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Macro-modelling of thermo-inelastic composites 

cz. WOZNIAK (WARSZAWA) 

THIS PAPER proposes a formulation of thermomechanics in which the thermodynamical processes can 
be subjected to the known a priori global constraints. On this bac;is the local (macro-constructive) 
and global (related to the whole composite body) averaged computational models of certain thermo­
inelac;tic composites are derived. 

W pracy przedstawiono podejscie do termodynamiki, w kt6rym procesy termodynamiczne SCJ poddane 
pewnym globalnym wit;zom. Na tej podstawie otrzymano zar6wno lokalne (makro-konstytutywne) jak 
1 globalne (dotycz(\ce calej struktury kompozytowej) modele obliczeniowe pewoych termo-niesprt;iys­
tych kompozyt6w. 

B pa6oTe npe.n.cTaeneH no.n.xo.n. K TepMO,ll.blHaMYJKe, B KOTopoM TepMO,ll.YJHaMYJ4eCKYJe npo­
u.eccbl no.n.eeprHyTbl HeKOTOpblM rno6anbHbiM CBJI3JIM. Ha aToH ocHoee nony4eHbl TaK 
noKanbHbie (MaKpoonpe.n.enJIIOILI.YJe), KaK YJ rno6anbnble (KacaiOILI.YJecn u.enoi:i KOMno-
3YJTHOH cTpyKTypw) pac4eTHble MO,ll.enYJ HeKoTopwx TepMo-Heynpyr~-tx KOMII0311TOB. 

1. Aim and scope of the contribution 

THE AIM of this paper is twofold. Firstly, we formulate a general approach to thermo­
dynamics of nonelastic materials which takes into account the constraints imposed on 
global processes. The proposed constrained thermodynamics makes it possible to pro­
duce in a consistent way different computational models for special problems and to 
develop engineering theories involving thermomechanical fields. Secondly, on the basis 
of constrained thermodynamics we also propose the method of a passage from micro- to 
macro-thermodynamics of certain inelastic materials. This method comprises two steps: 
(i) the local macro-modelling in which we deal with the fiXed representative volume ele­
ment (r.v.e.) of a body and we determine the averaged properties of a composite material, 
(ii) the global macro-modelling in which we obtain a macro-description of a whole com­
posite body under consideration. It is assumed that the investigated composite bodies 
which are micro-nonhomogeneous by the definition may also be macro-nonhomogeneous 
and hence the known homogenization procedures [1, 6] cannot be applied. The proposed 
macro-modelling method can be treated as an alternative to the known methods based on 
the bounding principles or on the exact or approximate solutions, [2], including asymp­
totic approaches, [ 1, 3, 4, 6, 7] as well as non-standard analysis approaches, (8, 9], which 
have played an important role mainly in the macro-modelling of thermo-elastic composi­
tes. It will be shown that the main features of the proposed method are: 1) the method 
can be applied to an arbitrary dissipative heterogeneous material structure of the r.v.e.; 
2) the method is effective from the engineering point of view; in particular no solution 
to the boundary value problem for the r.v.e. is required; 3) the method is adaptive and 
makes it possible to obtain different macro-models of composite materials on the diffe­
rent levels of accuracy. The main drawback of the proposed macro-modelling approach 
lies in the specification of constraints which is often guided by the physical institution 
of the researcher and in an ambiguous approximation introduced by the localization as-
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sumption. For the sake of simplicity we restrict ourselves to the thermo-elastic and to the 
thermo-elastic-plastic materials with the perfect bonding between the adjacent constituent 
of the composite. The considerations are also carried out in the context of infinitesimal 
strains. It has to be emphasized, however, that the line of approach proposed in the con­
tribution can also be applied to more general physical situations where we have to deal 
with the finite strains and imperfect bonding of adjacent materials. 

Throughout the paper the subscripts i, j, .. . run over 1, 2, 3 and the indices a, b, .. . 
and A, B, ... run over 1, 2, ... , nand 1, 2, ... , N, respectively. The summation convention 
holds with respect to all aforementioned indices. 

2. Introductory concepts 

Let V be the regular region in 3-space occupied by the composite (or its part) in the 
referential configuration. Introducing the decomposition V = M U I U oV, we denote by 
M the finite sum of disjoined regions occupied by the homogeneous components of the 
composite, by I the sum of interfaces between these regions and by oV the boundary of V; 
hence oM= Iuav. Let [Ti), Tj] be the known time interval and lf'(r) = ll'(·,r) stands for 
an arbitrary field defined on v, M or oM, related to the time instant T E [Ti), Tj]. We intro­
duce the concept of the internal thermodynamical process as a sufficiently regular mapping 

(2.1) [Ti), TJ] 3 r-- (u(r), O(r), u(r), h(r), c(r), 7J(r)), 

where the fields on the right-hand side of Eq. (2.1) represent the states of displacement, 
absolute temperature, stress, heat flux, internal energy and specific entropy, respectively, 
at the time instant r. The field u( r), 0( r) are continuous and defined on V and the fields 
u(r),h(r),c(r),7J(r) are defined on M. We also introduce the external action process 

