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Inertial effects of the gas motion upon the linear and nonlinear waves 
in Kelvin-Helmholtz flow 

B. K. SHIV AMOGGI (BOULDER) 

AN INVESTIGATION is made of the inertial effects of the gas motion upon the linear and nonlinear 
stability characteristics of the wave motion at the interface between a gas stream and a liquid. 
The analysis considers a body force directed towards the liquid as well as the effects of surface 
tension of the liquid. The liquid is assumed to be initially quiescent. The gas flow is considered 
to be subsonic. The treatment of the linear problem shows that the inertial effects of the gas 
motion lead to overstability. For the nonlinear problem, the Poincar~Lighthill-Kuo method 
is used to obtain solutions as perturbations about the neutrally-stable linear oscillation. Detailed 
discussion of solutions at various values of wave-numbers is given. 

Przeprowadzono badania wplywu efekt6w .dynamicznych w ruchu gazu na lioiowe i nieliniowe 
charakterystyki stateczno8ci ruchu falowego na powierzchni rozdzielaj'lcej gaz od cieczy. · Analiza 
uwzgl~dnia wplyw sil masowych skierowanych do cieczy, jak r6wniei: wplyw oapi~ia po­
wierzchniowego cieczy. Zaklada si~. i:e ciecz znajduje si~ w chwili pOCZCltkowej w spoczynku, 
a przeplyw gazu jest poddfwi~kowy. Analiza przypadku liniowego wskazuje, i:e efekty inercyjne 
w ruchu gazu prowadZCl do nadstateczno8ci. W przypadku nieliniowym zastosowano metod~ 
Poincare-Lighthilla-Kuo, otrzymuj'lc rozwi~a w postaci perturbacji wok6l liniowych drgafi 
ustalonych. Przeprowadzono szczeg6low'l dyskusj~ rozwi'lZ311 dla r6Zilych warto8ci liczb far 
lowych. 

IJpoBe,AeHbl HCCJie,AOBaHH.R B.JIIDIHIDI ,AHHaMWieCKHX 3$$eKTOB B ,ABIDKeHHH raaa Ha mmeH:­
Hbie H HeJIHHeH:Hbie xapai<TepHCTHI<H ycroH:t.mBOCTH BOJmoBoro ,ABIDKemm Ha noBepXHOCTH 
paa,AeJIHlOmeH: ras oT mHAJ<OCTH. AHa.rms yt.mTbiBaeT BJIIDIHHe MaccoBbiX CHJI HanpaBJieHHhiX 
B )f(H,ni<OCTb l<ai< TO)f(e BJIH.RHHe ITOBepXHOCTHOrO HaT.fl)f(eHIDI >KH,l:U<OCTH. IJpe~OJiaraeTCJI, 
G:TO »<H,ni<OCTb HaxO,AHTC.R B HaG:aJILHbiH MOMeHT B ITOI<oe, a TeG:eHBe raaa .RBmleTC.R ,AOSBy­
I<OBbiM . AHa.rms JIHHeH:Horo cnyqa.a Yl<ll3hiBaeT, G:To HHepl.lHOHHbie a<P<l>ei<Tbi B ,ABH>KeHHH 
raaa npHBOA.fiT 1< cBepxycroH:t.mBocrH. B HemmeH:HoM cnyqae npHMeHeH MeTOA llyam<ape­
-JiaH:TXruma-Kyo, no~ peweHH.R B BH,Ae nepryp6~ BOI<pyr JIHHeH:HbiX yCTaHOBHB­
WHXC.R I<oJie6aHHH:. IlpoBe,AeHo AeTaJILHoe o6cym,AeHHe peweHHH: AJI.R pasHbiX sHaqeHHH: 
BOJIHOBbiX G:HCeJI. 

1. Introduction 

THE STUDIES of the wave motion at the interface between a liquid layer and a gas flowing 
past it are of interest in the problems of transpiration cooling of the reentry vehicles and 
in particular, in determining the amount of the liquid entrained by the gas. CHAN'o and 
RussELL [2] made a study of the linear stability characteristics of the wave motion at 
the interface between a liquid layer and ~ gas stream adjacent to it and found that the 
nature of the waves generated at the interface depends markedly on the state of the gas. 
For a supersonic gas flow, the gas pressure at the interface is out of phase with the surface 
tension so that a purely oscillatory constant-amplitude motion of the interface is not 
possible. For a subsonic gas flow, however, the stabilising effect of the surface tension 

6 .. 
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692 B. K. SmvAMOGOI 

gives rise to cut-off frequencies. NAYFEH anf SARic [5] later extended the study for the 
nonlinear case, but their treatment suffers from an error made early in the analysis. 

