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A quest for micropolar elastic constants
Part 11

R.D. GAUTHIER (GOLDEN) and W. E. JAHSMAN (BOULDER)

EARLIER investigations by the authors attempted by means of static experiments to detect and
measure the six elastic constants predicted by the theory of micropolar elasticity in which
a specially constructed micropolar material was used. This consisted of aluminum shot emb-
edded in an epoxy matrix. It was concluded that the experiments lacked the necessary res-
olution to identify any departure from classical elastic behavior. In the present work a Kolsky
apparatus is utilized to generate a stress wave which propagates axially through a short
cylindrical specimen of the same material. To assist in the interpretation of the experimental
data, an analogous analysis of the Rayleigh-Lamb infinite plate problem in plane strain was
made in which the constitutive equations of micropolar elasticity were inserted. Dispersion
relations were derived and curves which compare micropolar and classical behavior were
generated from the solution. An additional wave equation was found which pertains strictly
to microrotational modes and is not a part of the classical Rayleigh-Lamb theory. These
modes appeared as unique ripple frequencies. From these waves, superposed on the normal
singnals, two micropolar wave speeds are concluded and two of the six micropolar moduli for
this special material are determined. Two others are found from static tests, It is concluded
that micropolar waves can be excited and detected in a dynamic experiment of this type.

W swych poprzednich pracach autorzy stosujac doswiadczenia statyczne starali si¢ wykryé
i zmierzy¢ sze$¢ stalych sprezystoci przewidzianych teoria specjalnie skonstruowanego ma-
terialu mikropolarnego skiadajacego si¢ ze $rutu aluminiowego, zatopionego w matrycy epoksy-
dowej. Analiza szeregu rozwigzan probleméw brzegowych wykazata, ze moduty mikrosprezystodci
mozna by okreéli¢ na podstawie odpowiednio dobranych préb rozciggania, skrecania i zginania
probek roinych rozmiaréw. Po przeprowadzeniu duzej liczby dos$wiadczed ustalono jednak,
ze zdolnoé¢ rozdzielcza przeprowadzonych do$wiadczed jest zbyt mala na to, by stwierdzi¢ tu
jakiekolwiek odstepstwa od klasycznych wlasnosci sprezystych i nie moZna w ten sposdb ustali¢
waznoéci teorii mikropolarnej sprezystoéci. W niniejszej pracy zastosowano podejécie dynamicz-
ne zasugerowane przez posiadang przez nas aparaturg do badan doswiadczalnych. Zastosowano
mianowicie aparature Kolskiego stuzaca do generacji fali napreienia przemieszczajacej sig
osiowo wzdhuz krotkiej probki cylindrycznej wykonanej z tego samego materialu co materiat
uzyty wezeniej w do§wiadczeniach statycznych. Stwierdzono, ze w do$wiadczeniach takich mozna
wytwarzaé i wykrywaé fale mikropolarne oraz e takie postgpowanie stwarza mozliwo$¢ we-
ryfikacji mikropolarnej teorii sprezystoéci.

B cBomx mpempigyumx paGoTax aBTOPHI, MPHMEHSA CTATHUYECKHE SKCIEPHUMEHTBI, CTAPAIHCh
OOHapY»XWTh H HM3MEDHTh IIECTh YOPYIHX IOCTOAHHBLIX, NPEACKASHIBAEMBIX TeOpHeH cCre-
LHAJIBHO MOCTPOCHHOTO MMKPOIOJIAPHOTO MAaTepHANA, COCTOMIIEr0 H3 AOMHHMEBON ApoGH
TIOTPY>KeHHO# B JMOKCHIHON MATPHIbl. AHAJIM3 PAMA PEUICHMH IPAHHYHLIX 32724 MOKA3AN,
YTO MOAY/IM MHKPOYIPYTOCTH MOXKHa GbI ONpefie/INTh HA OCHOBE COOTBETCTBEHHO HOA00OpaH-
HBbIX HCTIBITAHHH DACTAMEHHA, CKPYYMBaHHS M um3ruba ofpasmoB pasHbix pasmepoB. Ilocme
TpoBe/ieEMA GOMBINOro KOJNHYECTBA 3KCIEPHMEHTOB YCTAHOBJIEHO OIHAKO, YTO

