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Inertial effects of the gas motion upon the linear and nonlinear waves
in Kelvin-Helmholtz flow

B. K. SHIVAMOGGI (BOULDER)

AN INVESTIGATION is made of the inertial effects of the gas motion upon the linear and nonlinear
stability characteristics of the wave motion at the interface between a gas stream and a liquid.
The analysis considers a body force directed towards the liquid as well as the effects of surface
tension of the liquid. The liquid is assumed to be initially quiescent. The gas flow is considered
to be subsonic. The treatment of the linear problem shows that the inertial effects of the gas
motion lead to overstability. For the nonlinear problem, the Poincaré-Lighthill-Kuo method
is used to obtain solutions as perturbations about the neutrally-stable linear oscillation. Detailed
discussion of solutions at various values of wave-numbers is given.

Przeprowadzono badania wplywu efektéw dynamicznych w ruchu gazu na liniowe i nieliniowe
charakterystyki statecznosci ruchu falowego na powierzchni rozdzielajacej gaz od cieczy. Analiza
uwzglednia wplyw sit masowych skierowanych do cieczy, jak rowniez wplyw napigcia po-
wierzchniowego cieczy. Zaklada sig, ze ciecz znajduje si¢ w chwili poczatkowej w spoczynku,
a przeplyw gazu jest poddZzwigkowy. Analiza przypadku liniowego wskazuje, Zze efekty inercyjne
w ruchu gazu prowadza do nadstateczno$ci. W przypadku nieliniowym zastosowano metodg
Poincaré-Lighthilla—Kuo, otrzymujac rozwigzania w postaci perturbacji wokét liniowych drgan
;Jstalo]t:ych. Przeprowadzono szczegblowa dyskusje rozwigzan dla réznych wartosci liczb fa-
owych.

IlpoBenensb! Hcc/ieJOBAaHHUA BIMAHMA IHHAMHYECKHX 3((EKTOB B [BI)KEHMH ra3a HA JIMHEH-
Hble M HeJIHHeHHbIe XAPAaKTEPHUCTHKH YCTOMYMBOCTH BOJIHOBOI'O ABHYKEHHS HA NOBEPXHOCTH
pasfenAiomeii ra3 oT KMAKOCTH. AHANIH3 YUHTLIBAET BIIMSAHHE MACCOBBLIX CHJI HAITPABJIEHHBIX
B JHIKOCTh KaK TO)Ke BIIMAHHE IOBEPXHOCTHOTO HATYKEHHA ymaxocTH. IIpemmonmaraercs,
YTO YKH/IKOCTh HAXOJMTCA B HayaNbHBIN MOMEHT B IIOKOE, 8 TeUeHHe rasa ABJIACTCA NO3BY-
KOBBIM. AHaNM3 JHHEHHOrO CHIy4YadA YKasbIBaeT, YTO MHEPLHOHHBbIE 3((deKTb! B OBIMXKEHMH
rasa NpHBOAAT K cBepxXycToiiumBocTH. B HenumeitHoM cnyuae mpumeHeH meron IlyaHkape-
—Jlattrxunna-Kyo, monyuasi pemenusi B BuAe meprypbamuii BOKpYr JHMHEHHBIX YCTAHOBHB-
mmxca KonebGammii. IIpoeefieHo HOeTanpHoe OOCY>KIOEHHE PpElIEHMH A PasHLIX 3HAYCHHH
BOJIHOBBIX YHCEJ.

1. Introduction

THE STUDIES of the wave motion at the interface between a liquid layer and a gas flowing
past it are of interest in the problems of transpiration cooling of the reentry vehicles and
in particular, in determining the amount of the liquid entrained by the gas. CHANG and
RusseLL [2] made a study of the linear stability characteristics of the wave motion at
the interface between a liquid layer and a gas stream adjacent to it and found that the
nature of the waves generated at the interface depends markedly on the state of the gas.
For a supersonic gas flow, the gas pressure at the interface is out of phase with the surface
tension so that a purely oscillatory constant-amplitude motion of the interface is not
possible. For a subsonic gas flow, however, the stabilising effect of the surface tension
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gives rise to cut-off frequencies. NAYFEH anf SARrIC [5] later extended the study for the
nonlinear case, but their treatment suffers from an error made early in the analysis.

