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Investigation of shock wave structure in elasto-visco-plastic bars 
using the asymptotic method 

V. N. KUKUDJANOV (MOSCOW) 

THE PROPAGATION of a shock wave in a bar of elasto-visco-plastic material is investigated by 
an asymptotic method. The influence of the transverse motion of the bar, the static diagram 
of the material, as well as the strain rate influence on the shock wave profile are investigated. 
It is shown, that depending on the ratio of geometrical and physical parameters characterizing 
the bar, the shock wave is of a qualitatively different type, either monotone or oscillating. 
The problem of the influence of approximative effects on the structure of the shock wave in 
the numerical integration is investigated using the same method of solution. 

Zastosowano metod~ asymptotyczn~ do badania procesu rozchodzenia si~ fall uderzeniowej 
w pr~tach spr~zysto-lepkoplastycznych. Zbadano wplyw ruchu pr~ta w kierunku poprzecznym, 
statycznej charakterystyki materialu jak r6wniei: p~o8ci odksztalcenia na profil fall uderze­
niowej. Wykazano, 2:e - w zalemo8ci od ukladu geonietrycznych i fizycznych parametr6w 
charakteryzuj~cych pr~t - typy powstalych fal uderzeniowych mo~ bye jakoSciowo r6Zile, 
monotoniczne Iub oscyluj~ce. T~ sam~ metod~ przeanalizowano zagadnienie wplywu przyblii:en 
na struktur~ fali uderzeniowej w procesie calkowania numerycznego. 

B pa6oTe aCHMTITC>T~NeCI<HM MeTO,lJ;OM HCCJie,lJ;yeTCH pacnpocrpaHeHHe y,ll;llpHOH BOJIHbl B CTep>K­
He H3 ynpyro BH3Ko-Wia~eCI<oro MaTepuana. HcCJie.n;yeTcH BJIWIHHe nonepetmoro ~u­
>KeHHH, CTamqeCJ<oii ,ll;HarpaMMbi Marepuana, a TaK>Ke CI<opoCTH .n;e$opMa.uuu Ha npo<l>u.m. 
y.n;apHoro nepexo.n;a. IloKaaaHo, trro B 3aBHCHMOCTH OT coOTHomeHHH Me>K,ll;Y reoMeTpHtleCI<HMH 
H $H3HtleCI<HMH napaMeTpaMH crep>KHH, npo$HJIL y.n;apHOH BOJIHbl 6y.n;eT JIH6o MOHOTOHHbiM, 
JIH6o OCUHJIHPYJOIIUIM. TeM me MeTO,lJ;OM HCCJie,lJ;yeTCH BOnpOC 0 BJilUIHBH Ha CTpyKTypy c.n;ap­
HOH BOJIHbl annpOKCHMainfOHHbiX 3$$eKTOB npH tmCJieHHOM pemeHHH KOHetmo-pa3HOyrHI>IX 
ypaBHeHHH pacnpocTpaHeHHH BOJIH. 

1. Introduction 

IT IS WELL known that the elementary theory of longitudinal waves in an elastic bar based 
on the hypothesis of the plain sections gives satisfactory results, provided r0 ~A, where 
r 0 is the characteristic transverse dimension and A is the wave length. On the other hand, 
the theory based on the exact equations of the elasticity theory is rather complicated. 
This is why a number of authors tried to create an approximate one-dimensional theory 
which would take into account the influence of the transverse motion and would permit 
the correct description of the short impulse propagation. 

The first work in this field was the work of LovE [1]. He considered that the trans-• 
verse displacement w = -Proufox, where, is the Poisson coefficient and u is the longitudin-
al displacement component. Having additionally introduced the term corresponding to 
the transverse motion in the expression for the kinetic energy, Love by the variational 
method obtained the equation 

O(J OV 2 2 o3v ou 
(1.1) Tx -(!at= (!ro 'P ox2ot ' V = fu 

which differs from the elemen~ry one by the right hand term corresponding to the kinetic 
energy of the transverse motion. 

