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On the reliability of postbuckling analyses for nonconservative
imperfect systems

A. N. KOUNADIS (ATHENS)

CriTiCAL STATES of the inverted double pendulum under a partial follower load are thoroughly
reconsidered with the aid of a complete nonlinear dynamic analysis which includes both material and
Feometrical nonlinearities. The material nonlinearity is of quadratic type so that the perfect system
oses its stability through an asymmetric branching point. It is found that while for the perfect system
the nonlinear static analysis gives the same critical loads as those obtained by the nonlinear dynamic
analysis, in the case of the imperfect system appreciable deviations between these loads occur. An

attempt is made to explain this phenomenon by clarifying the physical meaning of each of these
critical loads.

Stany krytyczne podwdjnego wahadia poddanego obcigzeniu $ledzacemu sa w pelni zbadane wraz
z uwzglednieniem nieliniowej analizy dynamicznej zarowno opisujacej zachowanie materiatu jak i
nieliniowows$¢ geometryczng. Nieliniowe zachowanie materiatu przyjeto w postaci funkcji kwadra-
towej, zatem ukfad idealny traci stabilno§¢ w asymetrycznym punkcie bifurkacji. W pracy wyka-
zano, ze w przypadku uktadu z imperfekcjami, pojawiajg si¢ istotne roznice w wartosci obcigzen
krytycznych wyznaczonych z analizy statycznej i dynamicznej. Roznic takich nie obserwuje si¢ w
uktadach bez imperfekcji. Zjawisko to wyjasnia si¢ przez fizyczng interpretacje obciazen krytycz-
nych.

Ilpoananusuposana npobnema sHepreTuueckoro 6ananca Tennoro ABUraTelsif, ONUpa-
IOUIErocs Ha MCNOJIb30BAaHUM CBOWCTB HEKOTOPLIX TBEPALIX Tes, 3aKNIOUAIOIUXUA B
namMATU GOpMbl; aHAIM3 NpPoBeJeH C TOYKM 3pPEHUMs TePMOMeXaHUKU MeTasnos, obna-
CTM 3HAHUN, HAXONALIMXCA HA Ipalu TepMOMeXaHWKM U MeTannypruu. lns npumepa
MOCJY3XUINCh MOJEJIbIO, COCTOAILENR M3 JABYX AMCKOB 06XBaueHHBLIX NPOBOJIOKON, U3ro-
TOBJIEHHOW M3 CniaBa coxpaHsaiolero naMmaTh ¢popmbl. [lokasano, yTo HekOTOpoEe KO-
JIMUECTBO BHEPIUH, HAKOIIJIEHHOW B MaTepuaJlie IpU NMOBBLILIEHHOW TeMIepaType B Bule
sHeprumn aepopmanuu, BbLAeNseTcA Ha JepopMauMIO NMPOBOJIOKM M Ha ApYrue uenwu,
Torfa Kak Ueslbiii NPONecc MPOMCXOJMT MEeUIAY pe3epByapaMu TenJia ¢ pa3sHbIMU TeM-
nepatypamu. OcTanbHasg uacTbh dHeprum npeobpasyeTca B KOHEUHLIA cUeT B KUHETH-
UEeCKYI0 BHEPIrUio, NPUBOAALLYIO cHucTeMmy AuckoB. Jloka3ano, 4uTO U3MeHEHUA KPHUBOM
“Hanpsrxkenmve-aepopmanmn’, Bol3BaHHble NpPeBpalleHMEM UMEIOLIMM MeCTO B MeTalle,
COCTABAAIOT CyIECTBEHHBIA (akTOp B noctpoenuu a(PeKTUBHOro ABUMrATEJNIA BTOrO
pona.

1. Introduction

IN THE LAST ten years numerous studies were done on the postbuckling response of non-
conservative elastic systems relerring to simple frames [1-4] and general discrete systems
[5, 6]. The last two analyses constitute an extension of the general nonlinear stability theory
of Thompson to nonconservative, nonlinearly elastic, discrete systems of divergence insta-
bility. PLAUT [S, 6] discussed the three basic types of bifurcation points including also the
case of coincident critical points. His analysis was illustrated by a nonlinear elastic double
pendulum of quadratic or cubic type under a partial follower load for which linearized sta-
tic and dynamic analyses were available [7]. Recently, KOUNADIS and MAHRENHOLTZ [8]
showed that nonconservative systems made from nonlinear elastic material may sometimes
be analysed by using static methods of analysis.