(2.2) [Tih TJ] 3 r-- (f(r), t(r), a(r), ,B(r)), 

where f( r), a( r) are the total volume forces and heat sources defined on l'vf and t( r), ,8( r) 
are the total surface tractions and heat sources defined on oM (except possibly some 
lines or points on oM), respectively, acting at the time instant r. Setting v(y, r) = ti(y, r), 
K{y, r) = (1/B(y, r))', y E V, we define the velocity v(r) and coolness rate K(r) fields. 
The sets of all velocity fields and coolness rate fields constitute certain linear topological 
spaces which will be denoted by V and K, respectively. Let F and 1t stand for the sets 
of all force systems (f, t) and heat source systems (a, ,8), respectively. To every (f, t) E F 
and every (a, ,8) E 1t we shall assign the linear continuous functionals v*(f, t), K"'(a, ,8) 
defined on V and K, respectively, setting 

(vllv*(f, t)) = J fi(y)vi(Y) dy + J ti(y)vi(Y) da for every v E V, 

(2.3) 
!vf &M 

(KIK"'(a, ,8)) = J a(y)K(y) dy + J ,8(y)K(y) da for every K E K . 
!vf &M 

The functional ( ·lv* (f, t)) represents the rate of work done by the force system (f, t) while 
the functional (·IK"'(a, ,8)) can be interpreted as the entropy production rate done by the 
heat source system (a, ,8). It can be also observed that the set of all stress fields and the 
set of all heat flux fields constitute linear topological spaces which will be denoted by V 

http://rcin.org.pl



MACRO-MODELLING OF THERMO-IN ELASTIC COMPOSITES 73 

and 9, respectively. On these spaces we shall define the bilinear forms 

(2.4) ( dllo-) =: J dij (y)O"ij(Y) dy , (gih) =: J 9i(y)hi(Y) dy. 
M M 

We shall assume that for every v E V and every "' E K there are defined the linear 
continuous operators L : V --+ 1J and \7 : K --+ 9, given by (Lv)ij (y) = V(i,j)(y) and 
(\7K)i(Y) = K,i (y), y EM, respectively. Hence (Lvlu) is a value of the stress power done 
by the stress field u on the strain rate field Lv. Similarly, (\7 Klh) is a value of the entropy 
production rate done by the heat flux field h on the coolness gradient field \7 "' · 

3. Fundamentals 

Using the concepts introduced in Sect. 2 and denoting by gv(r), gi(r) and tr(uLv)(r) 
the fields defined on M by means of g(y)vi (y , r), g(y)E(y, r) and O"ij(y)v(i ,j)(y), y E M, 
respectively, where g(-) stands for the mass density in the referential state of the compo­
site, we shall postulate the equations of motion and the energy balance equation in the 
following weak form: 

(3 .1) 
(Lvllu(r)) = (vllv*(f(r)- gv(r) , t(r))) 

(\7Kih(r)) = (KIK*(a (r)- gi (r) + tr(uLv)(r), ,B(r))) 

for every v E V , 

for every "' E IC , 

which has to hold for an arbitrary r E [ TiJ , r1 ]. 

In order to introduce the constitutive relations in the presence of the stress constraints 
(which will be investigated below), we postulate the following decompositions: 

(3.2) V(i ,j)(r) = d5 (r) + d~(r) , TJ(r) = 17c(r) + TJR(r), T E [ru, TJ] , 

where the fields d5 ( r ), 1{ ( r) will be called the constitutive strain rate field and the consti­
tutive specific entropy field, respectively. The interpretation of the fields d~ ( r ), 17R ( r) will 
be given below. For the sake of simplicity we shall restrict ourselves to the elastic-plastic 
and elastic/viscoplastic materials which can be jointly defined by the constitutive relations 
of the form 

(3.3) 

c -- . . dij (y, r) = dij (y; O"(y, r) , O"(y, r) , B(y, r), B(y, r)) , 

hi(y, r) = kij(y;B(y, r))B,j(y, r), 

c- (y, r) = <pc (y, r) + B(y, r)7Jc (y, r) , 

<pc (y, r) = cp(y; Lu(y, r), B(y, r)), 

TJc (y, r) = 7}(y; Lu(y, r), O(y, r)), y E M. 

For every special class of materials the constitutive functions on the right-hand sides of 
Eqs. (3.3) have to be specified. In particular, for elastic/viscoplastic materials we get 

(3.4) d5(y, r) = aijkl(y; B(y, r))&kl(y, r) + bij(y; B(y, r))O(y, r) 

+81(y; O"(y, r) , B(y, r))/ OO"ij(y, r) 

and for elastic-plastic materials we assume 

(3 .5) d5(y, r) = a~f1 (y; u(y, r), ir(y, r)), B(y, r))D-kt(Y, r) 
EP • · . +bij (y, u(y, r), u(y, r), B(y, r))B(y, r), 
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where the form of functions af1f1(y; · ), bf1P (y; · ), 'Y(y; ·) can be found in the recent literature 
on this subject. 

The constitutive relations have to be considered together with the known dissipation 
inequality 

(3.6) e(y)[7](y, r)- i(y, r)/O(y, T)] 

+O"ij(y, T) v(i, j)(y, T)/O(y , T) + hi(y , T)B ,i(y , r)/O(y , r)2 2: 0 

which has to hold for every y E M and T E [To, TJ ]. 
Now we introduce the concept of loadings by assuming that in the problem under 

consideration for every T E [ Tl>, TJ] the relation .Cr c F x 1i is known. An arbitrary 
(sufficiently regular) mapping [To,TJ] 3 T ~ (fL(T) , tL(T) , aL(T) , ,BL(T)) satisfying the 
condition 

(3.7) (fL(T) , tL(T), aL(T), ,BL(T)) E Lr, T E [To, TJ] , 

will be interpreted as a (mechanical and thermal) loading process of composite. The 
relation (3.7) for any T E [ Tl> , TJ] will be referred to as the loading relation. 