9 .. 
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740 V. N. KUKUDJANOV 

MINDLIN and HERMANN [2] , weakened" Love's assumptions. They asumed that 

Ux = u(x, t), 
r 

u, = -w(x, t) 
ro 

and from the precise equations of the elasticity theory by integrating over r they ob~in­
ed a fourth-order equations system with respect to the derivatives over x for the functions 
u and w. Still more precise equations were obtained in [3], where in the expansions ""' 
and u., over the radius r two terms in each equation were left: 

Ux = u0(x, t)+r2u1(x, t)+ ... , 

u, = rw0 (x, t)+r3w1(x, t)+ ... . 

This led to a sixth-order system of differential Eqs. in x for the unknown functions u1 

and w,. 
In [4] it was shown that at t ~ rfc, where c = E 1'

2e- 112 , the solutions on the basis 
of all the three theories are equivalent to that obtained on the basis of Love's equation 
(1.1). Moreover, for the problem of a constant velocity impact the solutions coincide 
with the asymptotic solution obtained in [5] on the basis of precise equations ?f the elasticity 
theory. 

Since Love's hypothesis is of a purely kinematic character, the results of [4] give every 
reason to proceed just as well from the equation of motion (1.1) in the investigation of 
nonelastic waves in the bars, when t0 ~ rfc. 

In [6] an asymptotic method was proposed for the solution of problems of wave propaga­
iion in elasto-visco-plastic bars, and on the basis of an elementary theory, the shock wave 
structure was investigated. Let us examine this problem proceeding from Eq. (1.1). 

2. Investigation of the shock wave structure in an elasto-visco-plastic bar 

For the description of elasto-plastic properties of a material, depending 011 the strain 
rate, let us proceed from the Sokolovsky-Malvem model 

!!_ = _!_ OG + sgnG ~[IGI-Gs(e)] at E at T ' 

" {f!>(z), z ~ 0, 
fl>(z) = 0 0 

' z < ' 

(2.1) 

where the type of the function f!>(z) and the value of the constant T are defined on the 
basis of dynamic experimental data given, for example, in [7]; G = Gs(e) is the static tension­
compression diagram of the material. 

Let us introduce the dimensionless variables, where v0 is the initial velocity and t0 

is the characteristic time of the problem 

(2.2) X= xfcto, t = tfto, V= vfvo, (j = G/Go, e = efeo, 
Go = (!CV0 , Ee0 = Go , 

By adding to Eqs. (1.1) and (2.1) the equations of compatibility of velocity and deforma­
ion fields, we obtain-a complete system of equations: 
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INVFSTIGATION OF SHOCK WAVE STRUCIURE IN ELASTO-VISCO-PLASTIC BARS 741 

(2.3) 

Here and further on the dash over the dimensionless variables is omitted. 
We shall consider the case when both parameters y and ro are simultaneously small, 

but generally speaking, have different orders of smallness. It is convenient to note this 
parametrically as follows: 

(2.4) y = k1 dm, ro = k2 d", 

where t5 is a small value, k 1 ,...., 0(1), k 2 ,...., 0(1) and m and n are given integers. We shall 
seek the solution of the equation as a power expansion over a small parameter t5: 

(2.5) 

where U is the solution vector of the system (2.3). 
By substituting Eq. (2.5) into Eq. (2.3) and equating the terms with the same powers 

of t5 for a zero approximation, we obtain 

(2.6) 2 ( ) OEo _ ov0 

c Eo ox - Tt' 

It is a well-known system of equations that describes the wave propagation in a bar of 
a nonlinear-elastic material with the dependence a = a5 (e). 

For the following approximations we obtain the ~e equations as for a nonhomo­
geneous linear plastic material, the right hand parts depending on the previous approxima­
tions. For instance, the first approximation is described by the system 

OE(l) i}v(l) 

-at=--ax, 
(2.7) 

d I k 
( 

!I (0) !I {0) ) 
(l) Gs (1) _ 2 uE ua 

a - de s = s<O> E - <P~o) a!-at ' 
etc. 