HafA CTIOCOOHOCTh MPOBENEHHBIX 3KCIEPUMEHTOB CIIMIIKOM Masa JUIf TOro, YToOhlI KOHCTaTH-
POBaTh 3[eCh KaKHe-HUOY b OTCTYIICHH OT KJIACCHYECKHMX YIPYTHX CBOHCTB M HENB3A TAKHM
ofpasom YCTAHOBHTE BaKHOCTH TEOPHMH MMKPONOJADHOH ympyroctd. B macrosmmeli pabore
TIPHMEHEH QMHAMMYECKHI MOAX0[ BHYIUCHHBLIN HaXoAMImedicA y HAC anmapamypoi Jula JKcIe-
PHMEHTUILHBIX HCclenioBannii. FiMenno mpumenena armaparypa Konbckoro, cmyxamas mis
TeHepallil BOJHL! HANPSDKEHHS, MePeMEIIaiomeiicd MOOCHO BHOJE KOPOTKOIO LFUIHHADH-
yeckoro ofpasiia, H3TOTOBJIEHHOIO M3 TOTO K€ CAMONO MAaTepHasa YTO MATepHas MCIIONb30-
BaHHBIN paHee B CTaTHYECKMX SKCHepEMeHTax. KOHCMTAPOBAHO, YTO B TAKHX SKCIIEDHMEHTAX
MOKHO IeHEpHpOBATE H OOHADY)KHBaTh MHKDOLOJIAPHEIE BOJHEI, & TAIOKE, UTO TAKOE HOCTY-
[OaHHE CO3JaeT BOSMOYKHOCTH NPOBEPKH MHKPOINOJIAPHOM TEOPHH YHOPYIOCTH.
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1. Introduction

ALTHOUGH the literature of the past two decades is replete with the results of
theoretical investigations into the nature of micropolar elasticity and the effect of
couple stresses on solutions to a variety of boundary value problems, very little ex-
perimental work of a corroborative character has been reported. Inasmuch as the response
of a typical micropolar material to applied surface tractions must deviate very little from
that predicted by the classical elasticity theory, experiments of extremely high resolution
must be designed and conducted in order to detect the existence of micropolar effects.
The prospects of obtaining a quantitative evaluation of the micropolar theory should
attract more effort into experimental investigations of material behavior.

GAvuTHIER and JAHSMAN [1] in 1975 reported on static experimental investigations
conducted with a prototype micropolar elastic material especially fabricated by embedd-
ing “rigid” aluminum shot in an elastic epoxy matrix. Theoretical analysis utilizing the
basic equations of micropolar elasticity showed that the six material moduli, 4, y, %, «, g,
and yp, the first two being the classical Lamé constants, can be determined by means of
the solutions to selected boundary value problems which model a series of simple static
experiments. Specifically, these problems are the axisymmetric loading of a solid cylinder
in tension and in torsion, and the cylindrical bending of a rectangular flat plate. In these
examples the micropolar theory predicts an increase in specimen stiffness per unit area
as the size of the specimen is reduced. Accordingly, tension and torsion tests were conduct-
ed on cylinders of different sizes and displacements were measured by both mechanical
and optical means. No specimen size effect could be observed within experimental scatter
and it was concluded that the experiments lacked the resolution necessary to identify
micropolar behavior.

In the present work the authors have turned to a dynamic approach in which wave
propagation through classical and micropolar elastic media is measured and compared.
This investigation was prompted by the availability of a Kolsky apparatus in which the
distortion of a stress wave is recorded as it passes axially through a short cylindrical
specimen. Although the apparatus produces basically one-dimensional waves, two-dimens-
ional waves may be generated in the specimen. To assist in the interpretation of the ex-
perimental data, an analysis was carried out on a micropolar counterpart to the Rayleigh-
Lamb infinite plate problem in plane strain. The plate geometry was selected in preference
to the cylinder geometry because of its mathematical tractability when compared to
the Pochhammer-Chree problem,

The infinite plate problem for wave propagation in plane strain was first solved by
RAYLEIGH [2] and LAaMB [3] in 1889. LAMB [4] further elaborated on the plate problem
in 1917 by studying higher vibrational modes and performing numerical calculations to
display graphically the frequency vs. wave number curves. It remained for the general
availability of digital computers in the 1950’s to permit the unraveling of the various
modes of the frequency equation. The frequency spectrum was studied in great detail by
MINDLIN and his associates, and®a general mapping of the frequency and dispersion
curves is provided in [5] and [6]. Further discussion appears in ACHENBACH [7].
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The plane wave propagation problem in a micropolar elastic half-space is treated by
ERINGEN [8] for a traction-free boundary, and by Nowackr and NowAcki [9] for the case
with surface tractions. ACHENBACH [10] deals with waves in a micropolar plate by an asymp-
totic method. NowAck1 and NowaAcki [11] also analyze the micropolar plate problem
in plane strain but include vibrational modes.

The analysis and experiments, and the conclusions drawn therefrom are detailed in
the sections which follow. '

2. Analysis

The plane strain problem for the infinite plate is formulated as follows. We consider
all motions to be restricted to the x—y plane, Fig. 1, and wave propagation to be directed
in the positive x-direction of a plate whose thickness is 2. Only distributions symmetric

Fig. 1. Infinite plate coordinates.

to the x-axis will be treated in this development. The procedure and notation used will
be similar to that of ERINGEN [8] for the half-space. For the case of plane strain the only
displacements are ¥ and v corresponding to the x- and y-directions, and the only micro-
rotation component is @D, parallel to the z-axis. The boundaries y = +h are traction-free.
The basic equations of micropolar elasticity under these conditions reduce as follows:

Fie!d equations
(.i.-f-p)% (5_3: +5—a;) +(u+x%)Viu+x 6;, -0 g:': =0,
2.1 (1+y)ai;’(%:-+(;—a;))+(p+x)vzv—x ag:——gugj;f= 0,
Y2, +x —g-:——-g;—)—2x¢,—9j 6;:1:, =0.