In both of these treatments of the linear and nonlinear problems, the inertial effects 
of the gas motion have been ignored, and probably on this account the linear results, 
particularly, in the above are in disagreement with the experimental findings, e.g. tJ:10se 
of GATER and L'EcUYER [3], where the interfacial wave motion was found to be unstable 
even for a subsonic gas flow. In any event, the inertial effects of the gas motion become 
important for waves with speeds of propagation comparable with the gas speed. 

The following analysis is an investigation of the inertial effects of the gas motion on 
the linear and nonlinear stability characteristics of the wave motion at the interface between 
a liquid and a gas stream adjacent to it. The analysis considers a body force directed towards 
the liquid, and the effects of the surface tension of the liquid. The liquid is assumed to be 
initially quiescent, and the gas flow is considered to be subsonic. For the nonlinear problem, 
the Poincart-Lighthill-Kuo method is used to obtain solutions as perturbations about 
the neutrally-stable linear oscillation. 

2. Method of perturbations 

Consider an initially quiescent liquid of infinite depth whose mean level of contact 
with a gas flowing past it is the horizontal surface y = 0 (see Fig. 1). Both the liquid and 

q(x, t,e) 

Pt 
FIG. 1. The Kelvin-Helmholtz problem. 

the gas are assumed to be inviscid and the effects of the viscous boundary layer at the 
interface are ignored. If the motion of the whole system is supposed to start from rest, 
it may be assumed to be irrotational. The following analysis takes into account the surface 
tension of the liquid as well as a body force acting normal to the interface and directed 
towards the liquid. If a typical interfacial disturbance is characterised by a sinusoidal 
travelling wave with an amplitude a' and wavelength A.', then all the physical quantities 
in the following are nondimensionalised with respect to a reference length (A.' /2n) and time 
(A.' /2ng')1'2; . and ·the inertial effects of the gas motion are characterised by a time scale 
U'oofg', where g' denotes the acceleration due to gravity, U~ the ambient gas speed, and 
the primes here denote the dimensional quantities. The gas density e; is small so that 
the corresponding body force is negligible. The potential function of the motion of the 
liquid and the gas are taken to be, respectively, 

(g')112(A.' /2n)312q;(x, y, t; e) 
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INERTIAL EFFECI'S OF THE GAS MOTION UPON THE LINEAR AND NONLINEAR WAVES 693 

and 

where 

(2.1) Y < f}: fPx:x:+fPn = 0, 

. 2) - 21[< 1)A. y+1,~,.2 y-1 ,1,.2 (2.2) Y > fJ· (1-M«> l/Jxx+l/Jyy- M«> y+ 'l'x+-2-'*'"+ -2-"'' 

H(y-I)t/>,] t/>xx + [ (y-I)t/>,+ r; It/>~+ 'Y; 1 t/>~ +<l(y-1)4>,] t/>., 

+ (2t/>,(1 + <P.JJ4> •• +26[(l+t/>.)t/> .. + t/>,t/>,.1} 

and 

d = ( A.'g' )
1

'
2 
_1_ "' wave speed ~ 1 

2n U:X, gas speed 

and in the present analysis only the terms ofO(~) are retained. Her~ y = f](X, t, e) denotes 
the disturbed shape of the interface, and M«> the ambient gas Mach number. One has the 
following boundary conditions at the interface: 

1) Kinematic condition 

(2.3) 

(2.4) 

Y = f}: qy, = f]i+f!JxfJx, 

Y = f]: l/Jy = ~f],+(1+l/Jx)fJx• 

2) Dynamic condition 

_ . 1 ( 2 2) _ k2 (1 2)- 3/2 a kC (2.5) Y- fJ· fPt+2 f/Jx+fP1 +f]- fJxx +f]x -2 '' 
where 

(2n)2 
T' e;u~ 

k
2 

= Y elg'' a= velg'T'' 

c. = , ~! {[ 1 - 'Y; 1 
M!(2&p, + 24>. +<P~ +t/>~) F· -1} 

or, on expansion, 

C11 ~ -2lf>x-2~4J,- [(1-M!Jl/Ji+t~J;-2~M!l/Jxlf>tl 

+[M! {1 + ~! (y-2)lt/>!+M!{[I +M!(y-2)]6<P.t/>~+ &p,,P~+tP.tP:}] 
and T' denotes the surface tension. 