The results of the foregoing postbuckling analyses, concerning mainly nonconservative
systems of limit point instability, have not been compared to those obtained by using
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a nonlinear dynamic analysis. This, of course, is due to the intractability of the highly
nonlinear equations of motion. Therefore, it is not known if the nonlinear dynamic analysis
gives the critical loads obtained by a static analysis as this occurs for nonconservative linear
(bifurcational) systems.

Interesting nonlinear dynamic analyses of nonconservative systems discussing the
post-critical steady-state response [9, 10] and/or the transient response [11] are basically
valid in the vicinity of the critical state, the higher order terms being disregarded.

More general and thorough analyses discussing the critical and stability response of
gradient and nongradient, one or multiple-parameter, autonomous discrete systems by stu-
dying the Jacobian eigenvalues in the vicinity of a critical state were presented by Huseyin
and his associates [12-14]. However, the above nonlinear dynamic analyses based on lo-
cal (linearized) solutions are inadequate to predict certain phenomena (associated mainly
with the global response) which may occur in nonlinear multiple-parameter autonomous
systems.

The main objective of this investigation is, a) — to establish critical loads mainly of
divergence instability by studying the global response associated with the original nonlinear
equations of motion. To this end large amplitude motion and large time solutions are
considered, b) — to compare static critical loads of the imperfect system with those
obtained by using a nonlinear dynamic analysis and ¢) — to shed some light on the actual
nature of the follower type nonconservative loading.

2. Mathematical analysis

Consider the partially fixed imperfect model shown in Fig. 1 consisting of two (weight-
less) pin-jointed rigid links of equal length [, which carry the concentrated masses m; and
m; at B and A, respectively. The model is acted upon by a partial follower load P applied

%

FI1G. 1. Unstressed (a) and stressed (b) state of a double pendulum under partial follower load.

at its tip A at the angle 7Y, with respect to the deformed axis of the upper link. Such
a load becomes tangential for n = 0 and constant directional (conservative) for n = 1;
namely, for  # 1 it is nonconservative. The bending moments at C and B obeying a
nonlinear elastic quadratic law are given by

(2.1) Me = k(1 + 61¢c), Mp = kyp(l + 62¢B),
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respectively, where & > 0 is the linear spring constant and é; and é; are the nonlinear
spring constants, while ¢ and ¥ p are the angles of rotation at C' and B measured from the
unstrained configuration. This is identified by the initial imperfections ¥, = ¢ and J; = e;
therefore in the deformed state we have ¢ = ¥, — ¢y and ¥ = (V2 — €2) — (1 — €1).
If 6 = é; = 0, both springs are elastic (Hookean material). When é; and é; are both
negative, the nonlinear elastic springs are of “soft” type, otherwise (i.e. if 61,62 > 0) they
are “hard” type.

PLAUT [5] has treated only the case n > 4/9 (corresponding to divergence instability),
while HERRMANN and BUNGAY [7] investigated the flutter and divergence instability of
the linear perfect (¢; = ¢; = 0) model for —2<np<2(or-1<a=1-7n<3).

3. Nonlinear static analysis

Application of the principle of virtual work for arbitrary variations év; and é4; yields
U
(3.1) 5™
where the strain energy U and the generalized (nonpotential) loads @; (due to P) are
given by

Qi=0 (i=12),

v _1 1 1 1
(32)I = 5(191 — 61)2 + 3-(51(191 — 51)3 + -2—(192—52 — U+ 61)2 + 362(02—52 - + 61)3,

Qi = psin[dy + (n— 1)Va], Q2 =pzsinndy, p=p/k.
The critical bifurcational load p¢(e1 = ¢; = 0) is equal to [6]

(3.3) p6=%(3i,/9—f’) for n=4/9 or 5<0.
17

For n = 4/9 we have a coincident (double) critical point at p° = 1.5. This point, as shown
by KOUNADIS [15], and KOUNADIS and MAHRENHOLTZ [8], is always associated with a
jump in the critical load.

