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Numerical analysis of viscoelastic fluid flux through the orifice 

J. POSPOLITA (OPOLE) 

A MATHEMATiCAL MODEL of the flow of the viscoelastic flow through a pipeline with the orifice has 
been formulated on the basis of the Phan-Thien-Tanner rheological equations. Equations of this 
model have been solved by the finite difference method. Numerical analysis of the influence of 
rheological parameters and of the Weissenberg number on the discharge coefficient of the orifice has 
been presented. Some conclusions, useful from the viewpoint of metrology, have been formulated. 
Directions for further investigations have been presented. 

1. Introduction 

MEASUREMENT of fluids with non-Newtonian rheological properties is a problem of 
metrology of flows. Polymer solutions, glues or various two-phase fluids which, under 
certain conditions, can be considered as homogeneous media having modified rheological 
properties, are examples of such fluids. The conventional flowmeters are designed and 
calibrated for measurements of Newtonian fluid flows and, if they are applied for non­
Newtonian fluids, an additional measuring error will occur. Its value depends mainly on 
rheological properties of the fluid. In most cases non-Newtonian fluids are very viscous 
and this fact makes the measurements more difficult. 

There are many journals and papers relating to non-Newtonian fluids but only a small 
number of papers concern measurements of their flows [1, 2, 7, 15] and the results pre­
sented in these papers do not enable us to formulate any reasonable conclusions of the 
metrological character. Theoretical considerations and experiments, the results of which 
were presented in [6, 13, 14], dealt with problems connected with application of ori­
fices for measurements of power law fluids flow [16]. This rheorogical model has been 
assumed because it yields rheological properties of many non-Newtonian fluids with a 
good approximation. The assumed model is very simple; owing to that, determination of 
material constants and realization of numerical investigations become quite easy. From 
the results obtained certain important conclusions have been drawn. Since in many non­
Newtonian fluids, such as polymer solutions with high molecular weight, certain effects 
resulting from differences of normal stresses can be observed (for example Weissenberg 
effect, [17]) numerical investigations should be based on a more complicated model, suit­
able for viscoelastic fluids. In paper [17] it has been observed that rheological properties 
of viscoelastic fluids are functions of their "histories". These properties cannot be ex­
pressed only by the relationship between shear stress and shearing rate. The rheological 
description of these fluids should include not only shear stress and shear rate but time 
derivatives of these quantities as well. Occurrence of effects of normal stresses is often 
understood as a criterion for viscoelastic properties of the fluid. It often happens that the 
difference in normal stresses may be, at certain shear rates, higher than the shear stress. 
Thus, during the determination of rheological properties of the considered fluids, not only 
shear stress but the difference of normal stresses versus shear rate should be known as 
well. 
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The numerical investigations presented in this paper were carried out in order to 
consider a possibility of application of orifices for measurements of viscoelastic fluid flows. 
Here one very important question arises: for which parameters characterizing the fluid, 
the flow, and the flowmeter can we use pipe orifices without taking into account differences 
in characteristics a = f(Re), resulting from viscoelastic properties of the medium. The 
criterion may be the value of the additional measuring error. Since many viscoelastic 
fluids are very viscous, the analysis . should include special orifices [9, 11] used for flows 
with low values of Reynolds numbers. 

2. Mathematical model of viscoelastic fluid flow through the orifice 

The viscoelastic fluid flow through a pipeline with the orifice is considered (Fig. 1). It 
is assumed that the flow is axisymmetric and the velocity profile at the inlet section is fully 
developed. For description of rheological properties of the fluid the Ph an-Thien-Tanner 
model was used [3]. This model allows us to obtain stable solutions for Weissenberg 
numbers (We = A.vm/ D) characterizing viscoelastic fluid flows which were higher than 
in case of other models, for example the MAxwELL or OLDROYD [3, 10]. 

,..--------.~ I 
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FIG. 1. The flow system 

The mathematical model was based on equations of fluid motion 

Dv 
(2.1) (!Dt=-\lp+\l·r, 

where 

equation of continuity 

(2.2) 

T = r* + 2T]sD 

\l·v=O 

and Phan-Thien-Tanner rheological equation 

(2.3) r* = -A ( ~· - Lr*- r* LT) -£'I~ tr(r*)r*- A~(Dr* + r* DT) + 21JmD. 