The right hand parts with the coefficients k 1 and k 2 may be either present or absent 
depending on the relationship between m and n. But the zero approximation (2.6) does 
not change its form. Here we shall restrict ourselves to obtaining the solution of a zero 
approximation uniformly precise over the whole region of motion. It is at once clear 
that the solution of the system (2.6) does not give such a solution. Really, the system 
(2.6) is a quasi-linear system of equations which admits the availability of discontinuous 
solutions at continuous initial and boundary conditions if the function a5(e) is concave 
(a~(e) > 0}, and at the discontinuous boundary or initial conditions if a5(e) is a piece­
wise function. (The last case is very important, as such an approximation is often used 
in calculations for curves having a~ (e) < 0) . 

At the same time it is easy to prove that the original system of equations (2.3) is par­
abolic and odes not admit discontinuous solutions. That is why the solutions of the systems 
(2.3) and (2.6) in the vicinity of the discontinuity lines x = .x(t) will differ by 0(1). 

Therefore, in the vicinity of x = x(t) the formal expansion (2.5) is unfit. The reason 
is that we do not take into account the rapid change of the solution in the direction ortho· 
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742 V. N. KUKUDJANOV 

gonal to the discontinuity lines x = x(t). To construct the expansion in the vicinity of 
the discontinuity line, let us use new variables in Eqs. (2.3) 

(2.8) R = x(t)-x 
p A. ' ex= t. 

Here A. is a small parameter which characterizes the rate of the solution change in the 
vicinity of the shock transition. The stretching over the coordinate fl by the value of A.- 1 

is introduced for the derivatives over x to be the values of the order of 0(1). 
With new variables the system of equations (2.3) will be noted as 

1 au , ( D a a ) a2v D av av 
Tap = "12 Taji+a; ap2 -;:aji-aa:' D = x'(t), 

I iJv ae D ae ( D a a ) " 
Tap= a;+;: ap' A. Tap+---ai (e-u) = (P[u-Us(e)]. 

(2.9) 

Since two small parameters of different orders are present in our system, three dif­
ferent cases depending on their order should be considered separately for the case of 
a concave static diagram u5 (e) and for the case of a segmental linear diagram, where 
u'(ek+l) < u'(ek) at ek+ 1 > ek. 

Tbe concave diagram 

The small parameter A. characterizing the rate of the solution change is defined- on 
the basis of the comparison of the orders of senior terms in each of the equations of the 
system (2.9). 

I. If 2n > m, then in the first equation the senior terms corresponding to the inertia 
of the transverse and longitudinal motion are of the same order and A. = y 1' 2 • 

2. If 2n < m, then in the third equation the terms corresponding to elastic and visco­
plastic forces are of ·the same order and A. = w. 

3. If 2n = m, then in Eqs. (2.9) all the above listed terms are of the same order and 
A. = yl/2 = (J). 

We shall look for the solution in the vicinity of the discontinuity line in the form of 
a power series over A. 

U= U0 +A.U1 +A.2 U2 + ... +A."U,.+ ... . 

For the zero approximation U0 we get the following system of equations: 

auo ( avo a3vo) D oeo - avo T = D ap +bl ap3 , ap - - ati-, 
a 

(P[u-us(e0)] = b2D ap (eo-Uo). 

(2.10) 

The coefficients b1 are introduced for the convenience of notation b1 = b2 = 1, when 
2n = m, at 2n > m, b1 = 1, b2 = 0 and 2n < m, b1 = 0, b2 = 1. We shall investigate 
the general case when both coefficients differ from zero. The system (2.10) is a system 
of common differential equations. It is interesting to note that at S = const it coincides 
with the system of equations describing stationary solutions of precise equations (2.3). 
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INVESTIGATION OF SHOCK WAVE STRUCTURE IN ELASTO-VISCO-PLASTIC BARS 743 

Boundary conditions for the system (2.10) are found from the coalescence conditions 
of the slowly changing solution of the system (2.6) and the quickly changing solution 
(2.10). If we denote the solution (2.6) before the front u- and behind the front u+' then 
{3 the boundary conditions may be noted as follows 

(2.11) UoitJ=-oo = u-, UoitJ=oo = u+. 
As a rule, in most metal bars D 2 ~ 1; then, in the constitutive equation (2.10) for the 
sake of simplicity we may neglect the term corresponding to elastic deformation in com­
parison with visco-plastic deformation. 

Integrating the first equation (2.10) and excluding (J and v, we obtain 

(2.12) d
2
e ( de) · b1 d{32 +F b2D d{3 -D2e+(J5(e)-((J--D 2e-) = 0. 

