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On the reliability of postbuckling analyses for nonconservative 
imperfect systems 

A. N. KOUNADIS (ATHENS) 

CRITICAL STATES of the inverted double pendulum under a partial follower load are thoroughly 
reconsidered with the aid of a complete nonlinear dynamic analysis which includes both material and 
geometrical nonlinearities. The material nonlinearity is of quadratic type so that the perfect system 
loses its stability through an asymmetric branching point. It ts found that while for the perfect system 
the nonlinear static analysis gives the same critical loads as those obtained by the nonhnear dynamic 
analysis, in the case of the imperfect system appreciable deviations between these loads occur. An 
attempt is made to explain this phenomenon by clarifying the physical meaning of each of these 
critical loads. 

Stany krytyczne podw6jnego wahadla poddanego obci~niu sledz~cemu s~ w pelni zbadane wraz 
z uwzgl~dnieniem nieliniowej analizy dynamicznej zar6wno opisuj'lcej zachowanie materiatu jak i 
nieliniowowsc geometryczn~. Nieliniowe zachowanie materialu przyj~to w postaci funkcji J...-wadra­
towej, zatem uklad idealny traci stabilnosc w ao;ymetrycznym punkcie bifurkacji. W pracy wyka­
zano, ie w przypadku ukladu z imperfekcjami, pojawiaj~ si~ istotne r6znice w wartosci obci~n 
krytycznych wyznaczonych z analizy statycznej i dynamtczneJ. R6znic takich nie obserwuje sict w 
ukladach bez imperfekcji. Zjawisko to wyja5nia sict przez fizyczn~ interpretacjct obci&Zen krytycz­
nych. 

npoaHaJII1311pOBaHa npo6JieMa aHepreTI14CCKOl'O 6aJiaHCa TCOJIOl'O )J.BI1raTCJI.R, 0011pa­

fOW.Cl'OC.R Ha 11COOJlb30BaHI111 CBOHCTB HCKOTOpblX TBCp,D.blX T-ell, 3aKJif04afOUJ.I1XI.l,.R B 

naM.RTI1 <flopMbl; aHaJII13 npOBC)J.CH C T04KI1 3pCHI1II TepMOMCXaHI1KI1 MeTaJIJIOB, o6na­

CTI1 3HaHI1H, HaXO)J.IIUJ.I1XCII Ha rpaHI1 TepMOMCXaHI1KI1 11 MCTaJI11ypr1111. Jinn np11Mepa 

OOCJIY3XI11111Cb MO)J.CllbfO, COCTOIIUJ.CH 113 .LJ.BYX )J.I1CKOB o6xBa4eHHblX npoBOJIOKOH, 113l'O­

TOBJICHHOH 113 CUJiaBa coxpaHJifOW.Cl'O naMIITb <flopMbl. noKa3aH0 1 \.ITO HeKOTOpoe K0-

1111\.ICCTBO E"Hepr1111, HaKOUJICHHOH B MaTep11a11e np11 OOBblllJCHHOH TCMnepaType B BH)J.e 

anepr1111 ,n.e<flopMaLJ.I111 , Bbl)J.CJIIICTC.R Ha ,n.e<flopMaLJ.I1fO npOBOJIOKI1 11 Ha ,n.pyr11e LJ.C1111 1 

TOr,D.a KaK U.CllblH npou.ecc np011CXO)J.I1T MCUI.LJ.Y pe3epsyapaMI1 TCUJia C pa3HblM11 TeM­

nepaTypaM11 . OcTaJibHan 4aCTb auepr1111 npeo6pa3yeTC.R B KOHe4nbli1 C4eT B tmneTI1-

4CCKYlO anepr1110, np11BO)J..Rlli.Yf0 CI1CTeMy )J.I1CKOB. lloKa3ano, \.ITO 113MCHCHI1.R Kp11BOH 

"uanp.R>t<CHI1e-,n.e<flopMaLJ.I1.R", Bbl3BaHHblC npespaW.CHI1CM 11MCfOUJ.I1M MCCTO B MeTaJIJie, 

COCTaBJI.flfOT cytU.CCTBCHUblH <flaKTOp B OOCTpOCHI111 a<fl<fleKTI1BHOl'O )J.BI1raTCJI.R BTOl'O 

po,n.a. 