NAYFEH and SARIC [5] have missed the term other than unity in the coefficient of l/J~ 
in the expression for c,, and this error has been transmitted right through their analysis. 
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The infinity conditions are 

(2.6) 

(2.7) 

y ~ -oo: fP 1 ~ 0, 

y ~ oo: l/Jy ~ 0. 

In order to look for travelling waves, introduce 

(2.8) ~ = x-ct 

so that Eqs. (2.1)-(2~7) become 

(2.9) Y < 'YJ: f/Jee+f/Jn = 0, 

B. K. SmvAMOOOI 

(2.10) y ?" n: (1-M~)t/>~~+t/>,. = M~u(y-1)(1-dc)t{>~+ r;lt/>l+ r;lq,: 

- 2dc]t/>u+[ (y-1)(1- dc)t/>~+ r; It/>~+ r; I t/>l ]4> .. + [2t{>.(l +t/>~ -dc)]t/>;,}, 

(2.11) y = 'Yj: (/)y = (qJ;-C)'YJ;, 
(2.12) y = 'YJ: l/1 7 = (1 +c/Je- ~c)'YJ;, 

(2.13) y = '1' '1 = [c'l'~- ~ (9'i+'P:>]+ka[(I-~c)t{>~+ ~ (y2t/>l+tf>:) 

where 

- ~M~{(l-dc)+M~(y-2)(! -<lc)}<~>z- ~ M~(l-<lc)tf>et/>:] 
+k2'YJee(1 +'Y/1>'""3/2, 

y~-oo:fP7 ~o, 
y ~ 00: cpy ~ 0, 

y 2 = 1-M~+2~cM~. 

Seek solution~ of the form, with e = a'2n/ ).' ~ 1, 

00 

(2.14) f/J(~, y, e)= 2 F!'qJ,.(~, y), 
n=l 

00 

(2.15) cp(~, y, e) = 2 F!'l/1,.(~, y), 
n=l 

00 

(2.16) 'YJ(~' e) = 2 F!''YJ,.(~)' 
n=l 

00 

(2.17) c(k, e) = 2 F!'c,.(k), 
11=0 

00 

(2.18) k(e) = 2 F!'k,.. 
n=O 

One then obtains from Eqs. (2.9)-(2.13), (2.6) and (2.7), upon substituting Eqs. (2.14)­
(2.18) the set of equations (A.1)-(A.21) as given in the Appendix. 
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3. Linear problem 

Let 

(3.1) 'YJ 1 (~) = Acos~, 

then, from Eqs. (A.l)-(A.4), (A.6) and (A.7) one obtains 

(3.2) 971 (~, y) = Acoe'sin~, 

(3.3) cp 1 (~, y) = ~(1- ~c0)e-Yo 1 sin~. 
Yo 

Using Eqs. (3.1)-(3.3) in Eq. (A.5), one obtains 

- 2 k0 a( I-2~c) 
c0 + (l+k~) = 0 

Yo 
(3.4) 

from which one finds 

(3.5) 

Ll =V k~- k~a +I, m= j/1-M!,. 

69S 

It is obvious that the inertial effects of the gas motion lead to overstability (see CHAN­
DRASEKHAR, [1) Chapt. 1). 

The cut-off wavenumbers correspond to 

(3.6) 

Thus there are two cut-off wavenumbers, and all disturbances with wavenumbers above 
or below these values propagate without growth or decay. 

For the cases M 00 ~ 1, note from Eq. (3.5), 

(3.7) -eo+ koa~ = ~LI. 
m 

4. Nonlinear analysis for wavenumbers away from the lineJll' cut-off and the second-harmonic 
resonant values 

Let 

(4.1) 'YJ2 = Bcos2~, 

30 that one obtains from Eqs. (A.8)-(A.ll), (A.l3) and (A.l4) 

(4.2) p2(~,y) = c0 (B- ~2

}e2'sinU'+c1 Ae"sin~. 

http://rcin.org.pl
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(4.3) 

where 

D = ~(I- (5co) (y+1) (t-4). 
. Yo 

Using Eqs. (4.1)-(4.3) in Eq. (A.l2), one finds that the removal of the secular terms re­
quires (or, equivalently, one is free to choose) 

(4.4) 

or 
(4.5h 

so that 

(4.6) 

One then finds from Eq. (A.l2) 

