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Application of convex analysis to the calculation of stress-state
in elastic-plastic plates

D. WEICHERT (BOCHUM)

FOR AN ARBITRARY dead-load-type loading process minimum principles for stress-state in elastic-
plastic plates are derived assuming infinitesimal deformations. Numerical application is given
to some simple problems.

Dla dowolnego procesu obcigzania typu zachowawczego wyprowadzono zasady minimum
dotyczace stanéw naprezenia w plytach sprezysto-plastycznych przy zalozeniu infinitezymalnych
odksztalceri. Podano przyklady zastosowaﬁ numerycznych do pewnych prostych zagadnief
- szczegblowych.

Jisa NpoM3BOJIBHOrO MPOLIECCa HArPY)HEHHA KOHCEPBATHBHOIO THIA BhIBEACH MPHHLIMII MHHH-
MyMa, KacaroluiicA HAPSHKEHAOTO COCTOAHHA B YIPYrO-IUIACTHUECKHX IUIHTAX, IPH IIpe/Io-
JIOYKeHHH HH(QHHATesSHMANEHLIX Nedopmaiaii, [IpuBeaens! npuMephl YHCICHHBIX IPHMEHEHHI
K HEKOTOPHIM MPOCTbIM YaCTHBIM 3ajjauaM.

1. Infroduction

IF NONPROPORTIONAL loading processes are considered, methods using only moments
and curvature to describe material behaviour in plates fail in principle and can
only be regarded as rough approximations. By the expansion of arbitrary smooth stress
and strain distributions by Taylor series a more realistic mathematical plate model can
be systematically derived and related to the general three-dimensional theory. In [1, 2]
the initial boundary value problem for generalized standard elastic-visco-plastic material
[3] has been solved by introducing appropriately chosen Hilbert spaces using the mathema-
tical tool of convex analysis. In [5] the rate boundary value problem for thin elastic —
ideal plastic plates was investigated. Here an application to thin plates under the assum-
ption of infinitesimal displacements and linear hardening material behaviour is given and
applied numerically to some simple problems.

2. Three-dimensional foundation

2.1. Local formulation of the problem

At every instant ¢, of the deformation process the following system of differential
equations and. inequalities defines the mechanical state of an elastic-plastic body (general-
ized standard elastic-plastic material [2]) occupying the volume V (x,, X, X3, t) in the
Cartesian product space of R® and space 7 of time 7 € [0, ), with the regular boundary
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B = B,uB,, with the prescribed forces p on B, and the prescribed displacements u*
on B;:

2e = (Gradu),y, in ¥,
u=uw* on B,

Dive= —f in V,

2.1 G:.}. =p on B,
e+ef=¢e
eedy(S)f in V
€? € 9p(S)

with ¢ = a(x,, x,, x5, 1) as the symmetric stress tensor, € = €(x,, x,, x3,7) as the
symmetric strain tensor, p surface forces, f body forces (dead-load-type), n unit normal
vector, Grad and Div gradient and divergence operator. Following [2], the generalized
stress s = [0, m] and generalized strain e = [e, 0], composed of an elastic part e® =
= [e*, w] and plastic part e? = [eP, x] are introduced with 7, w and x as internal para-
meters, determined by the (linear) hardening rule [2, 3]. The superposed dot denotes the
time derivative, y(s) and ¢(s) denote the generalized elastic and plastic potential, assumed
as independent of each other [1]. The elastic part of the generalized strain e® and the rate
of the plastic part of the generalized strain e” are assumed to be elements of the subdifferen-
tial of w(s) and ¢(s) resp. [1].

y(s) is assumed to be strictly convex. In the case of differentiability of y(s) for linear
elastic behaviour as we shall assume in the following, we have

ot = V()
(2.2) os* ’
2p(e) = e ... G ... e = &f; L 65 Z + Opmma®n’

. .
(2.3) G“‘=[:z], i,j=1,2,3; mmn=12,..,r

with r as the number of internal parameters. L and Z denote coefficients of elasticity
resp. hardening, both positive definit tensors.
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¢(s) is defined as an indicator function of the domain E, of admissible generalized
stress tensors, attaining minimum at the origin s = 0.

0 if seE,
24 "’(s)={+oo if s¢E,

where E, is determined by the yield condition. In [1] it is proved that the relations (2.1}
describe adequately the initial boundary value problem of a three-dimensional elastic-
plastic body (Fig. 1).