Constitutive equations

du v
(2.2) Loy 5= AE +(A+2u+x) "
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dv ou
& ol gy F R
o,
my, =Yy ay .
Boundary conditions
(2.3) ty(£h) = t,,(£h) = m,.,(+h) = 0.

In the above g is the material density, j is the spin inertia, ¢ is time, #;; are the components
of the asymmetric stress tensor, and m;; the components of the couple stress tensor.
For symmetric motion, the solutions are

u = Acosh(yelx-cd

(249 v = Bsinh{yel*-v,

@, = Csinh{ye"**-",
where £ is the wave number along x, { is the wave number along y, c is the wave speed,
and A4, B, and C are integration constants. The wave numbers and wave speed may be
real or imaginary (more generally complex). Therefore, the solutions may be either periodic

or local in space, and periodic or transient in time. By substitution of Egs. (2.4) into Egs. (2.1)
the field equations are converted to

[(ci+c) &2 — (3 +c3) L2 —E%c*| A~ (e} —c3)ib{B—c3{C = 0,

2.5) (ci—c3)ikCA+ [(c+c3) L% —(c3+c3) &2+ £%c*|B—c3itC = 0,
O mg 63 san cl6R san s I ol
a2 {A 3 i¢{B J[cg *-8 2}.02 +? c=0,

where

A
% s +92f"' Ci:%, C§=-§, ci=§a
26) . ;
g u’ G W

A nontrivial solution for 4, B, and C exists only if the determinant of their coefficients
vanishes. Upon substitution of the last two equations of the set (2.6), we obtain for this
determinant i

an {e-ofo-2)en[uror— (e o] eeicr-eo

c
ct),, cf—c’) 2] _
x[(s+c—§)f (e+ 3 £1=0.

It is reasonable to assume that the micropolar modulus % is very much smaller than the
classical Lamé constant y such that ¢ < 1, and O(e?) terms can be neglected [8]. With this
linearization the roots of Eq. (2.7) are
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e (1)
s c3teci]”’
c!
(2.8) &= [l-(l-rs) _z] &,
c2
8-2 +(1—“—z)sz
37750 6c2]" "
Since cosh({y = cosh(—{y) and sinh{y = —sinh(—{y), the + roots of {, (k= 1,2, 3)
can be combined to obtain in place of Egs. (2.4) the series solutions

Aycosh{yyett =<0,

=
]

B,sinh{, ye'¢-<»,

x x
w Il\du L w
= -

(29)

D, = Z Cisinh{,ye'* ==,
k=1

This form of the solution can be further refined to

3
u= Z Aycoshpyet=<h,
k=1
3
(2.10) 9= Z M Agsinh g, yelt =<t

k=1
D, = p3 Aysinh{,yel™=,

where
21-‘*%, 3z=7§“—s 13=—l-g_’
(2.11) 2 .
_ 1 £2¢2 2 £2c?
o = :a[“*e)(‘a%;‘“?f)‘?]'

4, is found by eliminating 4 and B in Eqs. (2.5) and using Eq. (2.8), 4, and 4, are found
by eliminating C in Egs. (2.5),,, and using Egs. (2.8),,5. Letting us = C;/45, we obtain
its value from Eq. (2.5),.

Equations (2.3) and (2.2) give on the stress-free boundary y = +h, where Egs. (2.6)
are used,

du oo
(c%—k%)a +(cf+sc§)—a; =0,

v ou
2.12 o0 ou .
(2.12) 2= +(1+¢) % +ed, = 0,
z —
dy 0

8 Arch. Mech. Stos. /81



722 R.D. GAUTHEER AND W. E. JAHSMAN

We introduce the ratios
(2.13) k=c3lc:, p=c*3,
which we use with Egs. (2.11) after substituting Egs. (2.10) into Egs. (2.12) to obtain

[( +a) g: - +2] cosh(C,h) A; + (2+ e)cosh(C, 1) A;
+(2+¢&)cosh({sh)A; = 0,

+1+4+¢| {;sinh({,h) A,

( ‘E
‘:2
‘u;CgCOSh(C;h)A; = 0.