(4.7) 

where 

The case 

B = pA2
, 

ko.= ±f~. 
where p, becomes unbounded, corresponds to the well-known second-h:'.rmonic resonance 
which we shall treat in a later section. · 

Using Eqs. (3.1)-(3.3), (4.1)-(4.3) and (4.5)-(4.7), one finds from Eqs. (A.15)-(A.l8), 
(A.20) and (A.21) 

(4.8) <p3(~,y) =A[ -c0 A2 (3 i +{-)+c2]e'sin~+higher harmonics, 

(4.9) tP3(;, y) = [A2(efy+%) (1- dc0)]Ae- 3YoYsin; 

+[-2c2 dM~ (y+-
1 
)- lc2 d -A2(1-dc0).!l'+~(f-3yo.~)(J-dco)] 

l'o Yo Yo /'o 
x Ac- sin ; +higher harmonics, 
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where 

d = (1-2~c0)M~D ( 1)(1 _ _ 1) 
~ 32 2 y+ 2 ' Yo Yo 

f = 8~~ I [J-2~c0) [ M~D(- Y8;: + ~~:) 
+ {2p+ ~ (,.+ ;.)} ( r2;~I + r;3 )+<r+ I) (- 8~~ + 3~·) 

y-1 1 3M~D ( 1 )]j 
- 4ro + 2ro + 16ro (y+ 1) 1- r~ , 

!l' = -
1 [M~ D (_!_-~) + {2p + _!_ (ro +-

1 
)} 

Yo 4 8ro 2 Yo 

x(-1 -ro)+p(ro __ 1 )+ r~ +4]. 
2ro 2 ro 4 

Using Eqs. (3.1)-(3.3), (4.1)-(4.3) and (4.5)-(4.9), one finds that the removal of the secular 
terms in Eq. (A.19) requires 

[ 2koat5] 2 12 ( 1) c2 2c0 -----.,;;- -A Co ,U + 2 

+ak0 (1-2dc0)[2.%'"- J +!l'+ Sp, + 3Y +-1 + M~D 
r 2 4 2r sr 

+ ~· M!{(l-2~c.)+ M!<r2> (l-4~c.>}- 8~ M~(J-2~c.>]- ~ k~l = o 
or 

(4.10) c2 =le~(!'+ ~)+ak0(J -2&0)[ 2f- ~ U'+ 
5f 

3y 1 M~D 3 2 {< 2 _. ) M!,(y-2) (1 4 .. )} 
+4+"2f+----gy+ Syl Mex> 1- uCo + 3 - uc0 

- 8~ ~!,(J-2~c.>]- ~ kaJA•/•2L!. 
A comparison of this result in the limit t5 => 0 with the corresponding one given by Nayfeh 
and Saric is not possible for the reasons already mentioned. It is clear that this result 
is not valid for wavenumbers near the linear cut-off values k0 ,. where A = 0 and the 

1,2 

second-harmonic resonant values k 05 , where p, becomes unbounded. In the limit a => 0, 
Eq. (4.10) agrees with the one deduced by NAYFEH [4]. 

5. Noolinear analysis for wavenumbers near the linear cut-off values 

In order to treat the case with wavenumbers near the linear cut-off values k0,.
1

• :a, one 
goes back ~o Eq. (4.5h, and notices that for k ~ k0,.

1
• 

2
, L1 ~ 0, so that c1 is arbitrary in the 

0( t:2
) problem. 
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698 B. K. SHIVAMOOGI 

Using Eqs. (3.I)-(3.3), (4.1)-(4.3), (4.4) and (4.7), one finds from Eqs. (A.I5)-(A.I8), 
(A.20) and (A.2I) 

(5.1) <p3 (~, y) = A [ -c0 A2 (-t + ! )] e"sin~+ higher harmonics, 

(5.2) cf> 3 (~, y) = [A 2(Jy+Jf')(1- tk0)]Ae- 3"'sin~+ 

+ [ ;: ()'"- 3y.:r)(l- & 0)-A 2 ( I - ~c0)9'] Ae-" sin~+ higher harmonics. 