2.2. Global formulation of the problem

Starting from space C® of the smooth tensor fields and introducing the scalar product

(2.5) (r, ™) = f‘t ..G..t*'dV, t*eC”®
v

in [1] the Hilbert space H of all the generalized tensor fields T with the finite norm || t}f,
induced by Eq. (2.5) is constructed by completion of C®. H may be decomposed into
H¢ and H* of all kinematically admissible stress fields s¢ defined by

(26) s°=[05,0]:= {s€eH:6=L..(Gradu),,, in V, u=0 on B}
and statically admissible stress fields s* defined by
2.7 §=[¢°,n]:= {seH:Dive=0 in V¥V, e-n=0 on B}

From the Gauss divergence theorem it follows that all fields s° € H are orthogonal
to all fields s* € H* with respect to the scalar product (2.5). The definition of the global
plastic potential ¢ (s) and restriction on the subspaces H* and H* of all time-differentiable
fields allows a global definition of material behaviour [1]. For a given perfectly elastic
solution s° representing external loading of the body, in [1] it is proved that the functional

(2.8) Ao(8°) = $o(s°—8°) +¢8(E) — (8°—+*, )6
with

$ols) = lqb(s) = Eirg !q:c(s)e"dV for ses®+HY,

(2.9) +o00 for s¢s®+HY,
0 for seE, 0O<c< 4+,
9:(8) = L: for s¢E,
and
(2.10) P36 = 833'[(5"—8;5’)—%(8"-8)]

is strictly convex and attains minimum value equal to zero for the solution if a solution
in the chosen space exists. In [1] it is proved that the solution is unique.

3 Arch. Mech. Stos. 4/81
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3. Application to plates
3.1. Two-dimensional representation of three-dimensional fields

For the arbitrary loading process of plates no unique relation between stress and
strain distribution over the thickness of the plate can be assumed. However, every differen-
tiable three-dimensional function g(x,, x,, X1, f) can be represented by a set {G} of two-
dimensional functions G®(x,, x,, ),k = 0, 1, 2, ..., n by means of the Taylor-expansion
of order n:

1 0% Vg(x,,%5,%5,1
GO, %2, 8) = 5 gx:)(,,_’n f) o
@3.1) i

g(xls X2, X3, ‘) = ZG"‘)xgk_l)+R,+,
k

with R,,, as remainder. If we restrict our considerations to those fields g(x,, x;, x;, t)
with a vanishing remainder, then the relation between {G} and g is a one-to-one mapping
and all relations of Chapter 2 can be equivalently expressed by relations between two-
dimensional fields [6).

We substitute the three-dimensional generalized tensor fields s = [0, 7t} and e = [€, w]
by two-dimensional representatives n(x,, x,, t) and q(x,, X, ?):

(3.2) = [N,II], gq=[Q% Q7.
With
Ne:= {N{P, N, ., NP},
m .- (o, 0e), =L
(3-3) . n 0@ ) n=1,2 >
Q'il i {QEJ rQU; '"!Qﬁ }!
qg=1

Q= {'Q::l“; Q‘('Z), -“"Qiﬂ}-

Here r denotes the number of internal parameters describing linear hardening [3]
and q the order of two-dimensional representatives. For all three-dimensional fields charac-
terized by a vanishing remainder in Eq. (3.1) of the Taylor-expansion we obtain equi-
valently to Eq. (2.5) the scalar product defined in terms of two-dimensional quantities:

(3.49) {m,q) = f(Nf;me+H3m9§)e"dx,dxzdt
J .
with
q q
NgymQf: = ) ZN D O,
k=1 I=1
q q
(3.5) Mm2s: = ' 'm0,
k=1 =1

1
A
My fx 0%

Respecting Eq. (3.1) by this procedure the three-dimensional problem is equivalently
expressed_by two-dimensional quantities.
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3.2. Assumptions for plates

If we split up Eq. (3.4) into parts containing solely quantities in the x,, x,-direction
parallel to the midspan of the plate and parts containing quantities in the x,-direction
orthogonal to the midspan, we obtain

(3.6) Migs Qi) = Magy Qup) +2{Ma3, Gaz) +<{N33, 43305 o, f=1,2.
For plates we assume in general:

3.7 (N33, q3s) < Miys Qug)-
For thin plates we assume
(3.8) 2Ng3, 4as) +<N33, 433> < My 4 -

Both assumptions are compatible with the conventional assumptions of vanishing
normal stress in the x;-direction and, additionally, vanishing of the shear deformation
of the cross section in the plate-theory [4]. In the following we restrict our considerations
to thin plates.

