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On anisotropic invariants of vectors and second order tensors 

J. M. ZHANG (SINGAPORE) 

IN TillS PAPER a different approach is presented for determination of the integrity bases 
of finite vectors and second order tensors relative to all types of crystal symmetry 
except for those of cubic system. The Lokhin's general representation theorem for 
integrity basis involving tensors of arbitrary order is ·proven. Several important 
theorems are proven by making use of the algebraic properties of the higher order 
structural tensors. These thorems make it possible for us to limit our search for the 
integrity and functional bases to a small number of given homogeneous polynomial 
invariants. 

W pracy przedstawiono odmienne podejscie do problemu okreslenia baz calkowitych 
(integrity bases) wektor6w skoticzonych i tensor6w drugiego rz~u w odniesieniu do 
wszystktch typ6w symetrii krysztal6w z wyj~tkiem ukladu kubicznego. Udowodniono 
twierdzenia Lochina o reprezentacji dla baz zawieraj~ych tensory dowolnego r~du. 
Udowodniono szereg waznych twterdzen, wykorzystuj~ wlasnosci algebraiczne ten
sor6w strukturalnych wyzszych rz~6w. Twierdzenia te pozwalaj~ ograniczyc po
szukiwanie baz calkowitych i funkcyjnych do malej liczby jednorodnych niezmiennik6w 
wielomianowych. 

B pa6oTe npe~cTaBJiea .upyroii. no.n.xo~ JC 38.Aalfe onpe~e.neHHs noJIHLix Qa3acos 
JCOHe'lllhiX BeJCTOpOB H TeH30pOB BTOporo nOpJI,lUCa no OTHOWeHHIO JCO BCeM THna.M 
CHMMeTpHH JCPHCT3.JIJIOB, 3a HCJC.JliOifeHHeM Ky6H'IeCJCOH CHCTeMbl. ,[{OJCaJaHa TCOpeMa 
JlOXHBa 0 npe~CTaBJICHHH MJI 6a3HCOB, CO~Cp)J(aBWHX TeB30phl npOH3BOJibHOf0 
nOpJI.lU(a. ,[{oJCaJaH p~ BR)J(HhiX TeOpeM, HCfiOJib3Y.JI aJire6paalfecJCHe CBOHCTBa CT ~yK
TypHbiX TeH30poB BhiCWHX nopJI,lUCOB. 3TH TCOpeMhl fi03BOJUIIOT OrpaHH'IHTb fiOHCJC 
fiOJIBbiX H cllYHJCUHOHaJibHbiX 6a3HCOB JC MaJIOMY JCOJIHifecTBY O~OpO~ MHOro
lfJieBHbiX HHBapHaHTOB. 

Notations 

a, b, k, e: a1, b1, k1, e1, i = 1,2,3, 

A, o, c : A, ... 1• B1 . .. }' c, .. . 1• 

Q Ql}' Q,lQl} ={>I}' 

(AB)~.., 1"" · ' = A1 .. . 1, B"""·" 
(A08)1 .. . JL.t = A1 ... 1B1 ... , 

(A•B)1 .. . 1 = A11 ... 11 BL.r 

(Q•A), ... J = Q,L ,QJ,AL.r• 

A·B = AI .. . }Bi ... }' 

0"'A = A0 ... 0A, 

A"' = AA ... A defined only for second-order tensors, 

e"' = e0e0 ... 0e defined only for vectors, 

O'[v1 0v2 0v,] = v1 0v/~ ... 0v1 0v1, for 0' = [ij. .. k] being a permutation of 

integer number sequence [12 ... n]. 
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216 J. M. ZHANG 

lntoroduction 

THE SYMMETRIES of crystal lattice of a solid are characterized phenomenologi
cally by symmetries of the constitutive functions describing various physical 
phenomena which may happen in the solid. The material symmetries impose 
defmite restrictions on the forms of the constitutive functions of the material. 
Therefore representations of anisotropic functions, which specifies all possible 
forms of the functions meeting the restrictions, are indispensable in obtaining 
constitutive equations for anisotropic materials. 

The known results concerning integrity bases of vectors and tensors under 
the transformation groups corresponding to the crystal classes are mainly due 
to Smith and Rivlin. The only cases which have been dealt with are the 
invariants of a single symmetric second-order tensor [1, 2], of a vector and 
a symmetric second-order tensor [3], and of an arbitrary number of vectors 
[4]. Irreducible integrity bases have been obtained for these cases by making 
use of the theorems in the theory of symmetric polynomials which give 
integrity bases for polynomials in two and three sets of variables which are 
invariant under symmetric groups of transformations of the variables, and for 
polynomials in three sets of variables which are invariant under cyclic 
transformations. The algebraic manipulations leading to the results are usually 
very complicated. 

An completely different approach was presented by BoEHLER [5] arid 
developed by Liu [6], RYCHLEWSKI [7] who tackled the representation pro
blems of anisotropic functions by using the well-known results for isotropic 
ones. ZHANG and RYCHLEWSKI [8] have found the structural tensor sequ.ences, 
for all crystal and non-crystal symmetries, through which the representations of 
all anisotropic tensorial functions can be reduced to representations ·of 
isotropic tensorial functions, at least from a theoretical viewpoint. Unfor
tunately, the structural tensor sequences for most types of crystal symmetry 
contain tensors of rank higher than two. At present, no practicable approach is 
available for determination of the irreducible integrity or functional basis 
involving such higher order tensors. 

This paper aims at presenting an approach for determination of the 
integrity basis of finite vectors and second order tensors, relative to all types 
of crystal symmetry except for those of cubic system. Several theorems will be 
established which make it possible to limit our search for the integrity basis 
to a small number of given homogeneous polynomial invariants. In the 
following section, the fundamentals of isotropic extension of anisotropic 
function will be briefly reviewed. Several theorems which will be used in 
discussion of the equivalence of two different extended arguments will be 
presented. A general theorem for integrity bases involving tensors of arbitrary 
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order is proven in Sect. 3. In Sect. 4, several important theorems are proven by 
making use of the algebraic properties of the higher order structural tensors. 
These theorems make it possible to largely reduce the number of elements of 
the integrity basis specified by the general representation theorem. In Sect. 
5 the integrity bases of a single symmetric second order tensor for each of the 
crystal symmetry groups except for those in cubic system are obtained 
according to our theorems in Sect. 4. 