Using Eqs. (3.I)-(3.3), (4.1)-(4.3), (4.5), (4.7), (5.1) and (5.2), one finds that the removal 
of the secular terms in Eq. (A.I9) requires that 

2 k [ 2k a( I-2bco) ] A 2 12 ( I ) 
C1 + 2 - o + 'Y - Co P. + T 

+ ak0(I- 2bc0)[2:f{- _!__ +!l' + 5
"' +~+_I_+ M! D +-3-M2 {<I- 2bc0 ) 

'Y . 2 8 2y 8y 8y3 00 

M! ( y - 2) 4 .i >} I 2 ( 2 .i )] 3 k21 + 3 (I- uCo - BY M 00 I - uCo - 8 o = 0 

from which 

(5.3) 

where 

0' P = 2k0 - - (I - 2bc0 ), 

'Y 

3 k2 2 ( I ) .i [ $ 5p, ex=- o-Co p,+- -ak0 (l-2uc0 ) 2Jf"-- +!l' +-
8 2 'Y 2 

3y I M!D 3 2 {<I 2 .. ) + T + lY + ----gy- + 8y3 Moo - uCo 

M!(y-2) ( .i )} I 2 (I 2.1 ) + 3 I-4uc0 -gy-Moo - uc0 • 

Again, a comparison of this result in the limit b ~ 0 with the corresponding one deduced 
by Nayfeh and Saric is not possible. · 

One has for k ~ k0,.
2 

(the larger cut-off value) 

aA2 

k2 < p= instability, 

aA2 

k2 = T: neutral stability, 

aA2 

k2 > -p-= stability 
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A 

stable 

FIG. 2. 

and corresponding to neutral stability, one has 

(54) k k 2 (X 2 
· = On3 + £ 7J A ' 

which is graphically represented in Fig. 2. Thus equilibriun solutions can eXist for wave­
numbers sufficiently close to the linear cut-off values, and these solutions have a definite 
minimum amplitude. 

It is obvious that 
1) the interfacial waves grow even at k = k0 ,.

1
, despite the cut-off predicted by the linear 

theory, however, such unstable waves do not grow indefinitely in time but reach a steady­
state amplitude, 

2) since fork~ k0,.
3

, c0 = 0(~), for cases e~/ei. ~ 1, one may approximate 

a~ 2_ ko2 - }_ Co 
8 4 ' 

{J ~ 2k0 

so that corresponding to the case ~ i= 0, the unstable region shrinks further and there­
fore the inertial effects of the gas motion tend to be stabilising upon the interfacial wave­
motion in the nonlinear case. 

6. Nonlinear analysis for wavenumbers near the second-harmonic resonant values 

It can be readily verified that corresponding to the second-harmonic resonant case, 

(6.1) k0 , = ±. v' ~, 
the fundamental component 

11P> = AcosE, t/>i1> = ~ (1- ~c0) e-YY sin~, 
i' 

9'i1> = Ac0 e sinE 
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700 B. K. SHIVAMOGGI 

and its second harmonic 

7}\1) = BcosU, </>12 ) = : (I- dco) .- 2"sinU, 

9'i2 > = Bc0 e2Ysin2E, 

have the same linear wave velocity c0 • 

In order to treat this case of nonlinear resonant interaction, put 

(6.2) 

(6.3) 

(6.4) 

TJ 1 = AcosE+Bcos2E, 

9't = co[Ae'sinE + Be27 sin2E], 

t/>1 = (1-tko) [Ae-"'sinE+Be- 2"'sin2E]. 

" 
Using Eqs. (6.2}-(6.4), one finds from Eqs. (A.8}-(A.ll), (A.l3) and (A.l4) 

(6.5) '1'2(E, y) = (-
3~ co+Ac1) e"sinE 

+( -A2c0 +2c1 B) ~ e27 sin2E+higher harmonics, 

A 1 { ( 1 - ~c ) A } ] xAB(e_ 3,'-e-Y1)-y -
2 

° 3ABy+~c1 A e_,, sinE 

+[ -M!(I-3dc0) ~: {- ~ (y+l)+ 'i2 

(y+l)}(y+ ;,}-
2

" 

- ;, {-(I- dc0)y A 2 + 2~1 cB} .-2"- ~}' 2~Bc1 (y + ;, ) .-2
"] sinU 

+ higher harmonics. 

Using Eqs. (6.2}-(6.6), one finds that the removal of the secular terms in Eq. (A.l2) re­
quires that 

2 A [ 20'(1-2~c0)] (6.7) kopB+2k0 c1 Q+k1 'Y -2k0 k 1 = 0, 

(6.8) k~ :p +4k0 Bc 1 Q + 2iJk1 [ 
20'( 1 ~ 2~co) ] - 8k0 k1 B = 0, 

where 
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Q ~ 2~.[2co- 2k~a6 ( 1- ~~ )] = ~o. 
From Eqs. (6.7) and (6.8), one obtains 

(6.9) 

(6.10) 

which for k 1 = 0, agree with those deduced by WILTON [6] long ago for the case of capillary 
waves on water. Thus purely phase-modulated waves ·are possible for wavenumbers near 
the second-harmonic resonant values. Note that these results are not valid if k0,. 1~ 1 = k03 • 

Acknowledgements 

Helpful discussion with Dr M. S. UBEROI is gratefully acknowledged. 
This work has been partially supported by the Air Force Office of Scientific Research 

under 1805-62. 