REMARK. In many problems (which will not be investigated here) the sets .Cr are 
singletons uniquely determined by the fields u(T), O(T), ii(T) , B(T)). 

Passing to the concept of the global constraints, we shall postulate that to arbitrary 
displacement u and absolute temperature () fields at every T E [To, TJ] there are assigned 
the known (possibly empty) closed convex sets V r ( u) , Kr ( 0) in the linear topological spaces 
V, K, respectively. If the fields u and () cannot be realized at a time instant T, then 
Vr(u) = ¢and Kr(O) = ¢.We shall also postulate that the closed convex nonempty set Vo 
in the linear topological space V of all stress fields is known. Under foregoing notations we 
shall assume that in the problem considered only such internal thermodynamical processes 
(2.1) can be realized which satisfy the conditions 

(3.8) v(T) E Vr(u(T)), ~.:(T) E Kr(O(T)) , u(T) E Vo , r E [To , TJ] . 

The above formulae will be referred to as the global (thermomechanical) constraints. 

REMARK. In more general situation, which will be investigated elsewhere, we also have 
to introduce the heat flux constraints h( T) E 90 where 90 is the known closed convex and 
nonempty subset in the linear topological space{}. 

The concept of constraints is closely related to the notion of reactions which maintain 
the above constraints. For the known loading process T ~ (fL(T), tL(T) , aL(T) , ,BL(T)) and 
an arbitrary external action process (2.1 ), define 

(3.9) (fR( T) , tR( T) , aR( T), ,BR( T)) 

=: (f(T)- fL(T) , t(T)- tL(T) , a(T)- a L(T), ,B(T)- ,BL(T)) . 

Then the force system (fR(T) , tR(T)) will be interpreted as the reaction maintaining kine­
matical constraints v(T) E Vr(u(T)) and the heat source system (a R(T) , ,BR(T)) will stand 
for the reaction to the thermal constraints K( T) E Kr ( 0( T) ). The aforementioned reactions 
will be termed perfect if the following minimum conditions hold in [To , TJ ]: 

(3 .10) 
(vll v*(fR(T) , tR(T))) 2: (v(T)II v* (fR(T) , tR(T))) 

(KjK*(a R(T), ,BR(T))) 2: {K(T)j K* (a R(T) , ,BR(T))) 

for every v E Vr(u(T)) , 

for every K E Kr(O(T)) . 
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Remembering the decompositions (23), we shall interpret the fields dR(T) , 1JR(T) as the 
reactions to the stress constraints u( T) E V0• These reactions will be called perfect if the 
following maximum conditions hold in [To, TJ ]: 

(3.11) (ulldR(T)) s; (u(T)IIdR(T)) for every u E Vo , 

and if the entropy procuction due to the reactions dR( T ), 1JR( T) is equal to zero; by means 
of the inequality (3.6) we have 

(3.12) e(y)1]R(y, T) + O"ij(y, r)d~(y , T) = 0 , y E Af , T E [To, TJ]. 

In the sequel we shall deal exclusively with the perfect reactions to the constraints (3.8). 
The physical interpretation of the conditions (3.10) and (3.11) can be easily derived from 
the interpretation of the pertinent functionals which were introduced in Sect. 2. 

The variational field equations (3.1), constitutive relations (33), dissipation inequality 
(3.6), loading relations (3 .7), constraint relations (3.8), reaction relations (3.10)-(3.12) and 
decompositions (3.2) and (3.9) represent the fundamentals of thermodynamics with the 
global (or field) constraints. 

4. Governing relations 

Using the relations (3.2), (3.9), (3.1) and (3.10), we can eliminate the reactions 
(fR(T), tR(T) , aR(T), [JR(T)) from the system of relations introduced in Sect. 3. 

This way we arrive at the conditions 

(4.1) 

(Lv- Lv(T)iiu(T)) ~ (v- v(T)IIv*(fL(T)- QV(T), tL(T))) 

for every v E Vr(u(r)), 

(\h:- \lK(T)ih(T)) ~ {K- t.:(T)ix:*(a L(r)- Qi(T) + tr(uLv)(T), {3L(T))) 

forevery x:EKr(O(T)), 

forTE [To , TJ]. Similarly, using the relations (3.11) and (3.2), we can eliminate the reac­
tions dR( T). Hence 

(4.2) (u- u(T)IILv(T)) s; (u- u(T)IIdc (r)) for every u E Vo, 

forTE [To , TJ ]. The conditions (4.1) will be called the virtual power principle and virtual 
entropy production rate principle. Similarly, the condition ( 4.2) will be referred to as the 
complementary power principle. At the same time from the relations (3.6) and (3.12) we 
get 

(4.3) e(y)(7]c(y, T)- i (y, T)/O(y , T)] + O'ij(y, T)dD(Y, T)/O(y, T) 

+hi(y, T)O ,i(y, T)/O(y, T)2 ~ 0 , y E M, 

for T E [To, TJ]. According to the line of approach of rational thermodynamics, we shall 
assume that the inequality ( 43) has to be identically satisfied by the constitutive functions 
~j(y; ·), kij(y; ·), ip(y; ·)and ij(y; ·)on the right-hand sides of Eqs. (3.3). 