Here F(z) is the inverse function of 4>(z). 
Let us conduct qualitative research of the integral curves of Eq. (2.12). For this purpose 

let us examine the phase plane (e, e) and transform Eq. (2.12) to the form of 

(2.13) e = defd{3, de/de= [D2e-(J5(e)+((J--D2e-)-F(b2De)]/b1e = M(e, e)/L(e, e). 

Equation (2.13) has two singular points which correspond to the values before the front 
e = e-, e = 0 and behind it e = e+, e = 0. Thus the integral curve corresponding to 
the unknown solution of the shock transition must pass through both singular points. 
Let us prove that the solution of this problem exists and is unique if M(e, e) is a dif­
ferentiable function. The curves M( e, e) = 0, L( e, e) = 0 shown in Fig. -1 and 2 divide 

e e 

FIG. 1. FIG. 2. 

the semiplane in the vicinity of singular points into four domains, where the components 
M and L change their sign. The field of directions of the integral curves is shown in i Figs. 1 . 
and 2. The type of singular points is defined on the basis of the type of the roots of the 
equation 

aM oL 
a;-x Te 

aM oL 
= 0. 

oe oe -x 
Substituting the values M(e, e) and L(e, e), we find 

z,,, ~ - b,Dr(o) ± Ji[ b,Dr(o)] +b,[D'-a;(•'>J. 
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744 V. N. KUKUDJANOV 

Taking into account the factthatD2 -a5 (e-) > 0 andD2 -as(e+) < 0, we conclude 
that in the point e = e-, e = 0 is always the saddle point and in the point e = e+, e = 0 

is the focus if b1 ID2 -a~(e+)l > [ b2 Dr(O) l and is a nod of the reverse inequality 

bodies. 
The type of the integral curves passing through both singular points corresponding 

to these two possibilities is shown in Fig. 1 and Fig. 2, respectively. 
The character of change e in the shock transition zone is shown in Figs. 3 and 4. From 

those figures one can see that when viscous forces prevail over the forces of transverse 

FIG. 3. FIG. 4. 

inertia, the wave profile is smooth and when the inverse inequality holds, oscillations are 
observed behind the front. 

Note that at F'(O) = 0 the singular point e = e+, e = 0 will be the centre, i.e. behind 
the wave front the investigation on the basis of the linear approximation gives nonattenuat­
ing oscillations. However, the oscillations will be attenuating if we take into account the 
nonlinear terms of Eq. (2.13). 

When b = 0, from Eq. (2.13) we see that the integral curve tends to the line segment 
M = 0, connecting the singular points; the solution in this case is of the type shown in 
Fig. 4. 

Plecewlse diagram 

The given solution in the shock transition field is true if only the square of the shock 
wave velocity is D 2 ~ u~(e). This condition is severed when the diagram a = as(e) is 
a piecewise convex one, i.e. u.$(ek+ 1) < u.$(ek) at ek+ 1 > ek. In the case of such a diagram, 
shock waves appear in the solution of the system (2.6) at the discontinuity boundary and 
initial conditions, and they coincide with the characteristics of the system. Provided 
D 2 = u~(e), some of the main terms of Eqs. (2.9) disappear and this makes it necessary 
to take into account the terms omitted earlier. To make it obvious, let us substitute z = 
= u- as( e) in Eq. (2.9) 

1 [ az I ae ] D av Ov , ( D a a ) a2v 
<2·14) T ap +as( e) ap = Tap + &i - ----;;: T ap + Ta a{J2 

8v ae ae ( D a a ) - ap = ;,ai +D atfw Tap+ ai ( e-z-as(e)) = (J)(z). 

http://rcin.org.pl



INVESTIGATION OF SHOCK WAVE STRUCTURE IN ELASTO-VISCO-PLASTIC BARS 145 

In the first equation the underlined terms were reduced; the force of inertia in the 
longitudinal direction corresponds to the term ov f orx; this is why the conditions A = y113 

and z,..., O(A.) should be observed. Since we consider the general case, when the terms 
corresponding to the inertia of the transverse motion and viscous resistance are of the 
same order, from the third equation we get A1+1 =eo. The value of k is defined by the 

behaviour of the function !li{z) ~ Cz' at z -> 0. Hence we find that ro - 0 ( y k; 
1
} . 