Appendix 

O(e): 

(A.1) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

(A.7) 
(cont. on p. 795) 
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Appendix (*) 
(cont.] 

O(e2): 

(A.8) y < 0: 

(A.9) y > 0: 

(A.IO) y = 0: 

(A.11) y = 0: 

(A.l2) y = 0: 

(A.13) y-+-00: 

(A.14) y-+oo: 

O(e3): 

(A.15) y < 0: 

(A.l6) y > 0: 

f/J2EE + (/)217 = 0, 

Y~ tP2ee+ tP211 = M!{[(y+ 1) (1- <5co) tPte- 2<5ct] tPtee 

+ [(y -1) (1 - <5co) tPtd tPt 11 + [2</Jt1(l- <5co)]t/JtEJ}, 

f/J2,+"1I't,1}t = -Co1J2e+((/Jte-Ct)1Jte• 

t/J2,+</J1n1Jt = (l-dco)1J2e+(t/Jte-<5c1)1Jte, 

1J2 = co(f/J2e+(/)IyE1Jt)- ~ (qJfe+qJi,)+ci(/JIE 

+ ako[(l- dco) (c/J2e + <Pte1 1Jt) + ~ (y~ <Pie+ <Pi,)- dc1 tPtl1 

+k~1J2ee + 2kokt1Jtee +akt(1- dco)tPie·· 
(/)2y-+ 0, 

q,2,-+ 0, 

f/J3EE + (/)3, = 0' 

, . 

1'~ <l>•ee + 4>371 = M! {[ (y + I )(I - ~eo) </>2e 

-~c,(y+I)<J>,e+ y~I </>~e+ r;I </>~,-2~c,]<J>,et 

+[<r-1) (I- ~co)</>,e-~c,(y- I)</>1e+ Y; i q,~,+ r; I <J>~e] q,,., 

+ [2<J>,.( I - ~c o) + 2<f>,,( q,, e - ~c ,) I <Pte.} , 

(•) This part of the Appendix has been sent by the author too late (Jmy 1982) to be included in the 
original text (Ed. Com.). 
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(A.l7) y = 0: 1 2 
4J37 + ((/)271 '71 + fP111 1]2) + 2 (/Jt.,,., 1J1 

= -eo 1]3e + (fPte- Ct)'72l + (cp2e + Cfltly'Jt- c2)1J1e~ 

1 ,1,. 2 
(A. IS) y = 0: l/J3, + (l/J211 '11 + l/Jt,,1J2) + 2 'l't'" 1J1 

= (1 - dco)1J3l + (l/Jte- 6c1)1]2l + (l/J2e + <Ptty 1JL- dc2)1Jte~ 

(A.I9) y = 0: '1> = eo( 9'>e + 9'2t7 '11 + 9'1e, '12 + ~ 9'1e, '1~) 
+ Ct(Cfl2E + Cfltey1]1) + C2 CfltE- Cflte(Cfl2E + CfltEy 1]1)- (/Jty((/)!y + (/)171 1Jt) 

(A.20) y--. - oo: cp31 --. 0, 

(A.21) y--. oo: </J3,--. 0, 

where 

+ ako[ (I -~eo) { 4>>e + l/>2e, '11 + l/>1e, '12 + ~ l/>1e, '1~} 
-6c1(</J2e+l/Jte1 'YJt-M~o<Pie)-6c2l/J1e 

+ i'~ <Pt;( </J2e + <Ptey 'YJ1) + <Pt,( </J;;, + <Ptn '7t) 

- ~ M! {(1-~eo)+M!(y-2) {i--.5eo)}4>fe 

- ~ M! (I - deo) 4> 1 ~ 4>~,] + ak 1 [(I - ~eo)( 4> 'l + 4> 1b '11) 

+ ~ (y21/>~e + 4>~,)- ~e1 l/>1e] + ak2(l -~eo) the+ fc~ 'l>n 

3 k2 2 +2kokt'72Et+2kok21Jtte- l o'71EE'7tE' 
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