In order that 4,, A,, and A4, be nonzero, it is necessary for the determinant of their coef-
ficients to vanish. This leads to

(2.149) (2+¢&){;sinh(l h) A, + ( E:

h)A4; = 0,

g 1 & ;
(2.15) [( +s) 7TE + 2] (?2— +1+ s) £,cosh(E, h)sinh(¢,h)

—(2+ £)2L,sinh({, h)cosh(,h) = 0.
We note that Eqs. (2.8),,, with the aid of Eqgs. (2.13) can be written as

& _ p 8 _
(2.16) vz l—m, V3l 1-(1-¢)p,

which, when used in Eq. (2.15) will yield, after some manipulation,

tanhlh _ 4(1+)8¢, 8
tanhl,h (§2+_ z )z-

1—¢

(2.17)

where the & terms are dropped. This is the micropolar counterpart of the LAMB [4]
frequency equation. If ¢ = 0, the classical form is recovered.
The analysis of the frequency spectrum is facilitated by introducing m = {,/{, and
converting Eq. (2.17) to
tanhm¢, h 4(1+&—p)

G.18) tanhl h ~ mQ2+ée—p)2’

where an alternate expression for m is
2.19) m? = 1-(0-9p 2
S
1/k+e

It can be seen from Eqgs. (2.13) that p is real. Inspection of Egs. (2.16) will reveal the
character of the wave numbers as follows:
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Range 3 & & o m
ey real r r r

rsd-9 imag. i i
s = "
(l1-e)'<p<k+e ; ¢ ;
r i ] r

-1
sy i No solutions exist

The micropolar Poisson’s ratio is defined [1] in terms of the fundamental constants
by

y !
(2.20) Vm = 2A+2u+x’
from which
2.21) k= — = %m

2—(2— &)y
For a chosen v, and &, the roots £, & of the frequency equation (2.18) are found for selected
values of p making use of Eqgs. (2.19) and (2.21). Equations (2.16) provide corresponding
values of & A dimensionless wave number £ and dimensionless frequency @ are defined
by
Gn =

i - -1/2 P 1/2
(2.22) & =2h/n, & =& (_é_) = E(W) )

where G, = u+x/2 = u(1+¢/2) is the micropolar shear modulus. These parameters
are the coordinates for mapping the various branches which constitute the solution of
Eq. (2.17). The values of £ extend the full range of complex numbers, but only positive
real and imaginary values will be considered here. The imaginary values of @ will be dis-
regarded as they represent transient motions, neither vibrations nor propagating waves,
and are of no particular interest. One exception is presented in the Appendix.

The intercepts of the branches at & = 0 are called cutoff frequencies. These values may
be found by writing Eq. (2.18) for p > 1/k+¢

tanm{;h ~ 4(1+&—p)
tan{;h  ~ mQ2+e—p)?°

As p— o0, m= [(1—¢&)lk+e]'?

tanml,h

wnth -
Then, using Eqgs. (2.16) and (2.22), we obtain the cutoff frequencies as
(2.23) (ih=nafm, &= {+edn (n=2,4,6,..),
or
1/2
2.24) Lih=naf2, &= (%i:"') n o (n=1,3,5,..).

(*) The lower limit of p is found by solving Eq (2.27) to follow.

§*
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Equation (2.23) gives the infinitely long wavelength frequencies for symmetric equi-
voluminal modes and Eq. (2.24) for the dilatational modes. It is interesting to note that
the equivoluminal modes do not depend on Poisson’s ratio, and the dilatational modes
do not depend on the micropolar constant. It can be seen from Egs. (2.22) that the
fundamental mode passes through the origin regardless of the micropolar constant &.
This last statement is. extremely significant to the present work. The Kolsky apparatus
produces a long wavelength stress wave and the fundamental mode predominates. Phase
velocity measurements with a micropolar specimen should not reveal a micropolar effect.

Long waves

As the wavelength increases without bound, & and {, approach zero and the hyper-
bolic tangents in Eq. (2.17) can be replaced by their arguments,

Czh = 4{l+s)5251 gz

Lh (e=+ < )"
1—¢
This reduces to
_ 4(1-=k)+2e
() == 1+ke °

Using Eq. (2.21) and the definitions of k and G,, we obtain

2 [2+2e\  L({u\T_ . 1+a;2)
1_,_(2.,.5)-“’(;) B W

S

Equation (2.26), does not contain & explicitly. G, and », are mechanical properties
in which & is inherent. But their direct measurement using conventional techniques does
not expose the presence of ¢. This is the fundamental mode of longitudinal wave propaga-
tion in a micropolar solid, and we see that the phase velocity measured in a long wave-
length experiment will not differ from that predicted by the classical theory.

(2.26)

Short waves (Rayleigh waves)
In the case of short wavelength propagation ¢,,,4 > 1 and tanh{,,,4 ~ 1. Equation
(2.17) becomes
g\
4(1 - E)Ezf:l Cz o (152 + ITS-)
which expands to
(227 p*—4(2+e)p>+8[(1+&)(3—2k)+2k%e]p—16[(1+2¢&)(1 — k) + k2] = 0.