Summarizing the obtained results, we conclude that the governing relations of the 
constrained thermodynamics (under the assumptions introduced above) are given by: (i) 
virtual power principle and virtual entropy production rate principle ( 4.1 ), (ii) comple­
mentary power principle ( 4.2), (iii) constraint relations (3.8), (iv) loading relations (3.7), 
(v) constitutive relations (3.3) which have to be restricted by the dissipation inequality 
(43). 
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5. Special constraints 

Define Ur = {u: Vr(u) t= <P }, Tr = {8: Kr(O) t= <P} for every r E [rh, TJ] and assume 
that 

(5.1) u(r)EUr, O(r)ETr, u(r)E'Do, rE[ilhTJ], 

imply the constraint relations (3.8). In this case the kinematical and thermal constraints 
will be referred to as the configurational constraints. 

Let V(u;r),K(O;r), for every r E [ro,r,] and every u E Ur,O E Tr, be the closed 
non-empty linear subspaces in the linear spaces V, K, respectively. Let us also assume 
that Vr(u) = V(u; r) + v, Kr(O) = K(O; r) + K for arbitrary v E Vr(u), "- E Kr(O); this 
means that every non-empty set Vr(u) and Kr(O) represent a certain linear manifold in 
V and K, respectively. Under this assumption the virtual power principle and the virtual 
entropy production rate principle (4.1) reduce to 

(Lvllu(r)) = (vllv*(fL(r)- ev(r), t1(r))) for every v E V(u(r); r), 

(5.2) (\7Kih(r)) = {KlK*(aL(r)- ei(r) + tr(uLv)(r),,BL(r))) 

for every "'E K(O(r); r), 

for every r E [ r0 , r1]. In this case the kinematical and thermal constraints will be called 
bilateral. Similarly, assume that 'Do is the closed non-empty linear subspace in the linear 
space V. Then the complementary power principle ( 4.2) will take the form 

(5.3) (uiiLv(r)) = (ulldc(r)) for every u E 'Do 

and the stress constraints will be called bilateral. 

6. Local macro-modelling 

In the local macro-modelling we restrict ourselves to the investigation of thermody­
namics in a certain arbitrary but fixed representative volume element of the composite 
structure under consideration. The analysis will be based on the relations of constrai­
ned thermodynamics, summarized in Sect. 4; the foundations of the modelling reduce to 
the specification of the constraint relations (3.8) and loading relations (3.7) and to the 
following: 

LOCALIZATION ASSUMPTION. The relations of macro-thermodynamics have to be in­
variant under arbitrary rescalling V --+ €V, € E (0, 1), of every representative volume 
element of the composite structure. 

The forementioned assumption is motivated by the fact that the macro-modelling 
procedure has a physical sense only if the maximum length dimension of the r.v.e. is 
negligibly small as compared to all length dimensions related to the problem for the 
whole composite structure. It follows that from the computational point of view the r.v.e. 
has to be treated as infinitely small; hence the methods of the nonstandard analysis can 
be used as a tool of modelling, see [8]. 

Let V be the neighbourhood of the point y = 0 in R3
. We shall specify the configura-
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tional constraints (5.1) by assuming that 

ui(y, r) = Ui(r) + Fii(r)yi + la(y)Ur(r), y E V, 

(6.1) c(y, r) = B(y, r)- 1 = C(r) + Ci(r)yi + la(y)Ca(r), y E V, 

O'ij (y, T) = s~j + ffiAij kl(y)St,( r)' y E A1' T E [ Tj), Tj], 

where Ia(- ), mAii kl(-) are postulated a priori (in every special problem) shape func­
tions and Ui (- ), Fii(- ), uia(- ), C(- ), Ci(- ), ca(- ), S1j (- ), Sj (-) are arbitrary sufficiently regu­
lar functions called macro-parameters. We also assume that S1j(y) = Sj'i(y), Sj(y) = 
S~(y) and 

J la,i(Y) dy = 0, mAijkl(Y) = mAklij(y) 
v 

and that the shape functions are independent. 
The specification of the loading relation (3.7) will be assumed in the form 

!l(y, r) = e(y)bi(y, r), y E A1, tf(y, r) = 0, y E I, 

tf(y, r) = (7ij(r) + 1iik(r)yk)ni(Y), y E aV, 1iik(r) = 0 if j :f k, 
(6.2) 

aL(y, r) = g(y)((y, r), y E A1, {3L(y, r) = 0, y E I, 

{3L(y, r) = (Hi(r) + Hij(r)yj)ni(Y), y E 8V, Hik(r) = 0 if i -:f k, 

where ni(Y) is a unit normal outward to aV, the functions e(·), bi(·), ((-) are known in 
every problem under consideration and 1ii (-),Hi(-), 1ijk(·), Hii(-) are arbitrary sufficiently 
regular functions. 

The specifications of constraints ( 6.1) and loadings ( 6.2) together with the localization 
assumption make it possible to determine the averaged thermodynamics of the r.v.e. To 
this end we introduce the well-known mean value operator 

(6.3) (lP) = (w)(.=) = vo~V J llJ(y, S) dy, 
v 

where lP( ·) is an arbitrary integrable function and .= is a finite sequence of parameters 
which are independent of y E V. 