2. Structural tensor sequence and isotropic extension 

The constitutive equation describing a physical phenomenon in a solid 
usually takes the form as follows: 

(2.1) 

whose symmetry group consists of all the orthogonal trasformations Q satis
fying 

(2.2) Q•F(Fh---,Ep, ah ... ,aq) = F(Q•Eh ... , Q•EP' Q•a1, ... , Q•aq), 

where Eh ... , EP are the second order tensors, symmetric or skew-symmetcic, 
and ah ... , aq are vectors. All the te!lsors and vectors are defmed in the 
three-dimensional Euclidean space. F may be a scalar- or tensor-valued 
function. Here, without loss of generality, it will be assumed that F is 
scalar-valued. 

If the symmetry group is the full orthogonal transformation group (f) (3) we 
say that F is isotropic or the material, relative to the physical phenomenon, is 
isotropic. Otherwise the material and the constitutive function are said to be 
anisotropic. 

To represent a function F with a defmite symmetry group is to find all 
the possible forms of the function which meet the requirement (2.2). 
Representations of isotropic functions with arguments consisting of ten
sors of order not higher than two have been extensively investigated [9, 10]. 
On the contrary, results for anisotropic constitutive function are avail
able only for a few special symmetry groups and/or for very simple 
arguments. 

In fact, material symmetry is a mathematical property of the phenomeno
logical constitutive equation of a material with microscopic inhomogeneity 
and directionality at a given reference state. Then how can such mathematical 
property be represented by quantities which, at a macroscopic level, describe 
the microscopic inhomogeneity and directionality? Let us look at the 
following theorem. 
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218 J. M. ZHANG 

IsOTROPIC EXTENSION THEOREM [7]: l£t F(Eh ... ,E.., ah ... ,a4) be any anisotropic 
function with symmetry group t§, and let J = {Sh ... ,Sr} be a constant terr
sor-valued parameter sequence, called structural tensor sequence, such that 

then there exists at least one isotropic function F ofEh ... ,E.., ah ... ,a4 and Sh ... , 
Sr such that 

(2.4) F (Eh···, Ep, ah···, aq) = F(Eh···,EP' aH···' aq; sh ... ,Sr) 

for all Eh ... , EP, a h ••• , a4 in the domain of the constitutive function F. 
The special form of this theorem in the cases of transverse isotropy and 

orthotropy was obtained and applied to represent the constitutive equations 
with these kinds of symmetry by BoEHLER [5] before one decade. Liu [6] 
summed up this result into a theorem and found the tensor parameters J for 
crystals of triclinic system, monoclinic system and orthorhombic system. 
Recently, ZHANG and R YCHLEWSKI [8] have found the structural tensors 
sequences J for all orthogonal subgroups. Therefore the extension theorem 
implies that every anisotropic function with an orthogonal subgroup as its 
symmetry group can be obtained by fiXing some variables as constant 
parameters in some isotropic function and, further, that the representation 
problem of any anisotropic function can be reduced to a representation 
problem of an isotropic function. 

The readers who are interested in the proof of the extension theorem are 
referred to RYCHLEWSKI [7) or ZHANG and RYCHLEWSKI [8). Here, let US only 
present, in Table 1, some results concerning the structural tensors of all 
thirty-two crystal classes; the data will be used later on in the paper. 

In Table 1 we have made use of the following notations: 

(2.5) N 1 = e2 ® e3 - e3 ® e2, N 2 = e 1 ® e3 - e3 ® e h 
N 3 = e1 ®e2 - e2 ®eh 

(2.6) T 2 ,2 = 2e1 ®eh 
(2.7) T 3 ,3 = 3/4(e1 ®e1 ®e1 - e1 ®e2 ®e2 - e2 ®e1 ®e2 - e2 ®e2 ®e1), 

(2.8) T 4,4 = 2(e1 ®e1 ®e1 ®e1 + e2 ®e2 ®e2 ®e2), 

(2.9) T 6,6 = 33/16(e~ - et ®e~ - ef ®e2 ®e1 ®e2 - ef ®e~ ®e1 

- e1 ®e~ ®ef + e1 ®e~ ®e1 ®e~ + e1 ®e~ ®e1 ®e2 + e1 ®ei ®e1 

- e2 ®e1 ®e2 ®ef + e2 ®e1 ®e2 ®e1 ®e~ 
+ e2 ®e1 ®~ ®e1 ®e2 + e2 ®e1 ®e~ ®e1 

- e~ ®et + e~ ®ei ®e~ + e~ ®e1 ®e2 ®e1 ®e2 + ei ®e1 ®e~ ®e1), 

(2.10) Z = e1 ® e2 ® e3 - e2 ® e1 ® e3 + e2 ® e3 ® e1 - e3 ® e2 ® e1 

+ e3 ®e1 ®e2 - e1 ®e3 ®e2 , 
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Table 1. Structural tensors for 32 point groups. 

CRYSTAL SYSTEM NO 
Schonflies 

notations 
STR UCfURAL SETS 

1 cl et' e2, e3 
Triclinic 

2 c, Nt, N2, N3 

3 c, et' e2, e3 e e3 
Monoclinic 4 c2 T2,2' e3, Z 

5 c2,. T 2,2' N3, e3 e e3 

6 c211 T2,2' e3 

Orthorhombic 7 D2 T2;2, Z, e3 e e3 
8 Du Tl,l' e3 e e3 

9 c, T4 •4 , e3, Z 

10 s, S4 , N3 

11 c,,. T4 •4 , N3 

Tetragonal 12 c,l1 T4 •4 , e3 
13 D2~ Tel, e3ee3 

14 D, T4 •4 , Z 

15 D.,. T,,,, 

16 c3 T3,3' e3, Z 
17 c3, T3,3 eel, N3 

Rhombohedral 18 c311 T3,3' e3 

19 D3 T3,3' Z 
20 D3el T3,3 e e3 

21 c3,. T3,3' N3 

22 c6 T6,6' e3, Z 

23 c6,. T6,6' N3 

Hexagonal 24 D3,. T3,3 

25 c611 T6,6' e3 

26 D6 T6,6' z 
27 D6,. T6,6 

28 T T11, Z 

29 ~ T, 

Cubic 30 ~ Tel 

31 0 o,., z 
32 o,. o, 

[219] 
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s4 = el ®e2 ®e3 + e2 eel ®e3, 
0,. = ef + e1 + e1, 
T,. = ef ® e~ + e~ ®e~ + e~ ®ef~ 

1. M. ZHANG 

(2.11) 
(2.12) 
(2.13) 
(2.14) T 4 = e1 ® e2 ® e3 + e2 ® e1 ® e3 + e2 ® e3 ® e1 + e3 ® ~2 ® e1 

+ e3 ® e1 ® e2 + e1 ® e3 ® e2. 