1. Introduction 

IN THE LAST ten years numerous studies were done on the postbuckling response of non­
conservative elastic systems referring to simple frames [1-4] and general discrete systems · 
[5, 6]. The last two analyses constitute an extension of the general nonlinear stability theory 
of Thompson to nonconservative, nonlinearly elastic, discrete systems of divergence insta­
bility. PLAUT [5, 6] discussed the three basic types of bifurcation points including also the 
case of coincident critical points. His analysis was illustrated by a nonlinear elastic double 
pendulum of quadratic or cubic type under a partial follower load for which linearized sta­
tic and dynamic analyses were available [7]. Recently, KOUNADIS and MAHRENHOLTZ [8] 
showed that nonconservative systems made from nonlinear elastic material may sometimes 
be analysed by using static methods of analysis. 

The results of the foregoing postbuckling analyses, concerning mainly nonconservative 
systems of limit point instability, have not been compared to those obtained by using 
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96 A. N. KOUNADlS 

a nonlinear dynamic analysis. This, of course, is due to the intractability of the highly 
nonlinear equations of motion. Therefore, it is not known if the nonlinear dynamic analysis 
gives the critical loads obtained by a static analysis as this occurs for nonconservative linear 
(bifurcational) systems. 

Interesting nonlinear dynamic analyses of nonconservative systems discussing the 
post-critical steady-state response [9, 10] and/or the transient response [11] are basically 
valid in the vicinity of the critical state, the higher order terms being disregarded. 

More general and thorough analyses discussing the critical and stability response of 
gradient and nongradient, one or multiple-parameter, autonomous discrete systems by stu­
dying the Jacobian eigenvalues in the vicinity of a critical state were presented by Huseyin 
and his associates [12-14]. However, the above nonlinear dynamic analyses based on lo­
cal (linearized) solutions are inadequate to predict certain phenomena (associated mainly 
with the global response) which may occur in nonlinear multiple-parameter autonomous 
systems. 

The main objective of this investigation is, a) - to establish critical loads mainly of 
divergence instability by studying the global response associated with the original nonlinear 
equations of motion. To this end large amplitude motion and large time solutions are 
considered, b) - to compare static critical loads of the imperfect system with those 
obtained by using a nonlinear dynamic analysis and c) - to shed some light on the actual 
nature of the follower type nonconservative loading. 

2. Mathematical analysis 

Consider the partially fixed imperfect model shown in Fig. 1 consisting of two (weight­
less) pin-jointed rigid links of equal length /,which carry the concentrated masses m 1 and 
mz at Band A, respectively. The model is acted upon by a partial follower load P applied 

a b 

ill 
A m 

FIG. 1. Unstressed (a) and stressed (b) state of a double pendulum under partial follower load. 

at its tip A at the angle TJiJz with respect to the deformed axis of the upper link. Such 
a load becomes tangential for TJ = 0 and constant directional (conservative) for TJ = 1; 
namely, for TJ ':f 1 it is nonconservative. The bending moments at C and B obeying a 
nonlinear elastic quadratic law are given by 

(2.1) Me = klPc(1 + btlPc), MB = klPB(1 + DzlPB), 
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respectively, where k > 0 is the linear spring constant and 61 and 62 are the nonlinear 
spring constants, while t/Jc and t/J 8 are the angles of rotation at C and B measured from the 
unstrained configuration. This is identified by the initial imperfections t? 1 = c: 1 and 1J2 = c:2 ; 

therefore in the deformed state we have 1/Jc = t9t - ct and tPB = (dz- t:z)- (t9t- ct)· 
If 61 = 62 = 0, both springs are elastic (Hookean material). When 61 and 62 are both 
negative, the nonlinear elastic springs are of "soft" type, otherwise (i.e. if 61, 62 > 0) they 
are "hard" type. 