Using Eqs. (6.1) and (6.2), from the virtual power principle (5.2) we obtain 

1ikk(r) + (ebi)(r) = (e)Oi(r), 

(6.4) Tij(r) = ~j(r) + (mAijkl)St1(r), 

(la,imAijkl)St1(r) = 0. 

Similarly, from Eqs. (6.1) and (6.2) and the virtual entropy production rate principle (5.2), 
we get 

(6.5) (gE)(r) = Hii(r) + 1ii(r)Eij(r) + (g()(r), Eij = F(ji). 

At last, the complementary power principle (5.3) and the condition (6.2) for the stress 
components yield 

(6.6) 
. c c 

Eij (r) = (dij)(r), DAij(r) = (mAijkldkl)(r), 

(mAijA:l)Ekl(r) + (mAijklla,k)Ut(r) = DAij(r). 

http://rcin.org.pl



78 Cz. WozNIAK 

In order to obtain the averaged form of the dissipation inequality ( 4.3), we introduce 
the denotations 

(6.7) EJ(r) := C(r)- 1 , Gi(r)- 1 := -Ci(r)EJ(r)2 , ca(r) := -Ca(r)EJ(r)2 , 

and we take into account Eqs. (6.1) and (6.2). Hence 

(6.8) (g~C)- (r;c)/E> + S!jEij/E> + StDAii/E> + HiGi/82 = 0. 

It has to be emphasized that Eqs. (6.4)-(6.6) and the inequality (6.8) as well as all 
subsequent relations of the averaged thermodynamics of the r.v.e. are obtained under the 
localization assumption, i.e., we reject all terms of an order of the length dimensions of 
V. It can also be shown that the following formulae hold true: 

(6.9) 

Tii = (uij), Tikk = (uik,k) - vo~V J ffuik]nk da, (uij la ,j) = 0, 
I 

Hii = (hi,i)- vo~V J ffhi]ni da, 
I 

TiiEij = (uijV(i,i))· 

All the formulae derived above are independent of the material properties of the r.v.e. 
Now, taking into account the constitutive relations in their general form (3.3), from 
Eqs. (6.6) we obtain immediately 

Eij = (~j)(S, S0, s, 8°, e, e), s = {st, ... , sN}, 
(6.10) "' 0 . ·o . 

DAij = (mAijkldkz)(S,S ,S,S ,EJ,EJ). 

From the constitutive relations (3.3) for the heat flux hi(y, r) and from the formulae (6.9) 
we get 

(6.11) 
Hi = (kii )Gi + (kiila,i )Ga, 

0 = (kijla,i)Gj + (la,ikijh,j )Gb, k·. = k· ·(y 0 ) I} I} l Cf • 

At last, the constitutive relations (3.3) for the internal energy yield 

(ec) = (e'Pc) + E>(eTJc), 

(e~.pc) = (e<P)(E, U, EJ), (eTJc) = (e7]}(E, U, EJ), U := {U1
, ... , un}. 

(6.12) 

It has to be emphasized that the averaged constitutive relations (6.10)-(6.12) were obtai­
ned with the aid of the constraint relations (6.1) and under the denotations (6.7). 

So far, no restrictions were imposed on the form of the constraints (6.1); hence some 
unphysical situations may take place if the shape functions in Eqs. ( 6.1) are not properly 
chosen. To avoid such situations, we introduce the following: 

DEFINITION. The constraints ( 6.1) are said to be well posed (for a class of thermo-elasto­
inelastic materials under consideration) if the material homogeneity of the r.v.e. and the 
uniform distribution of the inelastic part of the constitutive strain rate in the r.v.e. at every 
r E [ ro, TJ] imply the uniform distribution of the displacement gradients ui ,j (y, r ), temperature 
gradients B,i(y,r) and stresses Uij(y,r) at every r E [7il,rJ1 provided that Ut(y,ro) = 0, 
Sj(y, TH) = 0, y EM. 
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It has not be noted that the materials defined by the constitutive relations of the form 
(3.3) are called thermo-elasto-inelastic if 

(6 .13) d5 (y, r) = aii kr(y; fJ(y , r))&kr(y, r) + bij (y; fJ(y , r))O(y, r) + nij (y, r), y E M, 

where the tensors aii kr(y; ·), bii (y; ·) describe the elastic properties of a material and 

(6.14) nij(y,r) = nii(y;u(y , r),u(y , r),fJ(y, r),B(y,r)) 

is the inelastic part of the strain rate tensor; the functions nii (y; ·) can also depend on 
the hardening parameters not specified here. We also have to remember that using the 
constraints (6.1), we tacitly assume that the localization assumption holds true, i.e., we 
neglect all terms of an order of the length dimensions of the r.v.e. 

In the sequel we shall use the matrix notation, representing a symmetric tensor dii = 
di i by a column matrix d = {du , d22 , d33 , dtz, d23,d3t}T and a tensor m ijk/, such that 
m ijkl = miikl = miilb by 6 x 6 matrix m = [m]6x6· Moreover, any product of the form 
gimijk/, where 9i is an arbitrary vector, will be represented by 3 x 6 matrix denoted by 
gm = [gm]3x6· 

PROPOSITION. The constraints (6.1) are well posed if the block matrix [ (mAam8 ) -

(mAa)(a)- 1(am8 )] has an inverse denoted by [BA 8 ] 6Nx 6N and the block matrices 
[(\7lamA)BA8 (mB\7h)bnx 3n, [(\7lak\7h)]nxn are non-singular. 