If 6; and &, are not both zero, the critical state for n > 4/9 and 5 < 0 corresponds
to an asymmetric branching point [6], while for §; = §; = 0 the critical point becomes a
stable symmetric branching point. Indeed, as was shown by KOUNADIS [16, 17], the critical
state of the perfect linear (Hookean) system is stable.

The critical state (per, 57, U57) of the imperfect system is determined by solving Egs.
(3.1) subject to the condition (of vanishing of the stability determinant)

(3.4) |Dij| =0, Dij # Dji,

where D;; = (92U /80;09; — 0Q;/89;. Whether or not the system of Eqs. (3.1) and (3.4)
has a solution, depends on the values of £; and e;. If there is no solution the model
exhibits a rising (stable) equilibrium path.

Extending the foregoing analysis by PLAUT [5] to the case n < 4/9 one can prove the
existence of adjacent equilibrium states for that range of values of . The model may be
either stable or loses its stability through a limit point depending on the values of ¢; and
¢2; therefore, in contrast with all previous linearized analyses, the static methods are also
applicable for the range n < 4/9 or @« = 1 —1n > 5/9 [7, 18]. For instance, if n = 0.2,
6 = =2.5, 6 = —0.75, ¢y = 0.05 and ¢; = —0.05 one can find p, = 0.7357.
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Hence, the important conclusion is deduced that the applicability of static methods of
analysis for systems which in their ideal state are associated with an asymmetric branching
point may depend on the presence of imperfections. For systems which in their ideal state
are associated with a symmetric branching point the applicability of static methods may
depend on the presence of material nonlinearity [8, 16, 17, 19]. A detailed analysis for
the effect of material nonlinearity in buckling of conservative elastic systems is presented
by VARELLIS and KOUNADIS [20].

Whether or not the limit point loads (divergence instability) coincide with the dyna-
mic critical loads will be discussed below with the aid of a nonlinear dynamic analysis.
The integration of equations of motion is achieved numerically using the Runge-Kutta’s
fourth-order scheme and, in some cases, an approximate but efficient analytic tech-
nique [21, 22]. Considering the stability of motion in the large, in the sense of Lagrange
(boundedness of solution), dynamic buckling is defined as that state for which an escaped
(leading to an unbounded) motion is initiated. The smallest load corresponding to that
state is defined as the dynamic (either divergence of flutter) instability load.

4. Nonlinear dynamic analysis

Lagrange’s equations of motion may be written as follows [23]

d (0K aK  aU

4.1 Bl (o Il A Wl

(1) dt (019,-) av;  0Y;

where the dot denotes differentation with respect to ¢, while the kinetic energy K is given
by [16, 17]

_Qi=09 izl:zu

2 1 s . & e
4.2) K= %mllzﬂf + zmzlz[z?f + 03 + 2010, cos(d) — 97)] .
With the aid of relation (4.2) and the dimensionless quantities
1
_ _ ko2 My
(4.3) Oi(r) = 0i(r), 7= (mzlz) , m= oy i=12

Eqs. (4.1) become
(1 + m)dy + b, cos(0; — 02) + 0] sin(0; — 0;) + 2(61 — €1) — (02 — €2) + 61(61 — €1)*

(44) - 52(91 —e1—0 + 52)2 -p sin[()l + (T] - 1)62] =0,
f;iz + gl cos(6y —02)—9% sin(01—0;)—(01—¢1)+ 02 —¢2 +52(0| —e1—0, +€2)2—pSin nl; =0.
These equations, after linearization and setting m = 2 and &y = ¢; = 0, coincide with
the corresponding equations presented by HERRMANN and BUNGAY [7]. The system of
Eqs (4.4) subject to the appropriate initial conditions is solved numerically by using the
fourth-order Runge-Kutta scheme with a step size 0.01. These results in some cases have
been checked by employing an approximate analytic technique [21, 22].

For the perfect system (¢; = ¢2 = 0) Eqs. (4.4) subject e.g. to the initial ({ = 0)
conditions
(4.5) 6,=0, 6, ~0 (eg 6;=10"*ord =10"1)

yield for » > 4/9 and < 0 dynamic critical loads pZ tending asymptotically to the
corresponding static ones given by Eq. (3.3).
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For the imperfect system the associated initial (¢ = 0) conditions are
(4.6) Oy=e1, Oh=¢e, 0,=0,=0.