The classical result is recovered by letting ¢ = 0. As an example we let v, = 1/4, k =
= [3(1+¢/4)]*. Equation (2.27) reduces to
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4
P42+ )P+ (64 Te)p— 5 (24+55) = 0.
A real root of this equation is

-1
p = 0.8453(1 +1.4441¢) = ¢ (%) =idg (—1 t;ﬂ),
(2.28) u

G 1/2
¢ = 0.9194(1 +0.4721¢) (—QL) .

For the classical case where ¢ vanishes and G, = u, the Lamb solution is recovered.
Equation (2.28), shows that a short wavelength experiment which measures the surface
wave speed ¢ will determine the micropolar constant £ where G,, has been found from
a static experiment.

The roots of Eq. (2.18) are plotted in Fig. 2. The trajectories for real wave numbers
are propagating waves and those for imaginary wave numbers represent localized vibra-

-

- ; A
s AT
& (imag.) & (real)

Fig. 2. Frequency spectrum of an infinite plate; classical £ = 0, and micropolar & = 0.1; va = 0.25.

tions. No attempt is made to plot complex branches. Except for different Poisson’s ratios,
the classical results compare directly to those of MINDLIN for symmetric modes [6]. Also
shown are the corresponding micropolar branches for ¢ = 0.1, and it is seen that appreci-
able micropolar deviation along the dilatational branches does not appear until the wave
number increases past unity.

In addition to the Rayleigh-Lamb results, we have a solution for which there is no
classical counterpart. This is provided by Eq. (2.14);, which also satisfies the determin-
antal equation if

(2.29) psCacoshlsh = 0.
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First, we consider the possibility

§%c? 28} F?|
wis=laro( S - 5) -5 -0

This can be rearranged by using Eqs. (2.22) to give
. 2h ’( 14 ¢/2 ) 2¢
2 — -— — =
@ _(n) T+e—0) J constant.

It has been shown by PARFITT and ERINGEN [12] that 6 > 1+¢, cZ > c3+c3. Therefore,
@ is imaginary, and the corresponding motions are transient. Equation (2.29) can be
written in the alternate form

(2.30) [(l+e—§)ii e )——]cos:C;h i 0,

We see immediately the coupling between shear waves ¢, and microrotation waves c,.
This coupling is retained if we allow the second factor in Eq. (2.30) to vanish,

(2.31) iCsh =5, 3= —(-;%)2 (n=1,3,5,..).
Substitution into Eq. (2.8); using Egs. (2.6) gives us

0 23  (nn\® .,

A +(2ﬁ) &
where @ = ¢ is the circular frequency. For the long wavelength case, § — 0, and
(2.32) ‘;’—;=§T"§+(u’;%)z w1, 9.5, 0%

We will make good use of this equation later.

3. Experimental measurements

The conventional Kolsky apparatus (split Hopkinson pressure bar) has been used
successfully for some years to produce a nearly uniaxial stress wave for the determination
of dynamic compressive, tensile, and shear properties of a variety of materials. Experience
gained with equipment located in the Dynamic Material Behavior Laboratory at the
University of Colorado suggested a test program of observation of wave form and speed
characteristics as stress waves propagate through a micropolar elastic specimen. It was
hoped that these measurements would provide a means of detecting micropolar behavior
and evaluating one or more of the additional elastic constants predicted by the micro-
polar theory.

The essential features of the Kolsky apparatus are shown in Fig. 3. A short cylindrical
specimen measuring 38.1 mm diameter by 12.7 mm long is located axially between two
steel bars each 38.1 mm diameter by 914 mm long. A steel impactor 38.1 mm diameter
and 50.8 mm long is accelerated by an air gun to a predetermined velocity which is measur-
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Barrel Velocimeter All dimensions in mm
508 152

=

| Air_| i Ixwl ¥ ./ ] Z [ ] L' N
gun () Ltﬁp! Input Y\ bar f  Outpui '\ § (Bar| Pilston _~— | _|) gg
B K '
Impactor/ Trigger gage/ Input gage\ Specimen\ Oulput gage\, Momenfum rmk

Direction of sfress wave propagation ———s=

FiG. 3. Schematic arrangement of Kolsky apparatus.

ed by an optical velocimeter just before impact. Pairs of diametrically opposed semi-
conductor strain gages are located at distances of 102 mm from the ends of the bars in
contact with the specimen. These are mounted circumferentially, with the narrow di-
mension in the direction of wave travel so as to assure minimum integration of the signal
over the gage length. These gages provide circumferential strain histories associated with
the input and output stress waves. Although a rectangular pulse is initiated by the impactor,
dispersion in the input bar smooths this pulse to a bell-shaped form by the time it reaches
the input gages. In the distance of 204 mm between input and output gages in the absence
of a specimen (bar to bar) there is very little further change in the wave form, and any
signal attenuation can be corrected for in the data obtained with test specimens.