In those equations v is a vector of velocity with components Vz , Vr, ve where Vz is a 
component in direction of the z- axis, Vr is a radial component and v8 is an angular 
component which is, in the considered case, equal to zero, T is a stress tensor, L-a 
velocity gradient tensor, D- a deformation rate tensor. The stress tensor T consists of 
the term 2ry8 D, expressing the contribution of stresses from the Newtonian fluid (solvent) 
with viscosity TJs, and an additional tensor r*, expressing viscoelastic properties of the fluid. 
Components of the tensor r* are determined in the rheological equation (2.3), where A., 
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T/m, E and ~ are physical parameters of the considered viscoelastic fluid. A is relaxation 
time, Tim expresses viscosity of the medium (this parameter is treated as constant, Tim > 
Tis) E and ~ define particitation of particular terms in the rheological equation. The 
parameter E expresses viscoelastic fluid behaviour during elongational flows [4, 17]; ~ 
represents the fluid properties duringsimple shearing. 

In the assumed cylindrical coordinate system, Eqs. (2.1), (2.2) and (2.3) of the math­
ematical model take the following forms: equation of motion for the axial component Vz 
of the velocity vector 

(2.4) 
Dv 8p 1 8 8Tzz e- = -- + --(rr ) + --
Dt 8z r 8r rz 8z ' 

where the derivative Dvz/ Dt is expressed by 

Dvz 8 2 1 8 
-D = ~(vz) + -~(rvrVz); 

t uz r ur 
equation of motion for the radial component Vr of the velocity vector 

Dvr 8p 1 8 T(j(} 8rrz 
(2.S) f2 Dt = - 8r + ~ 8r (rrrr)- 7 + fu' 
where 

equation of continuity 

(2.6) 
8vz 1 8 - + --(rvr) = 0. 
8z r 8r 

(2.7) 

(2.8) 

(2.9) 

(2.10) 
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The equations of motion and the equation of continuity can be expressed in a general 
form 

( 
8 1 8 ) 8 ( 8<1>) 1 8 ( 8<1>) 

(2.11) g 8z (vz</>) + ;: 8r (rvr</>) = 8z r¢ 8z + ;: or r F¢ 8r + S¢ + S¢D' 

where S¢n is an additional term expressing the contribution of the additional tensor r*. 
The values of r ¢' s ¢ and s ¢ D for particular equations are shown in Table 1. 

Table 1. Coefficients of Eq. (2.11) 

</> F¢ S¢ Sq;D 

Vz TJ _££ + L.£ .. (rTJ~) az r ar az 8T;z + ! 2....(rr* ) az r 8r rz 
+..£..1]~ az az 

Vr -£E. + ! _Q_(rTJ~) ar r ar ar l.£.(rr*)- !.H.+ 8T;z 
r ar rr r az 

+ tz(TJ~)- 2TJ~ 
0 () 0 

The stresses r;r, r;z, r;z, r;8 represent this part of components of the tensor r which 
express viscoelastic properties of the fluid. Without the term S ¢ n, equations of motion 
(2.11) are the mathematical model for the Newtonian fluid flow through the orifice. The 
system of equations (2.4), (2.5) and (2.6)-(2.10) is, in the considered flow area, completed 
with suitable boundary conditions for velocity vector components and for the stress tensor 
components. 

It was assumed that at the inlet section (several diameters before the orifice) the 
velocity profile and values of the stress tensor components correspond to a fully devel­
oped flow of the fluid with the given rheological parameters assumed for the calculations. 
The velocity profile and values of components of the tensor;* are a condition of Dirich­
let's type in the considered boundary value problem. This profile and values of stress 
tensor components were obtained by numerical solution of the problem of forming a 
fully developed fluid flow (having the given rheological parameters) through a pipe. The 
profile was assumed as fully developed when relative changes of the component Vz and 
components of the tensor r* in further sections of the pipeline did not exceed 1 %; it 
occured at the distance of 15-20 diameters from the initial section. 