From the above analysis it follows that the solution of Eqs. (2.14) is to be sought in the 
form of the following expansion: 

(2.15) v = v0 +Av1 +A.2v2 + ... , s = s0 +As1 + ... +A"s,.+ ... , 

z = Az0 +A2z1 + ... +A"z,.+ ... . 

A comparison of the power expansions for concave and A convex diagrams makes it 
clear that the differences in the solutions for two types of diagrams are connected with 
the deviation of the actual dependence a= a(s) in the transition zone from the static 
law a= u5 (s). For a concave diagram this deviation is of the order 0(1), and for a convex 
one- O(A.). Substituting the expansions (2.15) into Eqs. (2.14), we find the following 
equations for the zero approximation 

ozo = 2 & 0 -b D o3
Vo & 0 = -D os0 

ap arx 1 ofJ3 ' ap ap ' 

z~= -D(1-D2)·b2 °80 = (1-D2)·b2 -
000 

ap ap · 
Excluding z0 and s0 we get the equation 

(2.16) o ( ov0 )P oo0 o3v0 Aap ap = 2----aa -b1D ap3 , 

The solution of this partial differential equation should satisfy the condition (2.11 ). 
In the problem considered the initial conditions are of no importance; they may be of 
any type not contradicting the conditions (2.11 ). In the general case, the solution of 
Eq. (2.16) in the closed form is impossible to obtain. Nevertheless, in a particular case 
when the conditions before and behind the front do not vary, we can get the solution 
of the posed problem in the class of automodel solutions. Supposing that v0 = v(~), 

where~ = {Jril, from Eq. (2.16) we find 

(2.17) pAv"(v')P-lrxq<P+t> = 2v'qril- 1{J-b 1 Dv"'. 

We can see from Eq. (2.17) that there always exists an automodel solution when both 
effects act simultaneously at p = 2, q = -1/3. From Eq. (2.17) we find that it should 
satisfy the equation 

(2.18) 

and the boundary conditions 

vle .. -co=v-, vle=co=v+, u<M, - ~--.±oo. 
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746 V. N. KUKUDJANOV 

The qualitative research of this problem shows the solution gives a smooth profile 
at b1 ~ 1 and finite b2 , and behind the wave front there will be oscillations about the 
value v = v0 when b1 is the finite value and b2 is small. 

Besides, the automodel solution of Eq. (2.17) always exists if b1 = 0 or A = 0. 
In the considered case of the piecewise diagram of the material b1 = 0, ifn < m(k+ I)/3 

and A = 0 either in the case of a purely elastic material when D2 = I, or at b2 = 0, when 
n > ~(k+ I)/3. 

At A = 0 we find that p = -1/3 and Eq. (2.I7) becomes 

d3v 2 dv --+- t1 __ = 0 t1 = t:D-1/3. 
de - 3 " dl: , " " . 1 ~1 

The solution satisfying the conditions (2.11) is of the type 

Et 

(2.I9) v = v-+(v+-v-)fn[n/3- J Ai(t)dT], 
0 

where Ai(x) is the Airy function. At D = I the solution (2.19) coincides with the asymptotic 
solution obtained for an elastic bar on the basis of the precise solution of a three-dimens­
ional theory [5]. The character of the solution is qualitatively the same as in Fig. 3. 

Let us consider more carefully the case when b1 = 0 

(2.20) ( 
dv )-(p+2> d2v Ap2 ; _ 

dE d;2 + p + I - 0 . 