The input and output signals are processed through conventional balancing circuits
and fed to a dual channel digital storage oscilloscope. The oscilloscope is externally trig-
gered by another pair of strain gages mounted on the input bar 102 mm ahead of the
input gages. The oscilloscope displays the two wave traces both graphically and digitally.
A final feature of the Kolsky apparatus is the momentum trap. This comprises a 36.5 mm
diameter by 152 mm long steel piston in an air cylinder located at the far end of the output
bar. The cylinder is fitted with an air bleed orifice so that the device acts as a pneumatic
shock absorber. The momentum trap assures that energy transmitted into the output
bar is captured before separation begins at the piston/bar interface. Further details of
construction and performance of the Kolsky apparatus are given by BHUSHAN and
JaHsMAN [13].

Calibration of the stress measuring system was accomplished by placing either the
input or output bar, strain gages and circuitry attached, in a 1.33 MN capacity Baldwin
testing machine and applying a static axial compressive load. An extremely linear correla-
tion between strain gage signal and axial stress was obtained. This calibration obviated
the need for applying a gage factor and converting tangential strain to axial stress through
the two-dimensional Hooke’s law.

A special man-made micropolar material was fabricated by casting a 1.4 mm diameter
pure aluminum shot close-packed in an epoxy matrix. The volume fraction of aluminum
was 60 percent. Specimens were carefully machined to provide flat and parallel faces for
best contact with the input and output bars. Uniformity of results among several different
specimens was improved by applying a static compressive preload to a stress level of
68.9 MPa in an 89.0 kN Instron testing machine. This operation served also to determine
the static modulus of elasticity E, of the micropolar material, and it was found to be
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5.31 GPa. Although this is not the conventional measurement technique for obtaining
the modulus of elasticity, it did match the loading conditions under which the dynamic
tests would be conducted. Specimens of identical dimension were prepared also from
pure epoxy and from 2024T351 aluminum alloy. Since these materials are the constituent
parts of the micropolar specimens, they serve as measures for comparison of the experi-
mental results.

All test specimens were lightly lubricated with a high-vacuum grease as they were
positioned in the Kolsky apparatus. The grease serves two purposes; it provides antifric-
tion contact with the loading bars permitting relatively unconstrained radial displacement
in the specimen for one-dimensional stress as the wave passes through, and it tends to
fill any voids at the interfaces due to misalignment or lack of flatness in either specimen
or bars. An impactor velocity of 12 ms~! was found to be optimum. It was sufficient to

0 i_ Bar-Bar 4140

3

(=]

Stress (arbitrary units)
8 8

Time (ps)
Fic. 4. Input and output oscillograms; no specimen (bar-bar).

give resolvable stress levels in the most resilient material, epoxy, yet not so high as to cause
unacceptable damage to the other specimen materials.

The first test was performed without a specimen (input and output bars in contact)
in order to obtain a base form and speed for the apparatus. The input and output bar
traces are shown in Fig. 4 where the ordinate scale is in arbitrary stress units which convert
to 5.79 MPa per division, positive values representing compressive stress. The abscissa
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is the time scale in ps. The measured time lapse of 43 ps between input and output peaks
over a distance of 204 mm gives a bar speed of 4.74 mm (us)~! for steel which agrees with
that calculated from the formula for bar speed ¢, = (E/p)"/?, where Young’s modulus
E = 179 GPa and density ¢ = 8.03 Mgm~3,

The measured input signal shows the effect of noise due in part to Pochhammer-Chree
ringing and generated in part as the result of bar/bar interface separation. If this noise
were absent, the input pulse would terminate at about 51 ps. This postulated wave form
is shown in the figure as a solid curve, and the difference between it and the measured
values will be used on a proportional basis to adjust all inputs to correct for this noise.

The output trace shows an 8 percent attenuation of peak value which is due to energy
loss at the interface, A corresponding increase in the output data for all tests will remove
this effect. Note that the noise tail present in the input signal has been effectively filtered
out at the interface and does not appear in the output signal. The output trace originates
at 42 ps and virtually cuts off at about 90 ps.

4. Comparison between analysis and experiment

A ray tracing technique is used to make one-dimensional wave form predictions of
input and output signals based on the elastic properties of the bars and specimens. The
calculated curves are composites of signals in which the basic pulse is modified by the
arrival of a succession of reflected pulses each delayed by an additional transit time twice
through the specimen. These multiple reflections are conveniently displayed in a time-
space (¢—x) diagram such as that of Fig. 5. A portion of the incident pulse 4 is reflected
at the front face of the specimen into pulse R, . That part which enters the specimen travels

tk Input bar Spec.  Output bar

| _»Th
Rn‘-‘__g

¥

Ry ~__
/TZ
Rz~ ot
At T
e
!
4 b g
Ax ?