PLAUT [5] has treated only the case TJ ~ 4/9 (corresponding to divergence instability), 
while HERRMANN and BUNGAY [7] investigated the flutter and divergence instability of 
the linear perfect (c:1 = c:2 = 0) model for -2 ~ TJ ~ 2 (or -1 :::; a = 1 - TJ :::; 3). 

3. Nonlinear static analysis 

Application of the principle of virtual work for arbitrary variations 61? 1 and 6t92 yields 

(3.1) ~~ - Q i = 0 ( i = 1' 2) ' 

where the strain energy U and the generalized (nonpotential) loads Qi (due to P) are 
given by 

(3.2) ~ = ~(dt- ctf + ~6t(t9t- ct)3 + ~(t9z- t:z- t9t + ct)2 + ~f>z(t?z- t:z- dt + ct)3
, 

Q1 = psin[dt + (TJ- 1)t9z], Qz = pzsinTJt9z, p = ptfk. 

The critical bifurcational load pc(c:1 = c:2 = 0) is equal to [6] 

(3.3) p' = !(3 ± J9- ~) for '1 = 4/9 or '1 < 0. 
2 TJ 

For TJ = 4/9 we have a coincident (double) critical point at pc = 1.5. This point, as shown 
by KOUNADIS (15), and KOUNADIS and MAHRENHOLTZ (8], is always associated with a 
jump in the critical load. 

If 61 and 62 are not both zero, the critical state for TJ ~ 4/9 and TJ < 0 corresponds 
to an asymmetric branching point [ 6], while for 61 = 62 = 0 the critical point becomes a 
stable symmetric branching point. Indeed, as was shown by KOUNADIS [ 16, 17], the critical 
state of the perfect linear (Hookean) system is stable. 

The critical state (Per, t?ir, d~r) of the imperfect system is determined by solving Eqs. 
(3.1) subject to the condition (of vanishing of the stability determinant) 

(3.4) IDij I = 0, Dij :f Dji' 

where DiJ = (fPU jfJ{}i8t91 - 8Qif8rJ1 . Whether or not the system of Eqs. (3.1) and (3.4) 
has a solution, depends on the values of c:1 and c:2• If there is no solution the model 
exhibits a rising (stable) equilibrium path. 

Extending the foregoing analysis by PLAUT [5] to the case TJ < 4/9 one can prove the 
existence of adjacent equilibrium states for that range of values of TJ· The model may be 
either stable or loses its stability through a limit point depending on the values of c:1 and 
c:z; therefore, in contrast with all previous linearized analyses, the static methods are also 
applicable for the range TJ < 4/9 or a = 1 - TJ > 5/9 [7, 18]. For instance, if TJ = 0.2, 
61 = -2.5, bz = -0.75, ct = 0.05 and t:z = -0.05 one can find Per = 0.7357. 
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98 A. N. KOUNADIS 

Hence, the important conclusion is deduced that the applicability of static methods of 
analysis for systems which in their ideal state are associated with an asymmetric branching 
point may depend on the presence of imperfections. For systems which in their ideal state 
are associated with a symmetric branching point the applicability of static methods may 
depend on the presence of material nonlinearity [8, 16, 17, 19]. A detailed analysis for 
the effect of material nonlinearity in buckling of conservative elastic systems is presented 
by V ARELLIS and KOUNADIS (20]. 

Whether or not the limit point loads (divergence instability) coincide with the dyna­
mic critical loads will be discussed below with the aid of a nonlinear dynamic analysis. 
The integration of equations of motion is achieved numerically using the Runge-Kutta's 
fourth-order scheme and, in some cases, an approximate but efficient analytic tech­
nique [21, 22]. Considering the stability of motion in the large, in the sense of Lagrange 
(boundedness of solution), dynamic buckling is defined as that state for which an escaped 
(leading to an unbounded) motion is initiated. The smallest load corresponding to that 
state is defined as the dynamic (either divergence of flutter) instability load. 