PLAUT [6], considering the case n = g, ¢1 = 0 and e = —0.02, has found that the limit
point load is pM = 1.20for 6; = —0.40 and &; = —0.20, while for §; = 1.5 and 6; = —0.75
this load becomes pM = 1.06. Using a nonlinear dynamic analysis the corresponding loads
are 1.178 and 1.038, respectively; it means that the maximum difference between the static
and dynamic critical load is 2 %. Although the mass ratio may have a considerable effect
on the dynamic critical load [24], in this case a change of the mass ratio from m = 2 to
m = 1 does not practically affect the foregoing percentage. Indeed, for m = 1 the dynamic

critical load of the last case becomes 1.0386; that is 0.05% higher than that corresponding
tom = 2.

8, § a

p-0.58<p? ~05999 (bounded motion)

d,=-25, =006
€,=-005

p=060p g =05999 (unbauhdea' motion)

a m
| €,-005 8

FIG. 2. Bounded (a) and unbounded (b) motion in the phase plane —(8;,6)
of an imperfect model (=) = 0.05,e, = ~0.05) with n = 0.2, §; = —2.5 and é; = —-(.75.

For the numerical data used in the previous section (n = 0.2, 6; = —2.5, é; = —0.75,
g1 = 0.05, and &; = —0.05) Eqs. (4.4) and (4.6) give a dynamic critical load pP equal to
0.5999; that is different than the corresponding static one p,, = 0.7257. Figure 2 shows
the motions in the (0;,6,)-phase plane for p = 0.58 < p2 (bounded amplitude) and for
p = 0.61 > pB (unbounded amplitude). Note that if m = 1 (instead of m = 2 ), the
dynamic critical load becomes 0.6025; that is 0.4% higher. The difference between the
static (divergence) buckling load and the dynamic instability load is also observed for
other values of the nonconservativeness parameter 7. Different types of motion occur if
only 7 changes. Figures 3a, b show bounded (for p = 2.275 < pl) and unbounded (for
p = 2.280 > p2) motions in the (0;,0,)-phase plane if n = 1.4, 6, = 2.5, 6; = —0.75,
&1 = 0.05, and ¢; = —0.05.

From Fig. 4 one can see the effect of the imperfection parameter ¢; on the static

and dynamic critical load at the coincident critical point n-4/9 for ¢; = 0.02, §; = —-2.5
and &, = —0.75. It is clear that the difference between the dynamic critical load and the
corresponding static one remains practically constant, being equal to 7.6%. For n = —1,

8y = =25, 6, = —0.75, ¢; = 0.05 and ¢; = —0.05, the dynamic critical load is equal to
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Bounded motion
/—‘—_ -

n=14, p=2275<p2
6,=-25, €,=005
8y=-075, £,=-005

FIG. 3 a) Bounded motion in the phase plane —(8;, 8;) of an imperfect
model (g = 0.05,e5 = —0.05) with n = 1.4, §; = —=2.5 and &, = —0.75.

Unbounded motion_

&

n=14, p=2.250>p£
d,=-25, €,=005
&,=-075, £,=-005

FIG. 3 b) Unbounded motion in the phase plane —(é,, 0,) of an imperfect
model (g = 0.05, g5 = —0.05) with n = 1.4, §; = —2.5 and 6, = =0.75.

1.555, while the corresponding static load is 1.763, that is greater than the former one by
about 13.5%. A few similar results for another nonconservative model were reported by
SOTIROPOULOS and KOUNADIS [19].

In bifurcational systems under follower loading with a trivial fundamental path, in
which flutter does not occur before divergence, the static critical loads coincide with
the dynamic critical loads regardless of wether or not the ratio of the concentrated
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Nonlinear dynamic critical lood
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FiG. 4. Static and dynamic critical load (per, p2) versus e; for a nonlinear
elastic system associated with a coincident critical point.

masses varies. However, this is not so far limit point systems. In this case the static
critical load is, in general, higher than the corresponding dynamic one [16, 17].
This is also valid regardless of wether or not the mass ratio may affect the dynamic
critical load. Then the following question is automatically raised: which is the physi-
cal meaning of each of these critical loads? Before answering the question it is in-
teresting to consider a similar case in conservative systems under a suddenly applied
load of infinite duration [25-28]. Indeed, in this case the static critical load coincides
with the corresponding dynamic load only in bifurcational systems. According to
this important finding the kinetic criterion for establishing critical loads of conserva-
tive or nonconservative divergence instability systems is restricted to bifurcational sys-
tems.