Fic. 5. Representative time vs. distance diagram depicting reflected and transmitted rays at specimen
faces.
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its thickness Ax to the back face where it is divided into a pulse T, transmitted to the
. output bar and a pulse reflected back to the front face where a portion returns to the
input bar as R,. This process continues for the duration of the oscilloscope record which
is about 120 us. Pulse R, reaches the input gages 43 us after I. R, is delayed A¢ depending
on the wave speed ¢, of the specimen. The arrival time of each successive R, is incremented
a At. The T, signal reaches the output gages at time 43 ps plus A¢/2 after detection of I
by the input gages, and T, a At increment later. Tabulation of the first six R and T rays
was generally sufficient to produce a suitable wave form, stress being calculated at each
ps starting at time zero when the front of the input pulse appeared on the oscilloscope.

The wave speed ¢, in the bars was determined experimentally by measuring the elapsed
time between input and output signal peaks in a bar/bar test. This method is not reliable,
however, for finding the specimen speed ¢, because of the delaying effect of multiple reflec-
tions. Instead, c, was calculated from the known or measured material properties E and p.
The strengths of the R and T rays relative to I are given by

1-X 4x1  (x-1\*""?
“n R~ Tax ™ R'=W(X_+T) =1,
' oI X—l)"‘"
"TO(14+X)? \X+1 ’

where X = (oc),/(0c)s, the ratio of bar and specimen impedances. The time increment
appearing in the r— x diagram can be found from At = 24x/c,. Table 1 lists the pertinent
properties of the four materials involved in the tests. It shows that X > 1 for all combina-
tions. Therefore, a reversal of sign in R; results in a tensile pulse being reflected back to
the input gages. All other R, and T, are compressive.

Table 1. Material Properties (measured).

3 E o c pcx 10-6
Material X
o GPa Mgm~*| kms™! kgm~2? s~!
Steel bar *179 *8.03 I 4.74 38.0 —
Aluminum *73.1 2.64 5.26 13.9 2.74
Epoxy 4.21 1.06 1.99 2.11 18.0
Micropolar 5.31 2.19 1.56 3.41 11.2

* Taken from literature.

Table 1a. Estimated Error in Table 1.

X E 1] c oc X
Material
¢ +% | +% | % | % | =%
Steel bar = 0.1 2.0 2.1 —
Aluminum — 0.2 2.0 22 43
Epoxy 2.0 0.2 1.1 1.3 3.5
Micropolar 2.6 0.2 1.4 1.6 3.5
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Fic. 8. Input and output oscillograms; micropolar specimen.

Typical experimental results for aluminum, epoxy, and micropolar specimens are
shown in Figs. 6, 7 and 8, respectively. The measured data were corrected for interface
disturbances as described in the previous section, and these points are shown by circles
in the figures. The resulting traces give the best possible picture of the undistorted wave
form as it is altered by normal reflections at the interfaces and by internal properties of
the specimen material. The solid curves are the forms predicted from ray tracing assuming
one-dimensional wave propagation.

The response of the aluminum specimen depicted in Fig. 6 shows excellent agreement
between predicted and measured wave forms both in timing and magnitude. Thus, for
a homogeneous elastic sample we are confident of the validity of our method of condition-
ing the data to eliminate interface noise, and of the usefulness of the ray tracing technique
to provide a theoretical standard. Figure 7 shows good synchronization but a slight at-
tenuation of the output signal compared to the predicted trace for epoxy. The micropolar
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specimen of Fig. 8 exhibits good synchronization but anomalous ripples and considerable
attenuation of signals.

Table 1a gives the estimated error of measurement of the material properties listed
in Table 1. In addition, it is estimated that stress measurement is repeatable to +0.58 MPa
with absolute value of +2%. Timing is to +1 ps. Although the strength of the predicted
input and output signals is affected by the accuracy of the material wave speed determina-
tion, the timing of the trace is relatively insensitive to this parameter. A high estimate of
speed advances the pulse but simultaneously emphasizes the later reflections with their
associated retarding effect, thereby offsetting the initial advancement.

The test results were very repeatable with the aluminum and epoxy specimens. As
many as four signatures with a given sample were stored in the oscilloscope and displayed
simultaneously. Very little deviation occurred from trace to trace. It was a different matter
with the micropolar material. Inspection of the front face revealed a loss of aluminum
shot, giving the surface a pockmarked appearance. Subsequent tests on the same specimen
resulted in further damage to the face and cumulative departure from the initial wave
forms. Microscopic examination of a sectioned specimen failed to reveal any internal
damage. Because of surface spalling, therefore, it was necessary to use a new specimen
for each test.

5. Discussion and conclusions

It is evident from Figs. 6 and 7 that a one-dimensional ray tracing technique produces
a calculated dynamic response which is in very good agreement with the recorded signals
if the test specimen is made from a micro-homogeneous classical material such as aluminum
or epoxy. The slight attenuation apparent in the latter stages of the epoxy traces is most
likely due to a viscoelastic effect in which some of the pulse energy is being absorbed in
shearing motions.