Let [Aabhnx 3n and [Fab] nx n stand for the block matrices which are inverse to 
[(\7lamA)BA 8 (mB\7/b)] and [(\7lak\7h)], respectively. Then, from Eqs. (6.13), (6.6) and 
(6.4)3 we obtain 

SA= BA 8 ((mB\7la)iJa + ((mB)- (mBa)(a)- 1)E + (mB)(a)- 1(ii)- (mBii)), 

(6.15) iJa = Aab(\7hmB)B8 A(((mAa)(a)- 1- (mA))E +(mAn)- (mAa)(a)- 1(n)), 

ca = -Fab(\7hk) · G , nii = nii + bii(}, 

provided that the conditions in the above proposition are satisfied. Bearing in mind the 
definition of the well-posed constraints and the condition (\7 h) = 0, for the homogeneous 
material structure of the r.v.e. and the uniform distribution of n( ·, r ), under the localization 
assumption, we obtain from Eqs. (6.15) that SA = 0, iJa = 0 and ca = 0. Hence we 
conclude that the above proposition holds true. 

COROLLARY. For the well-posed constraints the macro-heat flux Hi is related to the 
macro-temperature gradient Gi by means of 

(6.16) Hi = ( (kij) - (kikla,k) F ab (h ,rkrj) )Gj . 

In the sequel we tacitly assume that the constraints (6.1) for the class of thermo-elasto­
inelastic materials under consideration are well posed. 

Now assume that the material of the r.v.e. is thermo-elastic/viscoplastic. From 
Eqs. (3.4) and (6.13) we obtain 

(6.17) nij (y , r) = O{(y;u(y,r) , fJ(y , r))jaO'ij(y , r) . 

Eliminating iJa from Eq. (6.15)1,2 and using Eq. (6.17), after the denotation 

jjAB = BAB - BAC (mc \7la)Aab(\7hmD)BDB ' GA = jjAB(mBa)(a)-1' 

DA = BA8 ((mB)- (mBa)(a)- 1) , BA = BA8 ((mBa)(a)- 1(b)- (mBb)), 
(6 .18) 
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we obtain 

(6.19) SA(r) = DAE(r) + BAB(r) + GA8(1)/8S0(r)- jjA 8 8(1)/8S8 (r). 

Combining Eqs. (6.6)t, (6.13) and (6.1) and denoting 

(6.20) 

A= (a)- ((amA)- (a)(mA))BA8 ((mna)- (mn)(a)), 

B =(b)+ ((amA)- (a)(mA))BA 8 ((mna)(a)- 1(b)- (m8 b)), 

C = 1 + ((amA)- (a)(mA))BA 8 (mna)(a)- 1
, 

CA =: ( (amn) - (a}(mn) )B8 A , 

under the assumption that the 6 x 6 matrix A is non-singular, we get 

(6.21) E(r) = (a)A- 1(a)T(r) + (a)A- 1(BB(r) + C8(1)/8S0(r) + CA8(1)/8SA (r)). 

It is to remembered that the matrices defined by Eqs. (6.18) and (6.20) depend on the 
macro-temperature e, and the averaged potential (I) is a function of the macro-par­
ameters S0, S = {S1 , ... , SN} and e. At the same time S0 = T- (mA)SA by means of 
Eq. (6.4)2. 

Summarizing the results obtained above, we see that the macro-constitutive (avera­
ged) relations for thermo-elastic/viscoplastic composite materials are given by Eqs. (6.21) 
where the macro-parameters Sj play a role of the internal variables being governed by 
the evolution equation (6.19). The above equations have to be considered together with 
Eqs.(6.16), (6.12) (6.15)2 and (6.17). 

If the material of the r.v.e. is thermo-elastic-plastic, then instead of Eqs. (3.4) we take 
into account Eqs. (3.5) where the elastic part and inelastic part of the constitutive strain 
rate tensor are combined together in the elasto-plastic constitutive matrices aEP, bEP; the 
possible dependence of these matrices on the strain hardening parameters is not specified 
here but has to be remembered. It is easy to see that Eqs. (6.15)1,2 can be written now as 

sA= BA
8

((mnY'la)Ua + ((mn)- (mni)(a))E 

(6.22) + ((mna)(a)- 1(b)- (mnb))B), 

l)a = Aab (Y'hm8 )B
8

A(((mAa)(a)- 1 - (mA))E + ((mAb)- (mAa)(a)- 1(b))B , 

where we have denoted a= aEP, b = bEP and where 

[BA8 ]6~x 6N = [(mAimn)- (mAi)(a)- 1(imn)]6Nx6N, 
(6.23) 

[Ab]3n\3n = [(Y'lamA}BAB (mnY'h)hnx3n, 

under assumption that the above inverses exist. Eliminating l)a from Eqs. ( 6.22) and 
denoting 

(6.24) 

we obtain 

iiAB =DAB- BAG (mcY'la)Aab (Y'hmn)BDB, 

DA = iiA 8 ((mn)- (mni)(a)- 1), 

BA = BA8 ((mni)(a)- 1(b)- (mnb)) , 

(6.25) SA(r) = DA(T(r), S(r), B(r), T(r), S(r))E(r) 

+ BA(T( r), S( r), B( r), T( r), S( r))B( r), 
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where S = {S1(r) , ... , SN (r)}. Combining Eqs. (6.6) 1, (3.5), (6.1)3 and (6.4)2 and setting 

(6.26) 
D = (a)- 1 +((rnA)- (a)- 1(amA))BA8 ((mB)- (mBa)(a)- 1

) , 

B = -(a)- 1(b) +((rnA)- (a)- 1(amA))BA8 ((mBa)(a)- 1(b)- (mBb)), 

we also obtain 

(6.27) T(r) = D(T(r) , T(r) , S(r) , S(r) , B(r))E(r) 

+B(T(r), t(r) , S(r) , S(r), B(r))B(r) . 