At the outlet, for the radial component of the velocity vector Vr = 0 and for the other 
variables 8</> /8 z = 0 are assumed. At the symmetry axis it has been assumed that Vr = 0 
and 8</> /8r = 0. Thus at the symmetry axis components of the stress tensor are 

r;r = r;z = roe = 0, 

and 

* , ( 8r;z 8vz * ) A * * * * , C 8vz * 8vz 
1 zz = -A VzTz - 2 8z 1 zz - E TJm (1 rr + 1 zz + 7 ee)1 rr - 2A~:, 8z 1 zz + 2TJm 8z · 

At the pipeline walls and the orifice it is assumed that Vr = 0 and v z = 0. For simplicity 
it is also assumed that 8vz/8z = 0 and 8vr/8r = 0. Equations expressing r;r, r;z, r;z, 
r;8 in the immediate vicinity of the walls result from Eqs. (2.7)-(2.10) under the above 
assumptions for components of the velocity vector. 
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3. Algorithm of calculations 

The presented equations of the mathematical model were solved by the finite difference 
method. Structure of the differential grid and approximation of particular derivatives 
are similar to those for digital simulation of Newtonian or power-law fluid flows [5, 6]. 
Equations for particular components of the stress tensor were approximated in a similar 
way; for example, differences down-stream oriented were used in the schemes of difference 
convection terms. The basic part of the algorithm is the same as for Newtonian fluids. The 
difference consists in solution of equations for components of the additional stress tensor 
during the basic iteration cycle. These equations form additional terms in equations of 
motion (2.4) and (2.5). The assumed algorithm consists in cyclic repeating the following 
steps: 

1) determination of initial distribution of all the variables, together with pressure p 
and components of the stress tensor r; 

2) solving Eqs. (2.4) and (2.5) for components Vz and Vr of the velocity vector; 
3) calculation of pressure p and correction of values Vz and Vr basing on the equation 

of continuity of flow; 
4) solving, by the implicit method, Eqs. (2.7)-(2.10) for the stress tensor components; 
5) the solutions obtained should be understood as approximate and now it is necessary 

to return to step 1. 
In 4) an internal iteration loop was realized for all components of the tensor r* (3-

10 iterations in each external cycle). In solving the differential equations of the model, 
relaxation of all variables was applied on the assumption that the relaxation parame­
ter was 0.3-0.5 for components of the velocity vector and 0.1-0.3 for components of 
the stress tensor. The residual criterion was assumed as the criterion of convergence; 
as a result, difference equations can be satisfied with assumed accuracy in all points of 
the grid for each variable. The values of all variables obtained from the solved equa­
tions for lower values of We were assumed as initial. Such procedure, however, has not 
raised the boundary value of the Weissenberg number, below which stable solutions were 
obtained. 

4. The results of calculations 

In this section the results of calculations made on the basic fluid have been presented. 
The assumed mathematical model made it possible to obtain the stable solutions for flows 
for which Weissenberg numbers were close to one. It should be, however, noticed that 
the solutions obtained, based on the Ph an-Thien-Tanner rheological model for higher We 
numbers, concerned mainly flows for which the Reynolds numbers were less than 1 (see 
also (12]). Such decrease of the orifice modulus made it difficult to obtain stable solutions, 
considering increase of the gradients of all variables. For the same reasons the investiga­
tions were conducted only for the flows for which We numbers were contained between 
0~0.1, and for parameters c: and ~ from within the ranges 0-0.2 and 0-1, respectively, 
i.e. the same ranges as those for the known viscoelastic fluids. Although the values of We 
were relatively low, it was found how the discharge coefficients of the orifices depended 
on rheological parameters of the viscoelastic fluids. Figures 2-6 show the dependence 
of the discharge coefficient a for the orifice upon the parameters characterizing the flow 
and the viscoelastic fluid. The value of a was related to the discharge coefficient for the 
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Newtonian fluid at the same fluid flux and the Reynolds number defined by 

VmDP 
Re = ---, 

1J 
where 

1J = 1Jm + 1Js· 

1.15 
m = Q64 

Ol/,., Re = 10. 
/O..N 

e = 0.2 

1.1 

1.05 

1. 
0.001 0,01 0.1 Q0001 

We 

J. POSPOLITA 

FIG. 2. Dependence of the discharge coefficient for the orifice on the Weissenberg number and parameter ~ . 
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FIG. 3. Dependence of the discharge coefficient on the Weissenberg number and parameter e. 