In both of these treatments of the linear and nonlinear problems, the inertial effects
of the gas motion have been ignored, and probably on this account the linear results,
particularly, in the above are in disagreement with the experimental findings, e.g. those
of GATER and L’EcUYER [3], where the interfacial wave motion was found to be unstable
even for a subsonic gas flow. In any event, the inertial effects of the gas motion become
important for waves with speeds of propagation comparable with the gas speed.

The following analysis is an investigation of the inertial effects of the gas motion on
the linear and nonlinear stability characteristics of the wave motion at the interface between
a liquid and a gas stream adjacent to it. The analysis considers a body force directed towards
the liquid, and the effects of the surface tension of the liquid. The liquid is assumed to be
initially quiescent, and the gas flow is considered to be subsonic. For the nonlinear problem,
the Poincaré-Lighthill-Kuo method is used to obtain solutions as perturbations about
the neutrally-stable linear oscillation.

2. Method of perturbations

Consider an initially quiescent liquid of infinite depth whose mean level of contact
with a gas flowing past it is the horizontal surface y = 0 (see Fig. 1). Both the liquid and

y Vi n(x1t.¢€)
| _ Mtyﬁ%ﬁ“

P
Fic. 1. The Kelvin-Helmholtz problem.

the gas are assumed to be inviscid and the effects of the viscous boundary layer at the
interface are ignored. If the motion of the whole system is supposed to start from rest,
it may be assumed to be irrotational. The following analysis takes into account the surface
tension of the liquid as well as a body force acting normal to the interface and directed
towards the liquid. If a typical interfacial disturbance is characterised by a sinusoidal
travelling wave with an amplitude 4’ and wavelength A’, then all the physical quantities
in the following are nondimensionalised with respect to a reference length (A'/2x) and time
(4'/27g")'/?; and ‘the inertial effects of the gas motion are characterised by a time scale
U, /g', where g* denotes the acceleration due to gravity, U, the ambient gas speed, and
the primes here denote the dimensional quantities. The gas density g, is small so that
the corresponding body force is negligible. The potential function of the motion of the
liquid and the gas are taken to be, respectively,

(&)X 27)*2p(x, y, t; €)
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and
T ;
@ E x+¢(x’ys t; 8) ]
where
2.1 Y <0 Puxt @y =0,
22 y>n (1-ML)dut+d,, = M i[('r+1)¢x+ 7+1¢x ¢"
Y+l 7 1
+6(7-])¢:]¢xx+[(T"l)¢x é} ¢x+a('l' l)¢:]¢”
+[2¢,(1+ ¢l ¢, +28[(1 +¢x)¢n+¢,¢n]}

and

. ( g )”2_1_ wave speed
T\ 2n U, speed
and in the present analysis only the terms of 0(4) are retained. Here y = #(x, ¢, &) denotes
the disturbed shape of the interface, and M, the ambient gas Mach number. One has the
following boundary conditions at the interface:
1) Kinematic condition

(2.3) Yy =10 @y = N+ @0,
(24) y=n:¢,=n+(1+¢):.

2) Dynamic condition

2.5 y=mn: ¢t 2(%+9:,)+q—k’n,,(l+q’ -m—?kc
where
k2 = (2“ X gl
og’  VeagT
2
G = },Mz [— M’(20¢.+2¢x+¢x+¢?)] e }

or, on expansion,
C, & —2s— 28— [(1— ME)$2+ 47— 20M2 s
[Mz {1 +Mo 2)}¢z+M§o (14 M2 (y=2)] 0,62+ a¢.¢§+¢,¢3}]

and T’ denotes the surface tension.
NAYFEH and SARIC [5] have missed the term other than unity in the coefficient of ¢3
in the expression for C,, and this error has been transmitted right through their analysis.
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The infinity conditions are

(2.6)
@7

y— —0:¢,—>0,
y—+o0: ¢, 0.