The structural tensor T "·" can also be expressed generally as 

(2.15) Tn.n = n(k i + k i) if n is odd, 

(2.16) Tn.n = n(ki + k; + 2n
1 

T ) if n is even, 
2n,n 

where 
= ~(e1 - ie2), (2.17) kt 

(2.18) k2 
1 . 

= ife1 + 1e2), 

(2.19) T2n.n= 2n [k:fl® k('2], 

[kt ® k~fl] denotes the sum of all the possible permutations of the tensor 
k1 ® ... ®k1 ®k2 ® ... ®k2 and i is the unit imaginary number. 

We call the argument (Eh ... , E, a1,. .. , aq; S1, ... , S,) the extended argument 
of the tensors (Eh ... , EP, a h ••• , aq), relative to group '§. Two extended 
arguments are said to be equivalent if they have same isotropic integrity 
basis. 

THEOREM 1. Tho tensor sequences (Sh ... ,SP, M 1) and (Sh ... , S, M 2) are 
structural tensor sequences for the same gr.oup f§ if M 1 can be represented as an 
isotropic function of (Sh ... , SP, M 2) and M 2 can be represented as an isotropic 
function of (Sh ... , SP, M1). 

The proof of this theorem is obvious. 

The structural tensors for some crystal groups contain the third-order 
alternating tensor Z, the entry of which into the argument makes it a little 
more complicated to find integrity basis or functional basis for the extended 
argument. The following two theorems show that, in fact, we can a void this 
difficulty in most cases. 

THEOREM 2 [11]. "When only tensors of even order occur as arguments and 
values, there is no distinction between isotropic and hemitropic functions. 

The proof of this theorem is obvious because the transformation Q * A of 
a tensor A of even order remains unchanged when an improper orthogonal 
tensor Q is replaced by the proper one - Q. 

Let Y be a tensor of odd order, defme 

(2.20) 
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where Z is defined by Eq. (2.10). It is easy to check that for proper orthogonal 
tensor Q, 

THEOREM 3. For a tensorial function F (Y, A) of even order where A is a tensor 
sequence of even order, define 

(2.22) ~( <Y>, A)= F(Y,A). 

Then F (Y, A) is a hemitropicfunction if and only if~ ( <Y>, A) is an isotropic 
one. 

Proof. If F (Y, A) is hemitropic, then for any orthogonal transformation Q 

(2.23) Q•~ ( <Y>, A)= Q•F (Y, A)= IIQII• F(Y, A)= F (IIQII• Y, IIQII•A) 
= ~(<IIQII•Y>, IIQII•A) = ~(IIQII• <Y>,IIQII•A) = F(Q• <Y>,Q•A), 

that is, F( < Y >, A) is isotropic, where 

(2.24) IIQII = { Q -Q 
if Q is proper, 
if Q is improper. 

The inverse is obviously by definition. QED 
When the argument of the function F contains more than one tensor of odd 

order, say Y b···' Y,, we define 

(2.25) Y = (Y1 , ... ,Y,), <Y> = ( <Y1 >, ... , <Y,> ). 

The Theorem 3 still holds. 

3. Representations theorem for isotropic functions 

Material symmetry imposes certain restrictions on the forms of the 
response functions or functionals. If a response function or functional satisfies 
the material symmetry requirements, then it must be representable in certain 
canonical form. Our theorem for isotropic extension of anisotropic functions 
stated in the previous section shows that the representations of the isotropic 
functions, depending on an arbitrary number of tensors of arbitrary ranks, are 
fundamental for descriptions of the anisotropic behavior of a wide range of 
engineering materials. In this section, we will prove the following main 
representation theorem, which was first presented by LOKHIN [12] without 
proof. 
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222 J. M. ZHANG 

Let .!l'("Y, n;) be the space of n;- th order tensors on the 3-dimensional space 
"Y. Denote the product space .!l'("Y, n1) x .!l'("Y, n2) x ... x .!l'("Y, np) by .!l'("Y, 
nh n2, ••• ,n~. 

THEOREM 4. A function f: .!l'("Y; nb n2, ... , n~-+ R is an isotropic function if 
and only if it can be expressed as a function of finite invariants 

(3.1) 

where Ii are homogeneous polynomial invariants formed only through the 
operations of tensor multiplication, permutation and contraction of the argument 
Ab ... , AP and the second order unit tensor I. 

Before we begin to prove this theorem, we should restate a number of 
well-known and essential general results concerning representations of sca
lar-valued functions. 

HILBERT'S THEOREM. For any finite system of vectors and tensors there exists 
an integrity basis which consists of a finite number of invariants. 

The proof of this theorem is rather lengthy and will not be given here. It is 
given, for example, in [13] and [14]. This theorem is of great importance in 
that it asserts the existence of finite integrity basis and so justifies the search for 
such basis. Therefore, to represent a scalar-valued function, we need only to 
find an irreducible integrity basis. 

Another important and well-established result to be employed in the proof 
of Theorem 4 is about the general forms of isotropic constant tensors. 

LEMMA 1 [10]. Any even order isotropic tensor has the expression 

(3.2) J<2P> =I a a [1®1® ... ®1], 
(f (f 

where a= [ap ... y] are arbitrary permutations of [12 ... 2p], aa constant parame
ters, the summation is taken over all possible permutations. 

Isotropic tensor of odd order must be the zero tensor of the order. 

Pro of of Theorem 4. Now we begin to prove our main theorem which can 
be completed by showing that any polynomial invariant can be expressed as 
a sum of finite homogeneous polynomial invariants, and that the homogeneous 
invariants can be obtained through the operations of tensor muliplication, 
permutation and contraction. 

Let I (Ah A2, ••• ,Ap) be a polynomial invariant and th t2 , ••• , tP be p arbitrary 
real numbers. Then I (t 1 Ab t2 A 2, ••• , tP Ap) can be rewritten as a sum of the 
homogeneous terms as follows: 
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(3.3) 

where lrz 1 ••• rzP (Ah···Ap) is the sum of all the terms which are homogeneous of 
order a 1 in the components of tensor Ah of order a 2 in the components of 
tensor A2 and so on: I 0 is a real constant. 

After an orthogonal symmetry transformation of the argument involved, we 
have 

Because the second equality holds for arbitrary real number (t h t2, ••• ,tp), it 
follows that 

That is to say, lrz1 ... rzP(AhA 2, ••• ,Ap) are invariant under any symmetry 
transformations. 