4. Nonlinear dynamic analysis 

Lagrange's equations of motion may be written as follows [23] 

c 4.1) :!:_ ( 8 ~< ) - 8 K + au - Q i = o, i = 1, 2 , 
dt ()f)i ()f)i ()f)i 

where the dot denotes difierentation with respect tot, while the kinetic energy K is given 
by (16, 17] 

(4.2) 

With the aid of relation ( 4.2) and the dimensionless quantities 

(4.3) i = 1, 2 

Eqs. (4.1) become 

(1 + m)B1 + 02 cos(Bt - Bz) + 0~ sin(Bt - Bz) + 2(Bt - [t)- (Bz- [z) + Dt (Bt - [t)2 

(4.4) - Dz(Bt- [t- Bz + [zf- psin[Bt + (TJ- 1)Bz] = 0, 

Bz + Bt cos(Bt- Bz)-Of sin(Bt -Bz)- (Bt -[t) + Bz -[z + Dz(Bt -[t -Bz + [z)2
- p sin ryBz = 0. 

These equations, after linearization and setting m = 2 and [t = [z = 0 , coincide with 
the corresponding equations presented by HERRMANN and BUNGAY [7]. The system of 
Eqs ( 4.4) subject to the appropriate initial conditions is solved numerically by using the 
fourth-order Runge-Kutta scheme with a step size 0.01. These results in some cases have 
been checked by employing an approximate analytic technique [21, 22]. 

For the perfect system ([1 = [z = 0) Eqs. (4.4) subject e.g. to the initial (t = 0) 
conditions 

(4.5) 

yield for 'TJ ~ 4/9 and 'TJ < 0 dynamic critical loads pfr tending asymptotically to the 
corresponding static ones given by Eq. (3.3). 
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For the imperfect system the associated initial (t = 0) conditions are 

( 4.6) fh = ct , fh = cz, Bt = Bz = 0. 

PLAUT [6], considering the case 17 = ~, c1 = 0 and c2 = -0.02, has found that the limit 
point load is pM = 1.20 for 61 = -0.40 and 62 = -0.20, while for 61 = 1.5 and 62 = -0.75 
this load becomes pM = 1.06. Using a nonlinear dynamic analysis the corresponding loads 
are 1.178 and 1.038, respectively; it means that the maximum difference between the static 
and dynamic critical load is 2 %. Although the mass ratio may have a considerable effect 
on the dynamic critical load [24], in this case a change of the mass ratio from m = 2 to 
m = 1 does not practically affect the foregoing percentage. Indeed, for m = 1 the dynamic 
critical load of the last case becomes 1.0386; that is 0.05% higher than that corresponding 
tom= 2. 

a 

b 

1] - 0.2 
6'1=- 2.5, f(c005 
6'2=-0.75, t 2=-0.05 

p- O.SB<p~ - 0.5999 (bounded motion) 

p= 0.61>pfr = 05999 {unbau~ded motion) 

o~---------L-------------------------------------------J~~-

1. €1=005 .I 
FIG. 2. Bounded (a) and unbounded (b) motion in the phase plane - ( {Jt , B2) 

of an imperfect model (q = 0.05, c2 = -0.05) with T/ = 0.2, 81 = -2.5 and 82 = -0.75. 