In order to look for travelling waves, introduce

(2.8)

E=x—ct

so that Eqgs. (2.1)-(2.7) become

(2.9)

(2.10

@.11)
2.12)

.13

where

Yy <0 gty =0,

y >n: (1=MZ%) et + ¢,y = M {[(T—l)(1—50)¢e+ ¢;+—¢,

—20c | e+ [(*r— D(1-dc)pe+-—5— T ¢r+__¢é]¢n+ [2¢,(1+e -6c)l¢s,}.
y =0 ¢y = (Pe—C)1e,
y=n: ¢, = (1+¢p¢—dc)ne,
y=nin= [csve- (2 +%)]+k0[(1—‘5¢)¢e+ (Y’ 92 +67)

—-%M’ {(1 —8c)+M%(y—2) (—- &c)}qbg -—=Mi(1- dc)¢e¢,]

+k*nge(1+92)~372,
y— —00: (p,-vo,
y—o0:¢,—0,

y? = 1—=M2 +26cM2,.

Seek solutions of the form, with ¢ = a27/A' € 1,

(2.14)

(.15

(2.16)

.17

(2.19)

9E. v, 9 = D) £0u, ),

n=1

6., 8 = D EhulE, N,

n=1

(&, &) = 2_: (€,

ek, &) = D, ee,(k),

n=0

k(o) = D) &k,

n=0

One then obtains from Egs. (2.9)-(2.13), (2.6) and (2.7), upon substituting Egs. (2.14)-
(2.18) the set of equations (A.1)-(A.21) as given in the Appendix.
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3. Linear problem

Let

3.1 74(§) = Acosé,

then, from Egs. (A.1)-(A.4), (A.6) and (A.7) one obtains
(3.2) @1(&, ) = Acoe’siné,

33) $:(6,7) = %(1 —deg)e-"7siné.
Using Egs. (3.1)-(3.3) in Eq. (A.5), one obtains

(3.4 @i RAU=209) _iy kay

0

from which one finds

2
(3.5) Cp = k°05(~l—+&°—)j;d,

m  2m?
where

4= ]/kg— uc L +1, m=yY1-Mz%.

m

It is obvious that the inertial effects of the gas motion lead to overstability (see CHAN-
DRASEKHAR, [1] Chapt. I).
The cut-off wavenumbers correspond to

o _ o?
(3.6) Ko, , = Ty E ]/-4—"?“ 1.

Thus there are two cut-off wavenumbers, and all disturbances with wavenumbers above
or below these values propagate without growth or decay.
For the cases M, < 1, note from Eq. (3.5),

X) g B8
m

4. Nonlinear analysis for wavenumbers away from the linear cut-off and the second-harmonic
resonant values

Let
4.1) 72 = Bcos2é,
30 that one obtains from Egs. (A.8)-(A.11), (A.13) and (A.14)

(4.2) (6,9 = co (B - :,;_z) e?sin2f +c; Ae’siné,
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_ M2 42D(1-6c,) (y+ 21 )

43) 60 = [ e ==

A? 1
{ZB+'—2— Yo +-—)} (1 = dco)
+ Yo e~ 270%5in 2

2y

M2 ( 1 ) 1 ] :
—2¢, 8| —=|y+— ) +—| e ""siné,
? [ 73 4 Yo Yo ¢

where
1 1

Using Egs. (4.1)-(4.3) in Eq. (A.12), one finds that the removal of the secular terms re-
quires (or, equivalently, one is free to choose)