The results obtained above represent the macro-constitutive relations for thermo­
elasto-plastic COmposite materials, given in the form ( 6.27) where S~ ( T) can be treated as 
internal variables governed by the evolution equation (6.25). The forementioned equations 
have to be considered together with Eqs.(6.16) and (6.12) where the macro-parameters 
ur ( T) are determined by Eqs. ( 6.22)2. 

The macro-constitutive relations for composite materials have to be consistent with 
the macro-dissipation inequality (6.8). Independently of the macro-constitutive relations, 
we have derived from the proposed method of the local macro-modelling also the lo­
cal averaged equations of motion (6.4)1 and the local averaged equation of the energy 
balance (6.5) 1, the form of which is independent of the material structure of r.v.e. The 
macro-constitutive functions defined by Eqs. (6.18) and (6.20) or Eqs. (6.24) and (6.26) 
and those in Eqs. (6.16) and (6.12) will be identified with the macro-material proper­
ties of the composite structure under consideration. It has to be emphasized that we 
consider here only a certain mathematical model of the composite material and hence 
the macro-material properties depend also on the form of the constraints (6.1) and have 
been obtained under the localization assumption. Let us observe that the constraints (6.1) 
have a form similar to that used in the finite element method and hence the adaptive 
procedures can be used. 

Now we shall pass to the averaged form of the loading boundary conditions for the 
composite structure. To this end we introduce the concept of the representative bound­
ary element (r.b.e.) which will be treated, roughly speaking, as a small element of the 
composite boundary (compared to the whole structure) but large enough to describe the 
oscillatory character of surface tractions and heat input. The r.b.e. will be analyzed as a 
smooth part S of a boundary oW of a region W occupied by the composite; for the sake 
of simplicity we assume that on S both surface tractions i:(y, r), y E S and a heat input 

{j(y , r), y E S, are known a priori. Moreover, we assume that W is sufficiently small and 
the macro-modelling procedure can be applied to W. In order to do this, the formulae 
for tf(y, r) and {3L(y , r) in the loading relations (6.2) (with V replaced by W) have to be 
substituted by 

We also denote 

(6.28) 

tf(y, r) = (7ij(r) + 1ijk(r)yk)nj(y), 

{3 L(y, r) = (Hi(r) + Hik(r)yk)ni(Y) if y E 8lV \ S, 
tf(y, r) = f:(y, r), {3L(y, r) = P(y, r) if yES. 

((ti')) = ar:as J ti'(y)da(y) 
s 

http://rcin.org.pl



82 Cz. WozNIAK 

for an arbitrary integrable function w(- ). It can be shown that the macro-modelling pro­
cedure described above leads to the averaged relations of thermomechanics in W and to 
the extra conditions 

(6.29) 

which represent the averaged form of the natural boundary conditions for the composite 
structure. 

7. Global macro-modelling 

In order to formulate the governing relations for the whole composite structure, we 
have to make precise the intuitive concepts of the r.v.e. and r.b.e. which were introduced in 
Sect. 6 without any relation to the composite material structure under consideration. For 
the sake of simplicity we restrict ourselves to the macroscopically regular structures, i.e., 
we assume that the macro-properties of the composite do not suffer jump discontinuities. 

Let [} be the regular region occupied by the composite body in its referential confi­
guration. Let for every r E [r0 , r1] on the part r, r c {)[}, of the boundary the surface 

tractions i:(·, r) and heat supply jj(-, r) be known and on the remaining part {)[} \ r 
the displacements ui(·, r) be prescribed. Let us assign to every x E [} and z E r the 
non-empty open sets Vx and Sz, respectively, such that x E V x C fl, z E S z C r. From the 
purely formal point of view and under the assumption that Vx and Sz are sufficiently small 
(compared to length of dimensions of[} and r, respectively), we can substitute Vx = V 
and Sz = S in the macro-modelling procedure proposed in Sect. 6, obtaining the fields 
of the macro-relations defined on [} and the averaged boundary conditions defined on r. 
The idea of global macro-modelling is based on the physical fact that in many engineering 
problems there exists a special choice of sets Vx, x E fl, and Sz, z E r, such that every 
Vx, Sz can play a role of a certain representative element. To specify such elements, we 
introduce the following: 

GLOBAL MACRO-MODELLING ASSUMPTION. There exist the mappings 

(7 .1) [} 3 X - Vx ' r 3 z - Sz ' 

such that: 
(i) For every x E fl, z E r, the maximum length dimension ix of Vx and the maximum 

length dimension lz of Sz are negligibly small as compared to the minimum characteristic 
length dimensions of [} and r, respectively. 

(ii) For every x E [} and every .dx E [}- x, IL1xl < lx, all macro-constitutive functions 
related to Vx+.dx can be approximated by the pertinent macro-constitutive functions related 
to Vx. 