Figure 2 shows the dependence of a/ aN upon the Weissenberg number for the 
parameter ~· It is clear that any important changes of the discharge coefficient can be 
observed when We> 0.01; the changes are greater if the value of~ increases. As for the 
fluid expressed by the Maxwell equation, for which € = 0 and ~ = 0, these changes do 
not exceed 3% of the value of a for We = 0 - 0.1 and Re = 10- 100. Influence of € on 
a, shown in Fig. 3, is similar but in the considered range the influence is less than that 
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for a flow where We = 0.08 of a fluid with c = 0.01. The calculations were made for two 
different Reynolds numbers. Except for~ = 0- 0.1, the changes of a are larger for flows 
for which Re is less, i.e. when influence of fluid viscosity on the fields of hydrodynamical 
quantities is more visible. 

Results of digital simulation of flows through the orifices having different moduli, as 
well as influence of ~ on a for various m are shown in Fig. 6. In relation to the discharge 
coefficient for a Newtonian fluid, the differences of a are much larger when the modulus of 
the orifice is smaller, because smaller modulus is connected with larger deformation of the 
velocity field and with more visible effects resulting from viscoelastic properties of the fluid. 

The discussed numerical investigations were made in order to determine influence of 
fluid elasticity on differential pressure during the flow through the orifice. In experiments 
this problem is rather difficult because the value of iJp depends also on other rheological 
properties of the considered fluids. Therefore, it is difficult to verify the experimental re­
sults. From all the papers accessible to the author only the experimental investigation by 
SHIMA [ 15] concerns the results for a flow through the orifice. In [ 15] a flow of polyacry­
loamide solutions, considered as viscoelastic fluids, through orifices with different moduli, 
installed in a pipe of 10.5 min diameter, has been analyzed. From the investigations (made 
also by this author- see [13, 14]) it results that the analyzed solutions are also power -
law fluids diluted with shear. In [15], however, there are no data concerning rheological 
parameters of the examined fluids. Basing on the results obtained by SHIMA one can state 
that, as for the turbulent flows, the discharge coefficient for the polymer flow is distinctly 
larger than that for water. In the transient zone Re = 103-3.103, in the case of an orifice 
with modulus 0.32, a is larger for the polymer (the difference is not large), and when 
the modulus is 0.6 the discharge number for the polymer is less than that for water. It 
should be noticed, however, that in the considered case the measuring points are distinctly 
scattered. From the measurements made by BATE (1] (polymer solution flows through 
the orifice with modulus 0.285 for Re = 500 - 3000) and investigations by TOMITA [ 17] 
( rn = 0.8, Re ~ 2.104) it results that the discharge coefficient for the orifice during the 
polymer flow is larger than that for water. On the other hand, investigations carried out by 
BILGEN [2], GILES [7] and HASEGAWA [8] proved that the flow of a polymer solution was 
characterized by a smaller value of a than the flow of a Newtonian fluid. However, the 
investigations of BILGEN, GILES and HASEGAWA were carried out for flows of the polymer 
solutions through holes with extremely small diameters (below one milimeter). According 
to SHIMA [15], such systems have different properties than those with a common orifice. 

5. Conclusions and directions for future investigations 

From the investigations based on digital simulation of laminar flow of viscoelastic fluids 
it results that, for the flows characterized by We < 0.01, the value of a is, in practice, the 
same as for Newtonian fluids. If We is higher than 0.01, a dependence of the discharge 
coefficient on the viscoelastic properties of the medium can be observed. The difference 
between the values of a for viscoelastic and Newtonian fluids increases together with the 
values of We, c and~· From the results of numerical calculations it appears that the dis­
charge coefficient for a viscoelastic fluid is always higher than that for a Newtonian fluid. 
It has been found that there are distinct differences between the data from experiments, 
given in references. However, the authors used viscoelastic fluids with different rheolog­
ical properties and various flow systems for their experiments. Such a situation causes 
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many problems connected with unification and interpretation of the measurement data 
and their application for verification of the numerical results. The mentioned difficulties 
strongly influence the directions of the future investigations on metrological properties 
of the conventional flowmeters used for measurements of viscoelastic fluid flows. These 
directions may be formulated in the following way: 

1. A group of viscoelastic fluids which are most often used in practice should be 
separated. Next, suitable rheological models should be assigned to them. Their material 
parameters must be determined on the basis of the available data. 

2. Experiments concerning viscoelastic fluid flows through constrictions must be real­
ized. The obtained results of measurements will allow to perform numerical calculations 
and verify the applicability of the considered method for the problem analyzed. 

3. On the basis of the theoretical considerations and experiments it would be possible 
to formulate some criteria! relationships determining the range of applicability- mainly 
of constriction flow meters- for measurements of viscoelastic fluid flows. 
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