“4.4) ky =0,
kood
(4-5)1 cl [CO—' o; ] — 0
or
(4'5)2 2CJ.A — 05
so that
(4.6) =0, if A4+#£0, ie,if k#ko,,.
One then finds from Eq. (A.12)
4.7 B = pA?,
where
2 -
€6 oko(l 226.:0) @2— M2 D)
_2 i
k= 1-2k2

The case

5]
kOs =+ .'/E'

where u becomes unbounded, corresponds to the well-known secend-h: rmonic resonance
which we shall treat in a later section. '

Using Eqgs. (3.1)-(3.3), (4.1)-(4.3) and (4.5)-(4.7), one finds from Egs. (A.15)-(A.18),
(A.20) and (A.21)

4.83) pi(§,y) =4 [.._ Cp A3 (3 % - ~;) + cz] e’sin &+ higher harmonics,
(4.9) @i, y) = [A*(Fy+H)(1—Bco)) Ade~3*o7sin& '

2

2
+ [ —2c, 6M—;°(y +—1~] —ﬂ—Az(l —dco).2’+i4—(,f =3y X)) (1 —«-dco)]
Y Yo Yo Yo

(4]
x Ac~ sin&+higher harmonics,
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where

 (1-28¢)M2D ( -L)
7="my ITy)

e [l—2&co)[M§,D s sl "'”1)
8%

873 80

+{2p+ ( )}("‘2;1 +1_—3)+(7+1)( &3 +%)

vt T i)

1 1. 4 1 1
oottt
?o[ 7R 73 I ) (LS
h_i %

Using Eqgs. (3.1)-(3.3), (4.1)-(4.3) and (4.5)-(4.9), one ﬁnds that the removal of the secular
terms in Eq. (A.19) requires

2k, 08 1
-2l
o z Se 3y 1 MLD
+ako(l 2&:0)[2.xf- AR R e
3 . Ma(y-2) 1 2 3.2l _
+3—?,~MQ{(1-20.:0)+T(1-4&¢.,) — gy Mu(1-26c) [~ i3} = 0
or
4.10) ¢, = c§(,u+—;-)+oko(l—26co)[2.f—%+?+-§2&

33 1 M:D 3

2 Mi(y—2) }
+7+'27+ 8y 187 ”{(1_26c°)+—7’—(1 )

1 3
-—s—yMi;(l 2c3cu)]—— IA’/’ZA
A comparison of this result in the limit § = 0 with the corresponding one given by Nayfeh
and Saric is not possible for the reasons already mentioned. It is clear that this result
is not valid for wavenumbers near the linear cut-off values kon, , where 4 = 0 and the

second-harmonic resonant values ko, where u becomes unbounded. In the limit ¢ = 0,
Eq. (4.10) agrees with the one deduced by NAYFEH [4].

5. Nonlinear analysis for wavenumbers near the linear cut-off values

In order to treat the case with wavenumbers near the linear cut-off values ko, ,, one

goes back to Eq. (4.5),, and notices that for k & ko, .,, 4 = 0, so that c, is arbitrary in the
0(e?) problem,
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Using Egs. (3.1)-(3.3), (4.1)-(4.3), (4.4) and (4.7), one finds from Egs. (A.15)-(A.18),
(A.20) and (A.21)

(5.1 p3(&,y)=4A [—‘c{.A2 (‘tzi o+ %)] €’sin&+ higher harmonics,

(52) ¢3¢, y) = [A*(Fy+H)(1— b)) Ade™>siné +
2
+ [% (F =3pAH)(1—beg)— AX (1 — 600)9."] Ae~"sin& + higher harmonics.