The solution is of different types depending on the value of k. 
At k = I we find 

(2.21) 

The effective shock wave width is defined according to the formula 

Lfx = lv+ -v-I = c!.nt )"' (I_ D')'''• 
max(~:) ru 

wherefrom one can see that it does not depend on the shock wave intensity and increases 
in time proportionally to t 112 • 

If k > I, the solution (2.20) is of the type 

z 

v+ + v- v+ - v- J dz 1 
(2.22) V = 2 + 2/1 (I +z2)IPI ' 

0 

B = k(1-k) (1-D2)-} 
I+k . ' 
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(22.2) 
[cont.] t- x-Dt lf<k+l) 

~ - tk/(k+ 1) ()) ' 

00 

f dz 
11 = ----:-( 1..,-+-z--=2)c-ol P...,...l 

0 

l'(!f2>r(Jpl--}) 
2F(Ipl) 

747 

Here F(z) is a gamma function. In this case the transition layer over the variable ~ has 
an infinite width, the tendency to the values v+ and v- over the infinity being nonexponen­
tial as in the case of k = 1, but a power one, so that the effective width Llx increases con­
sider ably faster than in the linear case 

Llx = w- 1fA:+ltA:fk+ 1J~, 

where L1~ is the effective width c;>f the transition layer over ~. 
At k < 1 the transition layer over the variable ~ has the finite thickness 2~0 ; instead 

of the conditions (2.11) one should take the boundary conditions over the interval [0, ~0] 

(2.23) v(O) = (v+ -v-)/2, v(~0) = v+, v'(~0) = 0. 

The solution of Eq. (2.20) satisfying these conditions is 

(2.24)' 

V= 

et eo 
j (1-z2)Pdz, 
0 

( 

+ _ )1/(2P+1) . V -V 
Eo= 2BPJ

0 
' 

k 
p = 1-k' 

1 

10 = J (1-z2
)", 

0 

dz = F(p+ 1)F(1/2) 
2F(p+3/2) 

The shock wave width increases with time in this case but is slower than the effective 
width in the case of a linear function 

1 k 

Llx = 2E
0
w- k+l tk+l • 

Figure 5 shows the change of the shock wave profile with the change of k. 

V 

K<1 1<.==1 

K>1 

FIG. 5. 

3. Shock wave structure at the difl'erence approximation of equations 

Now let us see how small additional terms arising in the process of numerical integra­
tion of equations as a result of a difference approximation influence the shock wave 
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748 V. N. KUKUDJANOV 

structure. It is convenient to investigate the simplest case of a discontinuity wave in plastic 
bar on the basis of an elementary theory. The system of equations 

(3.1) 0(1/0x = eovfot, 8(/fot = Eoofox 

may be written in dimensionless variables 

(3.2) x= xfl, t = tcfl, a= (J/ecv0 , v = vfv0 

and in terms of Riemann invariants q = a+v, p = a-v 
(3.3) opfot+ opfox = o, oqfot- oqfox = o. 
Let us consider the numerical predictor-corrector scheme for Eqs. (3.3) 

WJ+1[2 I ( " " ) "T ( " ") .Yi+l/2 =2 p,+pi+t -h Pi+t-Pi, 

(3.4) WJ+l/2 - I ( " " ) "T ( 11 11 ) 
Y'-lf2- 2 Pi +Pi-1 - h Pi -Pi-1 , 

11+1 _ 11 T ( )11+1/2 Pi -Pi-h Pi+t/2-Pi-t/2 · 

The notations are clear from Fig. 6 where the scheme pattern is shown. 

--

i-1 

n+1 

' ---t-==-- :+---=-~--,, In+ ~21 
..... ---¥--..... ~'n ' 

i- Vz i i+1fz 

h 

FIG. 6. 

1-

t I 
i+1 

First, the solution may be defined at the intermediate step at the points with half­
integral indices shown with crosses at the Lax scheme; and then at the points of the basic 
network shown with cir~les according to the "cross" scheme. 

Excluding the values with half-integral indices, we get 

(3.5) 

where 1/2 < " ~ h/2T and T/h = 1. The scheme (2.5) at " = 1/2 turns into the Lax­
Wendroff scheme of the second order of accuracy and at" into the scheme of Courant­
Isaacson-Rees [8]. Expanding all the terms of the finite-difference equation (3.5) at the 
point with the indices (n, i) over the powers ofT and h, we get an equivalent differential 
equation of an infinite order: 

(3.6) 
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Since in any explicit scheme 1:/h = K, K ~ 1 Eq. (3.6) contains one small parameter 
1: ~ 1 at senior differential terms. 

To solve this equation, let us apply the same asymptotic methos we used in Sect. 2. 
As before, we seek the slowly changing solution of the type 

(3.7) p = p<O> + 7:p(1) + . . . + 'l:"p(n) + .... 