Now, the homogeneous invariants lrz1 ... rzP(AbA2, •.. ,AP) can be rewrit
ten as 

(3.6) lrz1 ... rzP(AbA2, ••• ,Ap) = (( ®rz1 A1)® ... ®(®rzP Ap))·H 

= (( ® rz1 (Q * A1)) ® ... ®( ® rzP (Q * Ap))) · (Q *H), 

where Q is an arbitrary orthogonal transformation and H is a real constant 
tensor of order (a1 n1 + a2 n2 + ... + aP np)· The constant tensor H may not be 
unique, because tensor (0rz1 A) ® ... ®(®«PAP) must possess some kind of sub-
script symmetries when tensors A h A2, ... , AP themselves possess index symmet
ries or when some integers among ah a2, ... , aP are larger than 1. But the 
uniqueness can be ensured by requiring that H possesses the same subscript 
symmetry properties as ( 0«1 A1) ® ••• ®(®«PAp)· 

If QT is a symmetry transformation, then 

(3.8) 

which in fact means that 
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224 J. M. ZHANG 

The tensor in the second bracket must be zero because the above equality is 
valid for arbitrary (Ah A2, ••. , Ap). This leads to the conclusion that H is 
a constant tensor with the same symmetry group as the homogeneous 
polynomial invariant considered. For isotropic invariant, H should be an 
isotropic tensor of order ((X1 n1 + (X2 n2 + (lpnp). Taking into accout Lemma 1, 
we have proven the main theorem. QED 

Theorem 4 can be easily generalized to tensor-valued functions: 

THEORM 5 [12]. A tensor-valuedfunction F: -+!i'(..Y; n1,n2, ••• ,np) --.!i'(..Y, nq) 
is isotropic if and only if there exist a finite integrity basis {I h···, I,} and finite 
tensors (Hh···,H..) of order nq such that 

& 

(3.9) F(Ah ... ,Ap) = I j;(Ih ... ,I,)Hi, 
l = 1 

where H 1 are also formed through the operations of tensor multiplication, 
permutation and contraction and are usually called the generating set, Ji are 
arbitrary scalar-valued functions of the invariants I h ... ,I,. 

4. General results for integrity bases of vectors and second-order tensors 

According to our results in the previous sections, it is possible to transform 
the representation problems of the constitutive functions of anisotropic solids 
into those of isotropic functions. However, up to now, almost all the results 
concerning representations of isotropic functions are confined to functions of 
vectors and second-order tensors [9, 10]. Relatively little is known about the 
representations of isotropic functions whose arguments contain tensors of rank 
higher than two (see [15., 16., 17]). Our representation Theorems 4 and 5 in the 
previous section have already established a theoretical framework for this 
purpose and furnished an approach to find the integrity bases and generators 
involving higher-order tensors. However, it still is an open problem how to 
seek finite and even irreducible integrity basis and generating set from the 
infinite homogeneous polynomial invariants. 

This section is devoted to the representation problems of scalar-valued 
fuction of vectors and second-order tensors. In this case, the only tensor of 
order higher than 2 stems from the structural tensor sequence. In order to 
establish a general procedure of reducing as many elements as possible of the 
integrity basis specified in the general representation theorem, it seems essential 
to investigate the algebraic properties of the homogeneous polynomial in
variants involving higher-order structural tensors. By this process, we hope to 
arrive at minimal bases; the procedure in itself, however, gives no assurance 
that the bases finally obtained are minimal, except in some of the simpler cases 
where the irreducibility of the basis elements is evident by inspection. 
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Let (Eh E2, ... , Ep) consist of vectors and second-order tensors whose 
integrity bases relative to some orthogonal subgroup f§ are to be investigated. 
Assume that (Sh ... ,Sq, T11 ,11) is a structural tensor sequence fo~ group f§ where 
T,.,11 is the n-th order tensor characterizing the n-fold rotation symmetry 
operation. S 1,. .. , Sq are all assumed to be of order not higher than 2. This is the 
case for most crystal symmetry groups. Therefore, the extended argument 

(4.1) 

contains only one tensor whose order n is probably higher than 2 (for crystals 
n may take values 2, 3, 4 or 6). 

The following properties of tensor T 11, 11 make it possible for us to represent 
(4.1) without knowing the general results concerning the integrity bases for 
tensors of order higher than 2: 

T11, 11 is invariant under any permutation n, i.e., 

(4.2) n[T11, 11] = T11 ,"" 

Any m ~ n times contraction of tensor (1'11 ,11 ®T11, 11) can be written as dot 
multiplication n [T 11 ,11 ®T 11 ,11] • ( ®ml). Hence, the inner product of the contracted 
tensor of (T11, 11 ®T11,11) with a 2(n-m)-order tensor A is equal to 
n [T11, 11 ®T11,,.] • (( ®ml) ®A), where u is a permutation of integer sequence 
[12 ... (2n)]. 

THEOREM 6. The integrity basis of argument (4.1) consists of the integrity basis 
of the argument (Eh E2, ... ,EP; Sh···, S4, IJ and the invariants 

(4.3) 

and, further, if n is odd number 

(4.4) 

where 

(4.5) 

Gh ... ,G, are the n-th order generators of the argument (EhE2, ••• ,EP; Sh ... ,Sq, .Lx), 
to within a permutation, and Mh ... , M" are the 2n-th order generators of the 
argument (Eh E 2, .•• , EP; S1 ,. .. , Sq, fa), also to within a permutation. 

Proof. According to the main representation Theorem 4, the integrity 
basis of tensors (4.1) consists of the homogeneous polynomial invariants 
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formed only through the operations of tensor multiplication, permutation and 
contraction of the argument (4.1), and the second order unit tensor L The 
algebraic properties ofT,.,,. described above show, that the general form of the 
homogeneous polynomial invariants involving T,.,,. is 

(4.6) 

where H is any tensor formed by tensor multiplications , permutations and 
contractions among the tensors (Eh E2, ... , EP; Sh ... ,S4) and I, up to the order of 
mn. First, we assume that the mn-th order tensor H can be simply decomposed 
into 

where I (E1; SJ is a homogeneous polynomial invariant concerning the tensors 
involved, Ah B1 are vectors or second-order tensors formed by tensor 
multiplications, permutations and contractions among the tensors (E1; S1, I), 
and all the bracketed tensors (A1 ® A2 ® ... ® Aa), ... , (B1 ® B2 ® ... ®Bb) are 
tensors of order nor of order 2ne). Therefore, the scalar invariant (4.6) can be 
rewritten as 

for n being even, and as 

(4.9) J(E;;St)T,.,,.·(A1 ® ... ®Aa) X ••• X T,.,,.·(B1 ® ... ®Bb) 

