lftr.-\f(vﬁ).

Although in the present case the Tanner theorem is not generally valid, we shall try to
integrate Eq. (2.34) in an approximate way, taking into account certain mean values and
the lubrication approximation. Thus for v/ = 0, we have

ap’ Ouy )2 %uy ap’
@39) U AN L) B AN
and
Cl 1 [ ouy| duy | 21 [ o%uy | *u

2.36) pc= —3 [-—(—-”— +—5 )] ——(—-‘?! +—2 )dx+cC
(2.36)  Pa ﬂzJ 2\5y lymo ' Y besl] 2\ oo T 37 fyun] OO
for the mean value of the shear gradient (G) across the slit, and

i 3 duy \>  0%uy | oty \> 0%
N R R e
( ) PP 2 ﬂz (3}' y=0 a.}’z ‘w=0 a}’z y=h ayz y=h x+ £

for the mean value of pressure itself (P).(*)

2.4. Perturbation method for superposed vibrations

In what follows we are interested in the changes of lift and friction forces caused by
superposed harmonic vibrations. To this end, we apply a perturbation method similar
to that proposed by JonNes and WALTERs [3] (cf. also [5]).

(*) Integration constants Cg and Cp may be omitted in further considerations because of the boundary
conditions (2.3) (cf. Appendix).
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The expressions (2.5) can be used as the first terms in the series expansions with &
treated as a small parameter. Because of the boundary conditions (2.3), all the terms of
order £2 and higher in series for # and p are equal to zero. Substituting Egs. (2.5) either
into Eq. (2.32) in the case of second-order fluids, or into Eqgs. (2.36), (2.37) in the case of
fluids with shear-dependent viscosity, we can calculate the &"-order terms (n =0, 1, 2)
of the corresponding lift forces. For n = 0, we obtain steady-state solutions, while for
n = 1, 2, the mean values of dynamic forces can be determined by the averaging process
shown in Eq. (2.22)). It is also worth noting that for n = 1, all the mean values of forces
are equal to zero. Thus, for every lift force P, we have

(2.38) (P) = (Po)+{P>),

where <P,> = P, refers to a steady-state solution, and <P,> denotes a dynamic
change of order &? due to superposed harmonic vibrations.
In a similar way the changes of friction forces can be calculated.

3. Lift forces under superposed vibrations

For second-order fluids the perturbation method outlined in Sect. 2.4 leads to the
following value of lift force acting on the slider in steady flows (n = 0):

1 1 2
: 1 du
1) Pos= | —T22,_pdx = Py—— __0_)
(3.1) oS ff 0 ly=h@X NT 0y 0(( 3y ’=kdx
20, U? A3—1
“aho | GFIY “2“-‘”]’
where Py and 4 are defined in Eqs. (2.20) and (2.21), respectively.

The mean value of the dynamic lift force caused by superposed vibrations (n = 2)
amounts to

-

1
[ 1= T -siiv
[\]

= "“:e|!~’

B2 (Pasd = -

2
w i
) [ l 2 f (5“1 " ) (aul =
= — At s R —_—
7y 7 ¢ a,o e i exp iwt ,=*Re e expiwt lhd'd.vcdt
!
= ok [’ ou, 2
258 oyl

where we used the relationship

(3.3) ReAReA = -;—[ReA2+IA|’],
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with |A| denoting the modulus of the complex function 4. Substituting from Eq. (2.19)

and assuming that, without essential loss of generality, Im%}— = 0, we finally arrive at

1 owl
3.4 P = ——g2q, U2 =—.
(3.4 (Pasy = — ey U2 &2

For fluids with shear-dependent viscosity, we obtain the following values of lift forces
in steady flows (n = 0):

(3.5) Poyie = J Pocdx = PN—37?sz[%' (—aﬁ] + iui[ )] ﬂ;— dxdx
0 0

oy lr=0 dy |y=k oy
U3
= Py+3 "';hz [‘ﬂ“l" —(A2— 1)]

calculated at the mean shear gradient (G), and

6u ouo \*> | 8%
(3.6) Poyp = fpopdx = Py— 2 72 ffl 0 y=0+( 3;) ] % - dxdx

3 2
U9 . 2 V' 8l 2 )
= Pat3 g [ (@ 1)(1+1) 10 D7

2
E T | I 2
+14(22-1) I+1 10(4 l)],

calculated at the mean pressure (P), respectively.
The mean values of the dynamic lift forces caused by superposed vibrations (n = 2)
amount to