Substituting the series (3.7) into Eq. (2.5) for p we get the equation 

(3.8) ap<O> 1 at+ ap<O> 1 ax = o 
coinciding with the approximated equation. Since our aim is to find a uniformly exact 
zero approximation, we shall not write out the rest of the approximations, but turn to 
the solution in the vicinity of the discontinuity x = t. As before, let us introduce the 
variables 

x-t 
{3=--, rt= t, 

A 

then Eq. (3.6) will be of the following type: 

00 

op ~ 7:2m [( a 1 a )2m+1 ( h )2m (J2m+lp 1 ] 
(3.9) a;+~ (ccm+1)! ar;-;:ap +-; ap2m+1 ).2m+1 

m=l 

,, 7:2k-1 [(_j__- _!_ _j__)2k- (!!__)2k-2 a2kp _1 ] 
+ ~ 2k! ace A ap 2" r ap2k ;_2k • 

k=1 

We shall seek the solution in the form 

(3.10) 

It is easy to see that at " > 1/2 the main term of the expansion will be in the second sum, 
then ;. = 1:1/ 2 and from Eq. (3.9) for the zero approximation p0 we find 

(3.11) 

where 

b2 = 1/2 < (2x-1), 
1 

"= > 2" 

This equation differs from Eq. (2.16) only by the coefficient; consequently, the effect 
of the approximating terms is qualitatively the same as that of viscosity. The solution 
of Eq. (3.11) will be of the same type as Eq. (2.21) and we can easily find the effective 
shock wave width with the help of the formula · 

(3.12) LJ{J = pt-pc; = bynt. 

max( ~;} 
From Eq. (3.12) it is clear that the shock wave width is directly proportional to the value" 
and is independent of the Courant nw:nber K, what is quite unexpected. 
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At x = 1/2 the scheme is of the second order of accuracy. In Eq. (3.9) now the first 
term of the first sum becomes the main one, then A. = -r2!3

, and for a zero approxima­
tion we find 

(3.13) 

Equation (3.13) at A = 0 coincides with Eq. (3.16). Thus the effect of the approxima­
tion terms is the same as the transverse motion inertia one. We see that the approxima­
tion effects do not always look like viscous resistance, as it is often referred to identifying 
all the approximation effects at the discontinuity with the approximational viscosity 
influence. 

For the effective shock wave width we find 

(3.14) Ap _ } ·b lf3 
LJ - Ai(O) n t ' 

wherefrom one can see that for the second order schemes the dependence of the shock 
wave width on time 1 is weaker than for the schemes of the first order of accuracy. 
It is interesting to note that the obtained results for the scheme (3.4) are common for any 
known schemes of the first and the second orders of accuracy. In Eqs. (3.11)-(3.14) only 
the coefficient b changes. For example, for the Lax scheme of the first order of accuracy [8] 
it can be shown that b2 = 1/4(K- 2 -l) and for the "cross" scheme of the second order 
of accuracy b3 = 1/2(K- 2 -l). That is why, by comparing the value of the coefficient b 
one can speak of a scheme of the minimal effective width. One can draw a conclusion 
about the stability of the scheme in the case of smooth solutions taking into account the 
first differential approximation in the parabolic form [9]. It was obtained from Eq. (3.6) 
leaving only the main term with the smallest power-rand using Eq. (3.3): 

iJp iJp 'l' iJ2p 
(3.15) a;+ Tt = T (2x-1) ax2 , 

then x = 1 /2, we have 

(3.16) iJp +~ = ~(K-2-I) iJ2p. 
ax at 6 8x2 

The nonnegativity of the coefficients of the right hand part in Eqs. (3.15)-(2.16) is the 
necessity conditions of the stability of the scheme (3.4). These conditions coincide with 
the conditions of nonnegativity of the coefficients in Eqs. (3 . .11) and (3.13). Thus, for 
linear equations the conditions of stability for the continuous and discontinuous solutions 
are the same. For the nonlinear equations the situation is more complicated. One can 
show that such coincidence does not take place. The stable scheme for the smooth solu­
tions can became unstable for the discontinuous one. 
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