X (T,.,,. ®T,.,,.) · (Cl ® ... ®Cu) X ••• X (T,.,,. ®T,.,,.) • (Dl ® ... ®Dv) 

for n being odd. 
All the invariants appearing in (4.8) are expressible through invariants (4.3), 

because the n-th order tensor (A1 ® A2 ® ... ®Aa) can be algebraically represen
ted by the n-th order generators (G11 , .•. ,G1p, ..• ,Grh···,Gr4): 

(4.10) At ®A2 ® ... ®Aa = r ct; Gu + ... r Pi Gtj' 
i j 

and 

(4.11) (A1 ®A2® ... ®Aa)·T,.,,. = (rcx1)G11 ·T,.,,. + ... + (r{3)Gr1·T,.,,., 
i j 

e) This may happen when n is odd. In this case, if all of A1, A2, . .. ,Aa are of order two, the 
tensor product A1 ®A2 ® ••• ®Aa may not be decomposed into product of two tensors of order n. 
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where Gi1, ... , Gip are generators which differ from one another only by 
a permutation. 

Similarly, we can easily prove that for any odd number n, all the invariants 
appearing in (4.9) are expressible algebraically by the invariants in (4.3) and 
(4.4). 

To complete the proof of our theorem, we are required only to prove that 
for any integer m, any permutation a of [12 ... (mn)] and any tensor H of form 
(4.7), the invariant (®Tn,n) · a(H) may be expressed algebraically by the 
invariants in (4.3) for even n and by the invariants in (4.3) and (4.4) for odd n. 

We will prove this by using the method of mathematical induction. Assume 
that n is odd. 

For m = 2, Tn,n®Tn,n can be expressed as 

(4.12) 

and hence for any 2n-th order tensor H 2 of the form (4.7), we have 

(4.13) (Tn,n ®Tn.n) ·a {I-12) = (k~" + k~") ·a (H2) + (k1 ®k~ + k~ ®k1) · a{I-12) 

= (Tn,n ®Tn,n) · H2 + (k1 ®k~ + k~ ®k1) ·(a (H2)- H2), 

where we have made use of ~e fact that (kr" + ki") · a(H2) = (kr" + ki") · H2, 
and the fact that the frrsi equality also holds for identity permutation 
a = [12 ... (2n)]. It has been previously shown that the tensor (k1 ®k~ + k~ ®k1) 
is a transversely isotropic tensor. So the last term in the above equation is an 
transversely isotropic invariant of the argument (Eh ... , EP; S1,. .. , Sq; Ia). 

For m = 3, Tn,n ®Tn,n ®Tn,n can be expressed as 

(4.14) 2Tn,n ®Tn,n ®Tn,n = Tn,n ®(Tn,n ®Tn,n) + (Tn,n ®Tn,n) ®Tn,n 

= 2k~" + 2k~" + k1 ®(k1 + k~) ®k~ + k~ ®(k1 +k~) ®k1 

+ (k1 + k~)®(k1 ®k~ + k~ ®k1) + (k1 ®k~ + k~ ®k1)®(k1 + k~). 

Hence, for any 3n-th order tensor H 3 of the form (4.7), we have 

(4.15) (2Tn,n ®Tn,n ®Tn,n) · a{I-13) 

= 2(k~" + ki")·a(H3) + (k1 ®(k1 + k~)®k~)·a(H3) + (k~®(k1 + k~) ®k1)·a(H3) 

+ [(k1 + k~)®(k1®k~ + k~®ki) + (k1®k~ + k~®ki)®(k1 + k~)]·a(H3) 
= (2Tn,n®Tn,n®Tn,n)·H3 + (ki ®Tn,n®k~)·(a(H3)-H3) + (k~®Tn,n®k1)·(a(H3)- H3) 

+ [Tn,n ®(k1 ®k~ + k~ ® + ki) + (k1 ®k~ + k~ ®k1) ®Tn,nJ · (a(H3)- H3). 

The first term at the right-hand side of the last equation has already been 
proven to be expressible by invariants in (4.3) and (4.4) because H 3 meets the 
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decomposition property (4.7). And, further, ask~ ®k~ is a transversely-isotropic 
complex tensor, the second term can be rewritten as 

(4.16) (T11, ®k1 ®k~)·l[a(H3) -H-3] = Ilt(a,H3, IJT11,11 ·L1(a,H3, lex), 
l 

where 1 = [(n + 1) ... (2n) 12 ... n (2n + 1) ... (3n)] is a permutation of [1. .. (3n)], 
I~a, H 3, 13) are invariants of the tensors (Eh···Ep; Sh···' St; lex) and L1(a,H3, Ia) 
are some n-th order tensor-valued generators of the argument. As a result, the 
second term, as well as all other terms in Eq. (4.15), can be algebraically 
expressed by the invariants in (4.3) and (4.4). 

Assume that for any m = (p-1) and any nm-th order tensor H,. of form (4.7), 
the invariant ( e'" T 11,11) · a(H,.) can be algebraically expressed by the invariants 
in (4.3) and (4.4). The expression for e'" T 11,11, m ~ p-l, is assumed to be in the 
form of 

(4.17) e'"T11,11 = kf' + kr' + Ea1 11 [(®<'"- 2>T11 , 11)®k~ ®k~] 

and 

l 

+ ... +I htYt[TII,II®k<T- 1>1112 ®k<T- 1
)1112] 

l 

(4.18) ®'"T11,11 = kT11 + k~11 +I a111 [(®'"- 2 T,.,11) ®k1 ®k~] 
l 

+ ... + I C; 1tt [k'r12 ®k'r12] 
l 

if m is odd, 

if m is even, 

where ah bit ci are constants, 11, y1, n 1 are some permutations of the in
teger sequence [1. .. (nm)]. Then the general expression for ®PT11,11 is as 
follows: 

(4 19) P T 1/2 (T ( <P-
1 > T ) ( <P-

1 > T ) T ) . ® 11,11 = 11,11 ® e 11,11 + ® 11,11 ® 11,11 

= k~" + k~" + ~{ki ®(k~-2)11 + k~-2)11)®k~ + k~ ®(k~-2)11 + k~-2)11) ®ki} 

+ ~ ~ a1{T ••• 0A1 [(®U>-
3
>T • .) ®k1 ®k1] +A, [(®1r

3
>T • .) ®k1 0k1] 0T •.• j 

' 
+ +!Ib-{T ®')'·[T ®k<p-2;t/2®k<p-2)11/2] ··· 2 . ' n,n ' n,n 1 2 

' 
+ . [T k(p- 2)n/2 k(p- 2)n/2] T } ')', 11,11 ® 1 ® 2 ® n,n if p is even 

and 
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(4.20) 