JT

__‘2_2 ff{!l (aul aul 12 ( ) [I (aﬂl
BT A P vy o) Rl 57 ) +Re 7

2n
@ |
BN (Pavied = 5 f f [pic]dxdt
0

y=0

3u, )] [ 1 0%, [ 62u1 | )] [l ( J duy )]
Re +
ay.vh 2 6y2|,0 3y yh Y ly=0  OY |y=n
du l 0%u, [ 32u1}
ay y—o 6y y=-h dy? |y o oy? ’r=-il
x Re| = 1 ( )]}dxdx
| 2 y y-o 3y |yxh
for the mean value of the shear gradient (G), and

2n
o !

w
(3.8) <Pavppy %f ( I[P;P] dxdt = —-z—gzﬂsz {[ %}L
o o "

82 Uo
Re( oy? )
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au1 azul 1 _Qy_o_ Iaul | (azu.]) (6u1 )R (32u1)
53,89, TR ( dy )Re( dy? JRe( dy )L-o+ Ty | R\ 5y +Re\ Sy ay?
5u0 ( au1 ) (32u; )] ( 5uo )]
+Re( y )] [Im 2y Im 37 Re o
+ [Im ( 084 ) Im a’ul ) (3:40 )] }dxdx
dy

for the mean value of pressure (P), respectively. In deriving Egs. (3.7) and (3.8), we used
the fact that

(3.9) ReAReBReC = ]1( [Re(4ABC)+ Re(4ABC)+ Re(4BC)+Re(4BC)],
where overbars denote the conjugate complex functions. Substituting from Egs. (2.6)
2
and (2.19), and assuming that Im ‘3.;;' = Im 6 u1 = 0, we obtain finally
9 ow A-1
(3.10) Paed = —7 mal> 2o lnl—m],
(3-”) <P2V,|'P> = 2<P2I’,'G>-

The relative increase or decrease of the mean dynamic lift forces as compared with the
lift forces acting in steady flows can be characterized by the following ratios (cf.[1]):

{P3s)+Pos—Pys - (Pys)

3.12 T 5

e ke Pos Pys

and

(3.13) Ipe = SPavie2 g $Pavie)
Poyic Poyp

where the subscripts LN, LV/G and LV/P mean “the lift force caused by normal stresses”,
“the lift force caused by variable viscosity, calculated at mean shear gradients” and “the
lift force caused by variable viscosity, calculated at mean pressures”, respectively.

Thus, Eqgs. (3.12) and (3.13) lead to

&?Re, De sy (A2 —1)?
2420+ 1) [(A+D)InA—2(A—1)] ’
+8DesoA[B(A*—1) (A—1)—2(A—1)2(A+1)?]

(3.14) Iy =

where s, = ho/l, and to
—&?Re, V[(A+1)InA—(2-1)]

) lwis = i@+ DnA—2G-D1-4VAG-1)
216) Lo — —5&2Re,,* V(A+1)2[(A+1)InA—(A-1)]
G16)  Luvie = S0 D[+ 1) InA—2(A— DI+ VA —1) =328 =1)

x (A+1)+280(A2 —1) (A+1)2—100(1% —1)(A+1)?]
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where

- 7, U?
(3.17) V= —’?hé

is the dimensionless number characterizing a decrease of shear-dependent viscosity.
Diagrams illustrating dependence of Iy and I;y6, Iyjp (divided by e2Re,) on De- s,
and V, respectively, are shown in Figs. 2 and 3. It is seen from Fig. 2 that the relative
increase of the dynamic lift force caused by normal stress is always positive and tends
to 0.25 for increasing Deborah numbers. The effect of enhancement, however, is weaker
for larger A. On the other hand, Fig. 3 shows that the relative increase of the dyna-
mic forces caused by shear-dependent viscosity is negative. The reduction of forces is

Ly
e2Re,
025 —

A= 11

Fic. 3.
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weaker for increasing 4. Essential differences are clearly visible between the results calcu-
lated approximetely at the mean shear gradient (G) and the mean pressure (P).

We must bear in mind that all the diagrams considered are reliable only for A little
differing from unity (lubrication approximation).