A different phenomenon appears in the micropolar case. Not only is there a consider-
able attenuation of the signal, but a very definite ripple is superposed on both input and
output traces. This effect occurred with all micropolar specimens tested and never with
aluminum or epoxy. To display this anomaly better, the stress difference (measured minus
predicted) is plotted from one of the tests in Fig. 9. The resulting ripples may be resolved
into two frequencies with periods of about 20 us and 10 us. Let us assume that these ripples
are associated with the first two microrotational modes in the solution equation (2.10);

- s [ BRY ) iEx—ct)
D, C.sm( h )e .
where C, = —iusA;. We have seen in Eq. (2.30) the coupling between microrotational
and shear waves. With sinusoidal thickness distributions of both @, and du/dy, there is
every probability that the thickness-shear motions will excite microrotational modes.
With this reasoning we return to Eq. (2.32) and write
of _ 24 (i)
¢ jez "\2n]’
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We assume the micropoles (aluminum shot) to be 1.4 mm diameter spheres. The spin
inertia j (radius of gyration squared) is calculated to be 0.196 mm?. If we associate the
plate thickness with the specimen diameter, we have 2k = 38.1 mm. Then with w, 7, =
= 2m, Ty =~ 67 ps, and 73 ~ 37 ps, we find the micropolar wave speeds to be c; =
= 0.0825 mm (us)~* and ¢, = 2.48 mm (us)~*.

The determination of ¢; and ¢, enables us to calculate the rest of the wave speeds and
some of the micropolar elastic moduli. A measured value of », = 0.4 as reported in [14]
is used in these calculations, and this same reference provides the relations
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e Eul"m Eu

T (+v)(1-23)° 1+,

which combine with Egs. (2.6) to complete our calculations.
To summarize,

(5.1) A

2u+x =

A=1759 GPa, ¢, =228 mm(us)™},
u =189 GPa, ¢;=0.929,

% = 149 MPa, c¢; = 0.0825,

y =263 kN, ¢, =248,

e = ci/c; = x/u = 0.0078,

0 = ci/c; =yl = T.11.

(5.2)

Since our assumption that ¢ < 1 is correct, linearization in ¢ of the determinant of Eq. (2.7)
to obtain the roots {; of Eqs. (2.8) is justified.

We make one further interpretation of the test results. Although a slight viscoelastic
attenuation is evident in the response of the pure epoxy in Fig. 7, and this effect is presum-
ed to be present as well in the micropolar composite containing epoxy, the major loss
of signal shown in Fig. 8 is caused by the transfer of energy from the axial compression
wave to rotational motions of the micropoles. Direct detection of these micromotions
is not possible with the present instrumentation.

The Kolsky apparatus has proven to be a useful device for producing a one-dimensional
stress pulse for wave propagation studies in short cylindrical specimens. Although a rect-
angular pulse is initiated by the impactor of an air gun, the dispersive properties of the
input bar serve to smooth the pulse which passes through the specimen. Modern strain
gage instrumentation and a dual recording digital oscilloscope provide data of high re-
solution for the analysis of the dynamic properties of materials. Since the waves are essen-
tially one-dimensional, it is believed that the plane strain solution of the traction-free
infinite plate at small wave numbers is a suitable model for experiments with short cylinders.
And the Rayleigh-Lamb equations are certainly more amenable to numerical calcula-
tions than the Pochhammer-Chree infinite cylinder solutions with their Bessel functions.

Results of the analysis and experiments reported in this work show, however, that
little success can be expected from attempts to measure wave speed deviation due to
micropolar effects, even with short wavelength experiments. Frequency curves show
only a slight departure of a micropolar material from the classical theory, and then for
a micropolar constant 13 times that of the measured value!

Instead, major efforts should be directed toward the generation and measurement
of microrotational waves in prototype micropolar specimens. It has been shown that
these modes do exist and are unique to a material with microstructure. The transfer of
bulk translational energy to spin energy of the micropoles occurs in a wavelike fashion
and can be achieved by the Kolsky apparatus and measured with instrumentation of
sufficiently high resolution. It is hoped that this work will encourage further investigations
into the dynamic properties of a variety of materials with microstructure. Such efforts
will help to assess the importance of the micropolar elastic theory.
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Appendix

A branch of the Rayleigh-Lamb frequency spectrum not reported before appears
in the region of imaginary frequency and imaginary wave numbers and is plotted on
i@-, i&- axes in Fig. 10. This branch does not reach the i@- axis, and it is found in the range
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Fic. 10. Localized transient branch of frequency spectrum of infinite plate; classical ¢ = 0, and micro-
polar € = 0.1; v, = 0.25.

of real wave speeds (1—e)~! < p < k~!+¢. The micropolar curve which is distinct in
the lower arm merges with the classical curve in the upper arm. These solutions depict
localized transient motions. It is possible that this is the first of a family of such detached
branches existing in the imaginary plane,
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