= k~" + kT + ~{k1 ®(k~- 2)11 + k~- 2)J®k~ + k~ ®(k(f- 2)11 + k~- 2)11)®k1} 
1 + 2 I a1 {Tn,n ®A; [(®<P-J> T11,11) ®ki ®k~] +At [(®<P-J>T11,,.) ®ki ®k~] ®T,.,,.J 

i 

+ + ! ~ {T [(k(p-1)n/2 k(p-1)n/2] 
··· 2 ~ Ct 11,11 ®ni 1 ® 2 

' 
1tt 1 ® 2 ® n,n P lS 0 · + [(k<p-1)11/2 k<p-1)11/2] T } if . dd 

Finding (k<f- 2>11 + k~- 2>") from Eq. (4.17) in the case of p being odd or 
from Eq.(4.18) in the case of p being even and substituting the result into Eq. 
(4.20), respectively, we can easily show that (4.17) and (4.18) are also valid 
form= p. 

Now, let us analyze a typical term in the invariant (®PT,., 11) • (Hp- a(Hp)) for 
any np-th order tensor HP of form (4.7) and any permutation a of integer 
sequence [12 ... (np)], i.e., 

(4.21) v1 [(®<P- 2t>T,.,,.) ® k~" ® k~] • (Hp-a(Hp)) 

= [(®<P- 2t>T,.,,.) ®kT 0k~] • vi- 1 [Hp-a(Hp)] 

= ( ®(p-
2

t) T 11,11) • I La (E;, S;, la) Jla [Xa]' 
a 

which we have assumed to be expressible algebraically by invariants in Eqs. 
(4.3) and (4.4). Here, La (E;, Si, 111) are invariants of the tensors involved, 
Jla permutations of the integer sequence [12 ... ((p-2t)n)], Xa the (p-2t) n-th 
order tensors of form ( 4. 7). 

According to the principle of mathematical induction, we have proven the 
theorem for the case of n being odd. 

When n is even, define 

(4.22) 
A 1 

T,.,,. = T,.,,.- 2T2n,n = ki + k~. 

f,.,,. possesses the same symmetry properties as T,.,,., and hence they determine 
the same group, since T 2,.,. is a transversely isotropic tensor. When we replace 
T,.,,. by f,.,,., the above ded.uction for odd n is still valid because f,.,,. satisfies the 
essential requirements (4.2). As a result, all the invariants of (Eb E2, ... , EP; T,.,,., 
Sh ... , Sq) can be represented by the invariants 

(4.23) 
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(4.24) T 211,211 • M h···' T 211,211 • M,. 

The fact that the invariants in (4.24) can again be expressed by those in (4.23), 
which are equivalent to those in (4.3), furnishes our proof. QED 

The isotropic integrity bases involving vectors and second order tensors 
have been extensively investigated. So, according to Theorem 6 we need to 
focus our attention only on the small number of invariants in (4.3) and (4.4) in 
order to investigate the minimality of the integrity basis. Based on the previous 
results on representations of vector-valued and symmetric second order 
tensor-valued functions and on the subscript symmetry property (4.2), the 
following conclusions can be easily drawn; 

For even n, all the tensors A;, B; in Eq. ( 4.7) can be assumed to be symmetric 
second order tensors and take values among the symmetric second order 
generators of the argument (Eh E2, ... ,EP; Sh ... , S,, ~ 1). 

For odd n, A;, B; in the above theorem can be either vector or symmetric 
second-order tensor. It is enough for them to take values from among the vec
tor- and symmetric second-order tensor-generators of the argument (Eh 
E2, ••• , EP; S h· .• , S,, 1,., 1). 

None of Ai and B; is required to take value 1c:z or I, because the dot 
multiplications ofT,.,,. and T 2,., 2,. (for n being odd) with lex or I are either zero or 
a transversely isotropic tensor. 

Theorem 6 is also valid if we replace "integrity basis" by "functional basis". 
The following theorem describes another property of the structural tensor 

T,.,,. which can help us to reduce the redundant elements of the integrity basis in 
most cases of symmetry. 

THEOREM 7. For any integer sequence (a, b, ... , c), we have 

(4.25) (N~@N~@ ... @N3)•T,.,,.=(N~+b+ ... +c@(@"- 1I))•T,.,,., n is odd, 

(4.26) (N~@N~@ ... @Nj)•T,.,,.=(N~+b+ ... +c@(@"- 11))•T,.,,. n is even, 
where N 3 is given by Eq. (2.5). 

Proof. Here, we prove only Eq. (4.25). The proof of equation (4.26) is 
similar. Substituting Eq. (2.15) into the left-hand side of Eq. (4.25) and taking 
into account the easily proven facts 

(4.27) N3 kt = -ikh N~ kt = (-i)a kh 
N 3 k2 = ik2, Nj k2 = z-a k2, 

we get 

(4.28) (Nj k1 @N~ @ ... @Nj) •T,.,,. 
= n(Njk1 @N~k1 @ ... @Njk1 + Njk2 @N~k2 @ ... @Njk2) 

= n ia + b + ... + c ((- 1 )a + b + ... + c k1 + k~). 
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If (a+ b + ... +c) is even, then the above quantity is equal to ±Tn,n; and if 
(a + b + ... + c) is odd, then 

(4.29) 

is 2n times the imaginary part of the complex tensor ki. Therefore, the 
transformed tensor (N~ ®N~ ® ... ®N~)•Tn,n is dependent on the power sequence 
(a, b, ... , c) only through its sum (a + b + ... +c). QED 

THEOREM 8. L£t (Sh··-,S11, N3, Tn,n) be a structural tensor suquencefor some 
group f§. ut (Eh···, Ep) be a sequence containing only vectors and the 
second-order symmetric or/and skew-symmetric tensors. If n is even, then the 
functional basis of(Eh···' EP; Sh···,Scz, N 3 , Tn,n) consists of the functional basis of 
tensors (Eb···,Ep; Sh ... , S11, N 3) and the invariants 

T"·". Xh···' T,.,n. X,, 
(4.30) (N3 T,.,,.) · Xh ... , (N3 T11 ,,.) ·X, 

where X h •.• , X, are the n-th order generators of the argument (Eh E2, ..• , EP; 
Sh···, Scz, Ia:), to within a permutation. 