4. Friction forces under superposed vibrations

For fluids with shear-dependent viscosity we obtain the following values of friction
forces in steady flows (n = 0):

!
Y . a 3

(4.1) Foy = [Tézlr=kdx = {Fns) =72 ‘ ( uo) dx
» 6 ¥

hy ay =h

mU® 3-1 #1216 251
= (Fys)— ’ A2— . -9
Frsy [4( D=U g+ 5 (z+1)3]’

in the case of moving slider (S), and

1
. |2
(42) Fop= J Td?|,_odx = (Fns)—ﬂzf(—ui) e
0 0 ay y=0

_ U [216 25—1 27 (22-1)(34*+13)
= <Fno)—=ipz [ 5 GF)° 4 (G+ip +96 1+1 -3

in the case of the stationary base (B). The Newtonian forces {(Fys)> and (Fyz> are
defined in Egs. (2.23) and (2.24).

The mean values of the dynamic friction forces caused by supersposed vibrations
(n = 2) are

2%
@ I
43 Fry = [ [[T8]ordxar
o 0
2=
w ; 3“ 300
e J —3n, &? fRe(—},— explwt), Re(w expiwr)y:hRe( 2 )I_hdx dt

0
3 duy |2 ou
= ——_¢2 f 3 Re(—i) dx,
2 73'20 y=h 0y y=n

dy

for the moving and vibrating slider (S), and

2n

@4)  <Fap) =5 f f [T3%]y-0dxdt
0o ©
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e 1
w ou, . u, . du,
4.4 = —-f -3 e‘fRe(—— ex :mr) Re(—ex lm!) Re( ) dx dt
gwag 2n e a b ay B y=0 ay R y=0 ay y=0
el f ou [ Re(gtif’—) dx
2 9 ay ly=0 ay y=0 ’

Assuming, as previously, that Im E‘%‘ = 0, and substituting from Eq. (2.19), we finally

for the stationary base (B).

arrive at

(4.5) {Fysy = 33’1}20'3 [ZInA 3 i i], (Fapy = 0

Introducing the ratios charactenzmg the relative increase or decrease of the mean
dynamic friction forces as compared with the friction forces acting in steady-state flows

(cf. [1]), viz.
- F -~ F
(4-6) Ies = <F:Z> ’ Irg = S'FTZ“EZ‘ ~ 0,

0B

where the subscripts F'S and FB mean “the friction force on the slider” and “the friction
force on the base”, respectively. Thus Eq. (4.6), gives
7 —30&2Re, V(A+1)? [4(A+1)InA—6(A—1)]
FS = 20(A+1)2[4(A+1)InA—6(A—1)]+ V[864(A°—1)—135(A2—1)

X (3424+13) (A+1) +1920(A3 —1) (A+1)? —640(A2 —1) (A +1)?]
where V' is defined in Eq.-(3.17)

A diagram illustrating the dependence of J’, s (divided by &2Re,) on V¥ is shown in
Fig. 4. It is seen that the relative decrease of the dynamic friction force on the moving and
vibrating slider is diminished for increasing A. If ¥ is greater than 0.1, the reduction of
friction forces practically does not depend on values of V.

@.7)

i’;s 10?
£ e;, 04 06 08 V
1 T 1 I T T
-05
2.0
-10 1z
1.05
70
-15
-20
A=11

Frc. 4.
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In our previous paper [1] we analysed the case in which the lower part of the bearing
(base) is moving and vibrating, while the upper one (slider) remains stationary. In a si-
milar way we may conclude that in the present problem

(4.8) _{rs = Kvn ~ 0, J_rFB = }_}-s <0,

where overbars and underbars show which part of the bearing (upper or lower) moves
with constant velocity U. Moreover, upper and lower tildas show to which part of the
bearing vibrations are applied.

We can also discuss the mixed cases in which vibrations are superposed on the parts

of the bearing remaining stationary in the fundamental flow. Using similar notations, we
have

4.9 ;rs = _Frs >0, ;ra = "Trs ~ 0,
for the moving slider and vibrating base, and

(4.10) fps = —Ips = 0, {}a = —Ipp > 0,

for the moving base and vibrating slider. Thus, rather an enhancement of the friction forces
is observed in the mixed cases under consideration.

5. Discussion

Many results obtained in this paper can be compared with those presented previously
in the paper [1].