For the numerical data used in the previous section (TJ = 0.2, 61 = -2.5, 62 = -0.75, 
c1 = 0.05, and c2 = -0.05) Eqs. (4.4) and (4.6) give a dynamic critical load pfr equal to 
0.5999; that is different than the corresponding static one Per = 0.7257. Figure 2 shows 
the motions in the ( 01, 0 I)-phase plane for p = 0.58 < pfr (bounded amplitude) and for 
p = 0.61 > pfc (unbounded amplitude). Note that if m = 1 (instead of m = 2 ), the 
dynamic critical load becomes 0.6025; that is 0.4% higher. The difference between the 
static (divergence) buckling load and the dynamic instability load is also observed for 
other values of the nonconservativeness parameter TJ. Different types of motion occur if 
only 17 changes. Figures 3a, b show bounded (for p = 2.275 < pfr) and unbounded (for 
p = 2.280 > pfr) motions in the (Ot , Ot)-phase plane if 17 = 1.4, 61 = -2.5, 62 = -0.75, 
c1 = 0.05, and cz = -0.05. 

From Fig. 4 one can see the effect of the imperfection parameter c2 on the static 
and dynamic critical load at the coincident critical point 17=4/9 for c1 = 0.02, 61 = -2.5 
and 62 = -0.75. It is clear that the difference between the dynamic critical load and the 
corresponding static one remains practically constant, being equal to 7.6%. For 17 = -1, 
61 = -2.5, 62 = -0.75, £ 1 = 0.05 and cz = -0.05, the dynamic critical load is equal to 
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a 

Bounded motion 

'7-1.4' p=2.275 <p~ 
61- - 2.5' t1 = 0.05 
62 c-0.75, £2 =- 0.05 

FIG. 3 a) Bounded motion in the phase plane -(ilt, Bt) of an imperfect 
model (et = 0.05,e2 = -0.05) with 'f/ = 1.4, 8I = -2.5 and 82 = -0.75. 

b 

Unbounded motion 

FIG. 3 b) Unbounded motion in the phao;e plane -(BI , Bt) of an imperfect 
model {ei = (1.05, e2 = -(1.05) with TJ = 1.4, 8I = -2.5 and 82 = -0.75. 

A. N. KOUNADIS 

1.555, while the corresponding static load is 1.763, that is greater than the former one by 
about 13.5%. A few similar results for another nonconservative model were reported by 
SOTIROPOULOS and KOUNADIS [ 19). 

In bifurcational systems under follower loading with a trivial fundamental path, in 
which flutter does not occur before divergence, the static critical loads coincide with 
the dynamic critical loads regardless of wether or not the ratio of the concentrated 
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Nonlinear static critical load 

Nonlinear d nomic crrtical load 
(practically the same ror m~2 
and m=O) 

Nonlinear elastic 61 =- 2.5 
Mater/at TJ=4/9, 

62 ~ -0.75 

E.1= 0.02 

-3 -2 -1 -0.5 

D 
Per • Per 

0.8 

0.6 

0.4 

0.2 

0 

FIG. 4. Static and dynamic critical load (Per, p{i) versus e2 for a nonlinear 
ela.;;tic system ao;;sociated with a coincident critical point. 
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masses varies. However, this is not so far limit point systems. In this case the static 
critical load is, in general, higher than the corresponding dynamic one [16, 17]. 
This is also valid regardless of wether or not the mass ratio may affect the dynamic 
critical load. Then the following question is automatically raised: which is the physi­
cal meaning of each of these critical loads? Before answering the question it is in­
teresting to consider a similar case in conservative systems under a suddenly applied 
load of infinite duration [25-28]. Indeed, in this case the static critical load coincides 
with the corresponding dynamic load only in bifurcational systems. According to 
this important finding the kinetic criterion for establishing critical loads of conserva­
tive or nonconservative divergence instability systems is restricted to bifurcational sys­
tems. 

In view of the above observations one could consider that both critical loads are 
meaningful as referring to different response states. This, of course, presupposes that 
it is possible to apply a follower load statically. If the latter case is not feasible, only 
the dynamic instability load is physically acceptable. Moreover, it is concluded that the 
stability of a nonconservative system must always be investigated by a dynamic analysis, 
regardless of wether or not a static (divergence) instability analysis may be employed. 
Certainly, this is particularly necessary when the effects of masses and damping must be 
included. 