Using Egs. (3.1)-(3.3), (4.1)-(4.3), (4.5), (4.7), (5.1) and (5.2), one finds that the removal
of the secular terms in Eq. (A.19) requires that

cf+k2[—2ko+ Eg—l—-yzﬁ’l]-zﬁ (. (,u+ %)
: Lo, 1 MDD 3 L
+oko(l cho)[Z.Y ?*'?J“TJ’ s Tyt e TS M2 (1—-28c¢,)
Mi(y-2) } 1 201 _3 2| _
+ =25 (1-4dc,) —gMa,(l 20co) |~ 5 kot = 0
from which
(5.3) 6y = l/ﬁ(kz-iziz),
B
where

B = 2ko— % (1-26c,),

3 1 5
@=— k3—c? (p+ 7)—5!:0(1 —26co)[2.7(’—% +Z+ -—g—

3y 1 M:D 3 ,{
+T+$+ 8‘)’ +—‘8y3 Maa (l 26‘:0)

MZi(y—2 1
e ___(;' ) a —4aco)}- T MZ,(1—2dco).
Again, a comparison of this result in the limit 6 = 0 with the corresponding one deduced
by Nayfeh and Saric is not possible.

One has for k % k,,, (the larger cut-off value)

2
k, < %: instability,
2
k, = ag :  neutral stability,
MZ
k, > ——: stability

p



INERTIAL EFFECTS OF THE GAS MOTION UPON THE LINEAR AND NONLINEAR WAVES 699

Linear
cul-off

Stable Unstable

kon4
Fic. 2.

and corresponding to neutral stability, one has
(54) k = Kon,+ 2 _;_Az,

which is graphically represented in Fig. 2. Thus equilibriun solutions can exist for wave-
numbers sufficiently close to the linear cut-off values, and these solutions have a definite
minimum amplitude.
It is obvious that
1) the interfacial waves grow even at k = k,,,, despite the cut-off predicted by the linear
theory, however, such unstable waves do not grow indefinitely in time but reach a steady-
state amplitude,
2) since for k X koa,, ¢o = 0(8), for cases g,/o; < 1, one may approximate
aR < ki— % o5
B =~ 2k,
so that corresponding to the case d # 0, the unstable region shrinks further and there-
fore the inertial effects of the gas motion tend to be stabilising upon the interfacial wave-
motion in the nonlinear case.

6. Nonlinear analysis for wavenumbers near the second-harmonic resonant values

It can be readily verified that corresponding to the second-harmonic resonant case,
1
(6.1) ko; - j:'V_"'s
the fundamental component
7O = Acost, P = _‘:_ (1—dcg)e'sin,

¢ = Acge siné
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and its second harmonic

n0 = Boos2t, 4 = 2 (1-dagyesin2e,
@ = Beoe?sin2é,

have the same linear wave velocity c;.
In order to treat this case of nonlinear resonant interaction, put

(6.2) n: = Acosé+Bcos2E,
(6.3) @1 = colA@siné+Be?sin2¢],
(6.4) ¢, = (]—_;ﬂ [Ae~"’sin& +Be~2» sin2£].

Using Egs. (6.2)-(6.4), one finds from Eqgs. (A.8)-(A.11), (A.13) and (A.14)

A

€5 ) = (— e

3 co+Acl) e’sing
+(—A’co+201ﬁ’)%e”sin2$+higher harmonics,

2

©6) ¢:(e,y)=[-%—2a,4cl(y+:,) - M350 (g4 1)-yier-1)

1—4co

xAB(e'S”—e‘”)-—{ ( )3A§y+ éc, A} e‘”] sinf

t[-ma-si) A f - Laens Zarn) (g ) e

1 A _ Mz A 1 _ .
2 {—(1—8co)yA?+28,cB}e~ 2" — —;{‘— 26Bc, (y + -Z—y—) e ’”] sin2&
+ higher harmonics,

Using Eqgs. (6.2)-(6.6), one finds that the removal of the secular terms in Eq. (A.12) re-
quires that

6.7 k2pB+2koc, 0+, [M} —2kok, = 0,

2 A A — A
(6.8) k";" +4koBe, 0 +2Bk, [&’(‘_y?ﬁ] —8kok,B = 0,
where

p= —é— [-c3+ ‘:;f 2 (1 —46co){(T+1)-—75’(Y—1)}]-
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1 2ko 06 Mi,) _ 4
[200— m (1_ —To—.