P r o o f. According to Theorem 6 the functional basis of 
tE h··., EP; S h· .. , Scz, N 3, T n,n) consists of the functional basis of tensors 
(Eh···,Ep;Sh··-,S11,N3) and the invariants (4.3) where Gb···,Gr are the n-th 
order generators of the argument (EhE2, ••• ,EP; Sh···,S11, N 3, Ia:), to within 
a permutation. As mentioned before, if n is an even number, have n-th order 
generators Gb to within a permutation, have the general form 

(4.31) 

where AiJ are the second-order symmetric tensor-valued generators of the 
tensors (Eh···, EP; Sh ... ,S11, N 3 , !a) and k = n/2. If we check the generating set 
given by WANG [9] and SMITH [18], we can easily fmd that the last equation 
can be rewritten as follows: 

(4.32) 

where a, b, ... ,c are integers with values 0, 1 or 2 and Bu are the second-order 
symmetric tensor-valued generators of the tensors (Eh ... ,EP; Sh ... , S11, Ia)- As 
a result, we have 
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(4.33) T11,11 " Gt = cf11 , 11 + ~ [kf2 0k12J) • ((N~ 0N~ 0 ... 0N~) 
•(Bil 0B;2 0 ... ~Bik)) = (- l)a + b + ··· +c ((N~ 0N~ 0 ... 0N~) •T11,11) 

• (Bil 0B;2 0 ... 0Bik) + ~ [k'l'2 ®k't2] • Gt 

= ( -1)a + b + ... + c((N~ +b+ ... +c 0 10(11 - 1) I) 8T11,11) • (Bil 0B;2 ® ... 0Bik) 
1 + 2 [k'l'2 ®k't2J. G; 

_ (TA 1 [kn/2 kll/2]) (Na + b + ... + c ) 
- 11,11 + 2 1 0 2 Bil 0B;2 0 ... 0Bik 

1 [kll/2 kll/2] (G Na + b+ ... +cB B + 2 1 0 2 • t - i1 0 ;2 0 ... 0Bik). 

Since the only values the tensor N~ + b + · · · + c may take are (leu -leu N 3 , -N 3) 

and tensor (Bil 0Bl2 0 ... 0Bu) may be expressed by Xl and their per
mutations, the first term in left-hand side of the last equality can be 
expressed by the functional basis of tensors (Eh ... , E1 ; S1,. .. , Sq, lex) and 
invariants in (4.30). The second term is an invariant of tensors 
(Eb ... ,E1;Sb ... ,Sq, lex) and N 3• QED 

The last theorem does not hold when n is odd. The main reason 
is that we usually have no decomposition formula similar to Eq. (4.32) 
in this case. Instead of Theorem 8, we have the following more restrictive 
theorem. 

THEOREM 9. Let (Sh ... , Sq, N3 , T11,11) be a structural tensor sequence for some 
group f'§ and let (Eh ... , E1) be a sequence containing only second-order symmetric 
orfand anti-symmetric tensors. If all S; are of second-order, then the functional 
basis of (Eb ... ,E1 ; Sh ... ,Sq, N 3, T11,11) consists of the functional basis of tensors 
(Eb ... , E1 ; Sh ... , Sq, N 3) and the invariants 

(4.34) 
T211,211" Yh ... ,T211,211" Ys, 

(N3 T211,211)• Y17 ... , (N3 T211,211)• Y", 

where Y h ... , Y" are the 2n-th order generators of the argument 
(Eb E2, ... , E,; Sh ... ,Sq, lex), to within a permutation. 

The proof of this theorem is completely similar to Theorem 8. The 
only fact we must take special care of is that the n-th order generator in this 
case is 0. 

Theorems 8 and 9 may not hold when "functional basis" is replaced by 
"integity basis". Again, the reason is that the decomposition formula (4.32) does 
not hold for integrity basis in general. 
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5. Integrity bases for a single symmetric tensor 

Now, to show how our approach can be used, we will briefly examine the 
integrity bases of a single symmetric tensor, relative all crystal symmetry 
groups except for those of cubic system. According to our results in Sect. 4, 
all we should do is to examine whether there exist redundant invariants 
among the small number of invariants of forms (4.3) and (4.4). We will 
not attempt to present here the details of the examinations for every 
crystal group. Instead of that, we will analyze several typical examples, 
though all results are given out below. Applications of our results in 
Sect. 4 to the case of two symmetric tensors will be reported in a separate 
paper. 

5.1. Transversely isotropic 

First, let us analyze the integrity bases for transverse isotropy which 
is classified into five subclasses [6]. It has been mentioned before that the 
integrity bases for most crystal symmetries contain transversely isotropic 
invariants. 

For groups Coo and C001., the extended argument is (E, N3 ) whose integrity 
basis consists of six invariants as follows: 

(5.1) 

For groups C
00

v and D 00 , D 001., the extended argument is (E, e3 ®e3) whose 
integrity basis consists of five invariants as follows: 

(5.2) 

5.2. Triclioic system 

For group C h the extended argument is (E, eb e2, e3) whose integrity basis 
consists of six invariants as follows: 

(5.3) 

For group Ch the structural tensor sequence consists of (Nb N 2, N 3) 

from which the tensors ei ®ei, ij = 1,2,3, can be obtained by dot multiplica
tions, permutatons. Therefore the integrity basis for Ct is the same as for C, i.e., 
(5.3). 
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5.3. Monoclinic system 

The extended arguments for the three groups in this system are 

c. : (E, eh e 2, e 3, ®e3) = (E, T 2,2, N 3), 

C 2 : (E, T 2,2, e3, Z) = (E, T 2,2, N 31 
C2,.: (E, T2,2, N3). 

According to Theorems 1, 2 and 8, the integrity bases for all the three groups 
are the same and consist of seven invariants. 

The other three invariants trE3, E2 • T 2 ,2 and N~ ·EN 3 E
3 specified by Theorem 

8 can be algebraically expressed by invariants in (5.4) and hence have been 
omitted here. 

5.4. Orthorhombic system 

The extended arguments for the three groups in this system are 

C2v: (E, T 2,2, e3) = (E, T 2.2, e3 ®e3), 

C 2 : (E, T 2,2, e3 ®e3, Z) = (E, T 2,2, e3 ®e3), 

D2,.: (E, T 2,2, e3 ®e3). 