From Fig. 3a, b, one can also observe that the above nonlinear, multiple-parameter, 
autonomous system (81 = -2.50, 82 = -0.75, c1 = 0.05, c2 = -0.05) for TJ = 1.4 exhibits 
a rather nonperiodic oscillation, looking like a chaotic motion. The same phenomenon 
occurs for TJ = 1.6, while the other parameters remain constant. Indeed, as one can see 
from Fig. Sa, a sudden leap in the response of the system occurs after a long period of 
large amplitude, quasi-chaotic, oscillations [29]. For a load less than the buckling load 
the bounded motion is similarly quasi-chaotic (Fig. 5b ). Such a phenomenon is due to 
sensitivity to initial conditions and not to a strange attractor, since without damping there 
is no contraction of the phase-space volumes [30]. Indeed, the relative change of the 
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FtG. 5. Quasi-chaotic motion ( 01 versus T) bounded (a) and 
unbounded (b) leading to dynamic buckling after a long period of time. 

phase-space volume for this system being equal to [17] 

(4.7) 
( 02 - Ot) sin 2( Ot - 82) 

m + sin\Ot - 82) 

A. N. KOUNADlS 

~ ~ ~ 
J 1 r 

a 

r 

b 

is not always negative (as in the case of an attractor). This quantity changes sign with 
varying time, becoming positive (expansion of phase-space volume) and negative (con­
traction of phase-space volume). The presence of this quantity is due to the nonlinear 
terms 0~ sin(Ot - 82) and Or sin(01 - 02) in Eqs. (4.4) which are looking like damping 
terms. As it was found, these terms (which govern the global behavior of the model) are 
also responsible for the sensitivity to initial conditions. From the time series shown in Fig. 
6 one can see two motions with slightly different initial conditions which gradually diverge 
with varying time. Note that chaotic phenomena due to sensitivity to initial conditions 
have been also observed in Hamiltonian systems [29, 31]. A pertinent plot corresponding 
to a conservative load is shown in Fig. 7 [32]. In this case conservation of energy enables 
us to check the accuracy of numerical solution when the large time response is required. 
Before closing this section the following observation is worth making: 

Local solutions in the vicinity of an appropriate equilibrium state by considering small 
or large amplitude motions about it provide in many cases valuable information regarding 
the response of a system; however, in case of imperfect, multiple-parameter, autonomous 
systems such, quite often cumbersome, solutions may be proved inadequate to predict 
some dynamic bifurcations and instability phenomena associated with non-periodic mo­
tions that may occur at large time [17, 28, 32]. On the other hand, an asymptotic analysis 
for large time solutions may lead to unreliable results. A general dynamic analysis leading 
to global, large time and amplitude oscillation, solutions based on the original nonlinear 
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01=-2.5 62 --0.75 
t:2=-0.05 e2--0.04 {.1=0.05 p-1.65 

0 
(\, M ~ ~.., ~r\ v (\ I 

~ I\.. I\ 

~ ~ 
1\ r 

) 
J J 

FIG. 6. TWo motions corresponding to slightly different initial conditions which diverge with varying time. 

0 

61=-2.5 
{.1=0.05 
p=0.799829 

8 
?-, 

62=- 0.75 
E2 = -0.0356 Unbounded motion 

Kalathas and Kounadis (1991) 

TD=121 
T= r/r

0 

(Ti, = rundom. period) 

FIG. 7. Unbounded quac;i-chaotic motion (82 versus 7") corresponding 
to a conservative loading (TJ = 1) leading to dynamic buckling after a long period of time. 

differential equations, is the only safe way for predicting the actual behavior of the above 
systems. Whatever is the approximation technique for establishing such a response, there 
are cases where a verification via numerical simulation is necessary to be done. Such a 
numerical procedure can be efficiently applied to discrete systems associated with ordinary 
differential equations with the aid of high speed computers and modern computational 
techniques whose accuracy should always be checked if pertinent criteria exist. 
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