(iii) For every z E rand every .dz E r -z, IL1zl < lz, the averaged boundary conditions 
related to Sz+L1z can be approximated by the averaged boundary conditions related to Sz. 

Under this assumption every Vx will be referred to as the r.v.e. of the composite 
material in the vicinity of x. Similarly, every Sz will be called the r.b.e. in the vicinity of 
z. For the periodic material structure all r.v.e. coincide and we pass to the trivial case of 
the global macro-modelling which is known under the term homogenization. 

In the sequel we shall assume that the global macro-modelling assumption holds and 
hence all macro-entities introduced in Sect. 6 depend on x E fl (or on z Erin Eqs. (6.29)). 
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From the computational point of view we can also assume that all macro-fields defined on 
fl and r also satisfy the regularity conditions required below; to this end a certain formal 
regularization of the composite structure may be necessary. Then, for an arbitrary but 
fixed x, x E fl, and under the localization assumption, the "micro" -coordinates y E V x in 
Eqs. (6.1) and (6.2) represent the infinitesimal increments (in the sense of the nonstandard 
analysis, see (8]) of the "macro"-coordinates x E fl. In order to interrelate both kinds of 
coordinates, we have to assume that 

Fii(x , r) = Ui,j(x,r) , Gi(x,r) = e,i(x,r), 

7ikk(x, r) = 7ik ,k(x , r), Hii(x, r) = Hi,i(x, ;) , x E fl, T E [Ti>, TJ]. 
(7.2) 

The above conditions imply the continuity of a passage from an arbitrary (infinitely small) 
representative volume element to any adjacent element and can be referred to as the 
macro-compatibility conditions. It has to be emphasized that the form of an arbitrary 
macro-constitutive function in every Vx, x E fl, from a numerical viewpoint, can be treated 
as constant but it can be quite different in distant parts of the composite. If such a 
situation takes place, then the composite structure under consideration will be referred 
to as macro-inhomogeneous structure. 

8. Averaged thermodynamics of composite materials 

Summarizing the obtained results, we conclude that the averaged thermodynamics is 
governed by the following relations: 

(i) The equations of motion and energy 

7ij,j(x, r) + (ebi)(x, ;) = (e)(x)Ui(x, ;) , 
(8.1) 

(ec)(x, ;) = Hi,i (x, ;) + 7ij(x, ;)Eij(x, ;) + (e()(x, ;) , x E fl, 

with the averaged boundary conditions 

(8.2) 7ij(X, ;)((nj))(x) = ((i:))(x, ;) , Hi(X, ;)((ni))(x) = ((,B))(x, ;) ' X E r' 
and macro strain - displacement relations 

(8.3) Eij(X, ;) = u(i,i)(x, ;) ' X E fl. 

(ii) The macro-dissipation inequality 

(8.4) (e~C )(x, ;) - (e~)E>(x, ;)- 1 + S1j(x, ;)Eij(x, ;)E>(x, ;)-1 

+Sj(x, r)DAij(X, r)E>(x, r)- 1 + Hi(x, r)E>,i(x, r)E>(x, ;)-2 ~ 0. 

(iii) The macro-constitutive relations for a class of inelastic materials under conside­
ration 

. - ...... . () . () . - . 
Eii (x, r) - (dji)(x, S (x, r), S(x, r), S (x, r), S(x, ;), E>(x, r), E>(x, r)), 

(8.5) S := {Sl, .. . , SN}, 

D Aij (x, r) = (mA ijkldkl)(x; S0 (x, r), S(x, r), S0(x, ;), S(x, r), E>(x, r), B(x, ;)) ; 

(ec)(x, r) = (e<pc)(x, r) + E>(x, r)(e7]c)(x, r), 

(8.6) (e<pc)(x, r) = (e~)(x; E(x, r), U(x, r), E>(x, r)), U := {U1
, ... , un}, 

(e7Jc)(x, r) = (ery)(x; E(x, r), U(x, r), B(x, r)); 
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(8.7) 
Hi(X, r) = (kij}(x)B,j(X, r) + (kijla,j)(x)Ga(x,r), 

0 = (kijla,i}(x)B,j(X, r) + (kijla,ih,j)(x)Gb(x, r), x E [}. 

(iv) The extra interrelations between the macro-parameters 

7ij(X, r) = ~j(x, r) + (mAijkl)(x)Sf1(x, r), 

(8.8) DAkl(x, r) = (mAklij }(x)Eij(x, r) + (mAklijla,(i}(x)Uia)(x, r), 

(/a,jffiAijkl)(x)Sft(x, r) = 0, x E il. 

The above equations have to hold for every r E ['Til, r1 ]. Under the condition that the con­
straints (6.1) are well posed for the elasto-inelastic materials considered, Eqs. (8.1)-(8.8) 
represent a certain macroscopically equivalent medium for the inelastic composite me­
dium with highly oscillating material properties. The specifications of the constitutive 
function d;j ( · ), discussed in Sect. 6, lead to the macro-models of elastic/viscoplastic and 
elasto-plastic composites, governed by Eqs. (6.19) and (6.21) and Eqs. (6.25) and (6.27), 
respectively, where all functions also depend on the macro-coordinates x E il. The analy­
sis of special cases of Eqs. (8.1)-(8.8) and certain engineering applications of the proposed 
averaged thermodynamics as well as various specifications of the constraints (6.1) will be 
presented in the forthcoming papers. 
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