The general effects of superposed small-amplitude harmonic vibrations on the lift
forces caused by normal stresses and shear-dependent (decreasing) viscosity are very
similar in the case of low-frequency vibrations (inertialess solutions) and in the case of
high-frequency vibrations. Apart from quantitative differences, in both cases the lift
forces caused by normal stresses (for second-order fluids) are enhanced while the lift
forces caused by shear-dependent (decreasing) viscosity (for generalized Newtonian fluids)
are seriously reduced. One may expect that for real viscoelastic fluids (polymer solutions
and additives) the lift forces will take mean values between those presented for two limit
cases.

On the contrary, the effects of superposed small-amplitude vibrations on the friction
forces acting either on the slider or the base are quite different for small-frequency (iner-
tialess solutions) and high-frequency vibrations. In the first case, a strong enhancement
of the friction forces acting on the moving and vibrating slider is observed, while, in the
second case, these forces may be reduced considerably.

Apart from the deficiency of the model considered and less important numerical differ-
ences, a question arises connected with domains of validity of the present solutions for
friction forces as compared with those discussed elsewhere [1]. To answer partly the above
question, we can formally equate the absclute value of the ratio (4.7) with the correspond-
ing ratio in the paper [1] (Eq. (4.11)). In such a way we obtain “the frequentative Rey-
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nolds number” Re,, defined in Eq. (2.13) for which positive and negative changes of the
friction forces acting on the slider, derived in both cases, are mutually cancelled. Thus
we have the following critical values:
864(45—1)—135(A2 1) (323 +13) (A+1)
_ +1920(A%—1) (A+1)*—640(212 1) (A+1)?
e (Reo)e = 00+ 1) @G+ Dni—6G-1]
where 4 = ho/h; characterizes inclination of the slider. In Fig. 5, (Re,). is plotted ver-

sus A for A ranging from 1 to 2. It is worth noting that (Re,), takes the values from 53
for 2 = 1 (horizontal slider) to less than 100 for 4 little differing from unity.

(Rew)
200

150 -

Y P T

10 12 14 16 18 20
the i hy
\ h.,
FiaG. 5.

Therefore we may conclude that for frequencies for which Re, <€ (Re,)., the results
based on the inertialess solutions (cf.[1]) are qualitatively reliable, while for frequencies
for which Re, > (Re,)., the dynamic solutions for small-amplitude but high-frequency
vibrations are more useful.

Appendix

Because of the boundary conditions (2.3), the integration constants C; and Cp in
Egs. (2.36) and (2.37) may be equal to zero if also: pg(0, ¥) = ps(l,») = 0, pe(0, y) =
= pp(l, ¥) = 0. Substituting Eq. (2.6) into Eq. (2.36), we obtain for steady flows (n = 2)

_ ‘.3?}2U2 -l__ dpo = e 3??2U2

(A1) Poc(x) = 7 % dx X = W Po(x),

where approximate integration is performed for h replaced by h, = 1(ho+h,) or
h,, = H. Since py(0) = po(l) = 0, we also have pgg =~ 0. Similaﬁy, on the basis of Eq.
(2.36), we arrive at

; Uz . k* [dp\']1 4
(A.2) Pgp(x). = —3n; f [p— t (dip) ]? dp:: e
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G 37}2 UZ 31?2}1 dpg
(A.2) ~ e Po(x)— St J Vg dx

[cont.]

3n,U?
- Tzz— Po(x)—

3?;::;m [ dpo) Po(x) — Po(x)‘l‘ fpo(x) dpo dx ]

Since, moreover, (d3p,)/(dx?) has very small values in the interval [0, /] (for parabolic
approximation of the pressure profile, it is exactly equal to zero), and po(x) is equal to
zero for x = 0 and x = [, the integrand on the right-hand side of Eq. (A.2) is also very
small for each x € [0, /]. Thus the boundary conditions for steady pressures are satisfied
approximately.

Substituting Egs. (2.6) and (2.19) into Egs. (2.36) and (2.37), we obtain for dynamic
flows (n = 2) the following mean values of pressures (cf. also Egs. (3.7) and (3.8)):

j 3 azUzv d 3n, 2U%?
(A3) Wiay = — LT [ B0 = M g
and

i I, e2U%* (d 3n,82U%?2
(A4 @iny = = PEETE [T gy 3T g,

Since po(0) = po(l) = 0, we also have <pjs> = <p3p> =0 for x =0 and x =L
Thus the boundary conditions for the mean dynamic pressures are satisfied exactly.
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