In view of the above observations one could consider that both critical loads are
meaningful as referring to diflerent response states. This, of course, presupposes that
it is possible to apply a follower load statically. If the latter case is not feasible, only
the dynamic instability load is physically acceptable. Moreover, it is concluded that the
stability of a nonconservative system must always be investigated by a dynamic analysis,
regardless of wether or not a static (divergence) instability analysis may be employed.
Certainly, this is particularly necessary when the effects of masses and damping must be
included.

From Fig. 3a, b, one can also observe that the above nonlinear, multiple-parameter,
autonomous system (§; = —2.50, & = —0.75, ¢; = 0.05, ¢ = —0.05) for n = 1.4 exhibits
a rather nonperiodic oscillation, looking like a chaotic motion. The same phenomenon
occurs for n = 1.6, while the other parameters remain constant. Indeed, as one can see
from Fig. Sa, a sudden leap in the response of the system occurs after a long period of
large amplitude, quasi-chaotic, oscillations [29]. For a load less than the buckling load
the bounded motion is similarly quasi-chaotic (Fig. 5b). Such a phenomenon is due to
sensitivity to initial conditions and not to a strange attractor, since without damping there
is no contraction of the phase-space volumes [30]. Indeed, the relative change of the
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57'5 Nonlinear d,=-250, &,=-075
' Elastic material n=16, &=005,6  &=-005
10
as 100 200 300
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FiG. 5. Quasi-chaotic motion ( 8, versus ) bounded (a) and
unbounded (b) leading to dynamic buckling after a long period of time.

phase-space volume for this system being equal to [17]
(62 — 61)sin2(6; — 62)

4.7
“.7) m + sin®(6; — 6;)

)

is not always negative (as in the case of an attractor). This quantity changes sign with
varying time, becoming positive (expansion of phase-space volume) and negative (con-
traction of phase-space volume). The presence of this quantity is due to the nonlinear
terms 63 sin(6; — 6,) and 0% sin(d; — 0;) in Eqs. (4.4) which are looking like damping
terms. As it was found, these terms (which govern the global behavior of the model) are
also responsible for the sensitivity to initial conditions. From the time series shown in Fig.
6 one can see two motions with slightly different initial conditions which gradually diverge
with varying time. Note that chaotic phenomena due to sensitivity to initial conditions
have been also observed in Hamiltonian systems [29, 31]. A pertinent plot corresponding
to a conservative load is shown in Fig. 7 [32]. In this case conservation of energy enables
us to check the accuracy of numerical solution when the large time response is required.
Before closing this section the following observation is worth making:

Local solutions in the vicinity of an appropriate equilibrium state by considering small
or large amplitude motions about it provide in many cases valuable information regarding
the response of a system; however, in case of imperfect, multiple-parameter, autonomous
systems such, quite often cumbersome, solutions may be proved inadequate to predict
some dynamic bifurcations and instability phenomena associated with non-periodic mo-
tions that may occur at large time [17, 28, 32]. On the other hand, an asymptotic analysis
for large time solutions may lead to unreliable results. A general dynamic analysis leading
to global, large time and amplitude oscillation, solutions based on the original nonlinear
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6,1 n=16
! O;=-25 &,=-075
£,=005 p=165 =005 &=-004

Al TRy

i

F1G. 6. Two motions corresponding to slightly different initial conditions which diverge with varying time.
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d!7'—__2'5 df—ﬂ.75
€,=005 €,=-0.035 ,
p=0.799829 Unbounded motion

| Kalathas and Kounadis (1991)
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FiG. 7. Unbounded quasi-chaotic motion (8, versus ) corresponding
to a conservative loading (n = 1) leading to dynamic buckling after a long period of time.

differential equations, is the only safe way for predicting the actual behavior of the above
systems. Whatever is the approximation technique for establishing such a response, there
are cases where a verification via numerical simulation is necessary to be done. Such a
numerical procedure can be efficiently applied to discrete systems associated with ordinary
differential equations with the aid of high speed computers and modern computational
techniques whose accuracy should always be checked if pertinent criteria exist.
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