Therefore there exists same integrity basis for them. According to Theorem 6, it 
consists of seven invariants 

5.5. Tetragonal system 

The extended arguments for the seven groups in this system are 

C 4 : (E, T 4 ,4, e3, Z) = (E, T 4,4, N 3), 

S4 : (E, e 1 ®e2 ®e3 + e 2 ®e 1 ®e3, N3) = (E, T 4,4, N 3), 

C 411 : (E, T 4,4, N 3), 

C4v: (E, T4,4, e3) = (E, T4,4), 

Du: (E, T d' e3 ®e3) = (E, T 4,4), 

D 4 : (E, T 4,4, Z) = (E, T 4,4), 

D 4,.: (E, T 4,4). 
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According to Theorems 1 - 3 the extended arguments for the last four groups 
are equivalent and, according to Theorem 6, the integrity basis for them 
consists of eight invariants 

(5.6) 
trE, trE2

, trE3, e3 · Ee3, e3 • E
2e3, 

(E®E) ·T4,4, (E®E2
) • T4,4, (E2 ®E2

) ·T4,4· 

The extended arguments for the fust three groups are equivalent to each other 
and, according to Thorem 8, the integrity basis for them consists of twelve 
invariants 

(5.7) 

trE, trE2
, trE\ e3 · Ee3, e3 · E

2e3, N~ • EN3E 2
, 

(E®E):T4,4, (E2 ®E):T4.4, (E2 ®E2):T4,4, 
(N3E®E):T4,4, (N3E®E2):T4,4, (N3E 2 ®E2):T4.4. 

For this system, all the invariants involving T4,4 specified in Theorems 6 and 
8 are irreducible. 

5.6. Rhombohedral system 

The extended arguments for the five groups in this system are 

C3 : (E, T 3,3, e3, Z) = (E, T 3,3 ®e3, N3), 
C3; : (E, T 3,3 ®e3, N3), 
C3v: (E, T 3,3, e3), 
D3 : (E, T 3,3, Z) = (E, T 3,3, e3), 
C3d : (E, T 3,3 ®e3) = (E, T 3,3, e3). 

Similarly, according to Theorems 1 - 3 and Theorem 8, the extended 
arguments for the last three groups are equivalent and the integrity basis for 
them consists of the following nine invariants 

(5.8) 
trE, trE2

, trE3, e3 • Ee3, e3 · E 2e3, (E ® Ee3) · T 3,3, 
(E2 ®Ee3) · T 3 ,3, (E ® E 2e3) · T 3,3, (E ®E ®E)· T 6,6· 

There are another four invariants (E2 ®E2 e3) • T 3,3, {E2 ®E ®E)· T 6 ,6 , (E2 

®E2 ®E)· T 6 ,6, (E2 ®E2 ®E2
) • T 6 ,6 among all the invariants obtained from Eqs. 

(4.3) and (4.4) which can be algebraically expressed by invariants in (5.8) and 
hence have been omitted here. 

The extended arguments for the fust two groups are equivalent to each 
other and, according to Theorem 6, the integrity basis for them is 
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(5.9) 

trE, trE2
, trE3, e3 • Ee3, e3 • E2e3, Ni • EN3 E2

, 

(E ®Ee3) • T 3,3, (E2 ®Ee3) • T 3,3, (E ®E2e3) • T 3,3, 
(E®E®E) • T 6,6, (N 3E®Ee3) • T 3,3, (N 3 E2 ®Ee3) • T 3,3, 

(N3E®E2e3)·T3,3, (N3E®E®E}·T6,6· 

5.7. Hexagonal system 

1. M. ZHANG 

The extended arguments for the seven groups in this system are 

C3,.: (E, T3,3, N3) = (E, T6,6, N3), 
C6 : (E, T 6,6 e3, Z) = (E, T 6,6, N 3), 
C6,. : (E, T 6,6, N 3), 
D3,. : (E, T 3,3) = (E, T 6,6), 
C6v : (E, T 6,6, e3) = (E, T 6,6), 
C6 : (E, T 6,6, Z) = (T, T 6,6), 
D6,.: (E, T6,6)· 

The extended arguments for the last four groups in this system are 
equivalent according to Theorems 1 and 2. The integrity basis for them, 
according to Theorem 6, consists of the following nine invariants 

trE, trE2
, trE3, e3 • Ee3, e3 • E

2 e3, (E® E® E)· T 6,6, 
(E2 ®E®E) • T 6,6, (E2 ®E2 ®E) • T 6 ,6 (E2 ®E2®E2

) • T 6,6• 
(5.10) 

Similarly, according to Theorem 8, the integrity basis for the first three groups 
which have equivalent extended argument consists of fourteen in variants 

trE, trE2, trE3, e3·Ee3, e3·E2e3, N~·EN3 E2, 
(E®E®E)·T6,6' (E2 ®E®E)·T6,6' (E2 ®E2 ®E)·T6,6' 

(5.11) (E2 ®E2®E2}·T6,6, (N3E®E®E)·T6,6, (N3E2 ®E®E)·T6,6' 
(N3 E2 ®E2®E) • T6,6, (N3 E2 ®E2 ®E2

) • T6,6· 

For this system, all the invariants involving T 6,6 specified in Theorems 6 and 
8 are irreducible. 

5.8. Cubic system 

The extended arguments for the five groups in this system are 

T: (E, T11, Z) = (E,T11), 

T,. : (E, T ,.), 
1d: (E, Td) = (E, 0 11}, 

0 : (E, 0 1., Z) = (E, 0 11), 

0 11 : (E, 0 11). 
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Our results in the previous sections are not valid for crystals in cubic system. 
Up to now, the author has no idea how to limit our search for integrity basis to 
a small number of homogeneous polynomial invariants. Let us quote the 
results by SMITH and RrvLIN [1]. For the first two groups in this system the 
integrity basis consists of fourteen invariants 

(5.12) 

where 

(5.13) 

trE, trE2
, trE3

, (E®E)h· T, 
(E2 ®E) ·Th· (E®E2

) ·Th, .A.[E2 ®E] ·Th, 
(E2 ®E2

) • Th, (E®E®E) · (fh Th), (E2 ®E2 ®E2
) • (Th Th), 

e[E®E®E®E] ·(Th®Th), ¢[E®E®E®E] ·(Th®Th), 
(E2®E®E®E) • (fh®Th), ¢[E2 ®E®E®E] • (fh®Th), 

A = [1324J, e = [12345768J, ¢ = [12354678J. 

For the last three groups in this system the integrity basis consists of nine 
invariants 

trE, trE2
, trE3

, (E®E) · Oh, (E2 ®E) · Oh, (E®E2
) • Oh, (E2®E2

) • Oh, 
(E®E®E) • (OhOh), (E2 ®E®E) · (OhOh), (E2 ®E2 ®E) · (OhOh)· 
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