1 2k, m?

From Egs. (6.7) and (6.8), one obtains

sk k2 A%
©9 Be - st o
kiGko—p) _ kbp o/ Kt AT
24 24 Pk, 4
which for k, = 0, agree with those deduced by WiLToN [6] long ago for the case of capillary

waves on water. Thus purely phase-modulated waves are possible for wavenumbers near
the second-harmonic resonant values. Note that these results are not valid if ko, = ko,.

(6.10) &
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Appendix
0(e):
(A.1) y<o0: Preet+ Pryy = 0,
(A2) y>0: yidieetdi,, =0,
(A.3) y=0 @,= —CMs
(A4) y=0: @, = (1—-0co)nye,
(A.5) y=0: 5= copietkoo(l—0dco)pie+kinuee,
(A.6) y—= —o: @,—0,
(A7 y—>o: ¢;,—0.

(cont. on p. 795)
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Appendix (*)

[cont.]
0(e?):
(A.8) Y<0: @+, =0,

(A9) y>0:  yida+ P25y = ME{[(y+1) (1 —dco) $1e—20¢1]P1ee
+[(y—1) (1 =8co) b1l b1yy + [261,(1 = 0¢o)] P14y} 5

(A10)  y=0: @2+@1yN1 = —Comag+(Pre—C1) Mgy

(A.11) =0: ¢+ Py = (1 =8co)nag+ (1 —08¢1) N1,
1

(A12)  y =01 7z = co(@ae+@ryet) = 5 (Phe+ phy) +er1pue

+0ko[(1 —dco) (P2¢ + Preyn1) + *‘l.i' (Y3 die+d1)) — e dy]

+k3n2ee + 2ko ks M1ge + ks (1 — 8¢o) bae,
(Al3) y-> —0: @30,

(A.ll4) y-— oo: ¢2,— 0,
0(e®):
(A.lS) y < 0: waee"'-?l.” — 0,
(A16) y>0: Yidag+Pay = be{[(‘f"‘ 1) (1—=8co) P2

+1 -1
=dei(y+ Dye+ .4 2 ¢i:+ z 3 ¢f,-26c2] bree

+[(‘?—l)(1"500)‘#28—501(?—1)‘;5154' Y+ I ¢fe]¢1n

+[2¢2,(1 —8co) + 21, (1 — 501)]¢1er} ’

(*) This part of the Appendix has been sent by the author too late (July 1982) to be included in the
original text (Ed. Com.).
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1
(A7) y=0:  Goy+@api+Pinl2) + 5 Pim i

= —coNag+ (Pre—C1)N2e+ (P2 + Prey 11 — C2) Mg,y

(A.18) y

1
0: Py + (P2yy 1 + brypm2) + 3 P1yyy i
=(1- (_’Co)ﬂse +(b1g—0c1)n2g + (P2e + Prgym — 8c2)n1es

1
(A19) y=0: 73= Cn(%e‘*"?z:rm +PueyM2+ T%m'ﬁ)
+e1(P2e + Prey M) +C2@1e — P1e(P2e + PreyN1) — PPy + Pryy 1)
1
+ dko[(l —dco) (‘1535 + P2y M+ Prgyn2+ 7 Dieyy 71?)

—08ci1(P2e+ Prey M1 — Mo b)) — Bca g
+ Y5 P1:(P2e+ Prey M) + P1y(P2y + Pryy M)

Y | )
- %‘ MZ(1—8co) P, d"}r] + oky [U —0¢o) (P2 + b1eyM1)
+ %(?z‘ﬁe +¢1,) — ey ¢te] +0ka(1—8co)dre+ k§nage

3
+2kokymage +2kokaM1ee — jkg’hu Nies
(A20) y- —: ¢3-0,
(A2l) y—-o0: ¢3—0,
where
y3 = m*+28co M2