In Egs. (2.6) and (2.7) kinematical and statical admissibility was defined for three-
dimensional bodies. For application to the plate theory we introduce the displacement
representatives U?

(3.9) Us(kyy %5y 1) e (O, O, ..., TP}
with the corresponding strain representatives Q°:
(3.10) @sp(x1 %2, 1) = {(TEDsym(UDsvm --- (T p)oym}

related to three-dimensional strain distribution by Eq. (3.1)
s:.ﬂ(xl s X2, 1) = (ﬁﬁfﬁ)sm + (ﬁ,‘,_z?ﬁ).,mx3 G (65:3)symxg-l e T (Efl‘:?{;)lym xﬁ_ L

From definition €° fulfills the condition of compatibility in the volume of the plate.
If we introduce the displacement representatives US” such that

(3.11) U =0H, i=13,..,q9, U3Q=U3,

then U@ can be identified with the deflection of the considered plate. The kinematically
admissible generalized strain representatives q° will be called every set q = [QF, £] for
which u? vanishes on the boundary Z; and & = 0. By the generalized elastic coefficients
G, q° is then uniquely related to s° in Eq. (2.6). Statical admissibility will be defined by
the orthogonality condition; every set n fulfilling

(3.12) (n,q =0
will be called the statically admissible stress representative n'.
EXAMPLE

We consider a thin plate of arbitrary shape with a regular boundary and elastic-ideal
plastic material behaviour. We choose the order of Taylor expansion ¢ = 4, corresponding
to the shape-functions for stress and strain distribution in the x,-direction of Fig. 2.

3.
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With
N 1| 23] 4
3
1 2h 0 %— 0
2h3 2h5
(3.13) ma=| 2| 05| 0=
2h3 2k
e I
2h% 2h7
110110 7

We obtain for Eq. (3.12)
314 9= - f [%N.‘.A’ U+ 22 (NP UG NP U + NP UL

(N,}‘ U +ND UG +ND USD) + E'E-Nm Ugfg] e~tdx,dxdt

f[(ZhN,}‘+ ngi) (2_”3 N + 2:’ Ng;*), (3:_’ NP+ 2_}5:’ Ng;l),

5
(fin.g)+ “‘)] (U}, UL, US), USYITe"dx, dx;dt = 0.

Applying the divergence theorem twice gives:

619 @e= —![(2m33,+3;£1v31,) (—mw..z +£N}., )

3 5 7
(ﬁNl%)g-l- -ZLNJg) (-S—N‘(,Rs + -%TN‘(,}?’)]

x [USP, UD, U, UM e "dx, dx,dt
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3
- f [(2hN;}.’+%N§i’).(V+M.,..), M,,.,(zgl NQ+ g—h;Nt3))

2h3 2
5 N(2)+ N(‘) [U(l) U(Z) U(:} U(a) U(-t)]r —tdsd‘

With
'_i-——ni—ui _a_—ni.‘.n__a_
0x, 'on 203’ Ox, ‘on tos’
ny = cos(xl!n): hy = c()s(xg, ﬂ),
3 5
(3.16) V= n,(zg N®+ %N},ﬁ’) E N® = NGng,
3 5 3 5
M,, = --1*:;4?!..(—2-}-'--I\’gﬁi’+g~l'\’§3’)+1|':1m,.,t .. N‘2’+£}'—N“’
3 5 3 5
3 5
M,, = ng,{rlﬁ(-zl NP+ —— 2 N;;’).
3 5
X3

Fig. 3.

From Eq. (3.15) follow immediately the conditions for statical admissibility. In the
interior F of the plate we have

N,} + —-—N,gi =

NBus+ % NG = 0,

(3.17)

N +—3h—2N§,§’ =0,

N@p+ -sg—N % = 0.
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On the boundary Z the conditions of statical admissibility depend on the support of the
plate. In the line integral of Eq. (3.15) either the statical or the dual kinematical quantity
must vanish. On a free boundary, for example, we have:

hz
NP+ ‘-“3—Ng) =0,
V+My,, =0,
M,=0,

(3.18)

N&,’,‘+—5—;ﬁN§;’ = 0.

3.3. Minimum principles for thin plates

From the preceding derivations minimum principles for stresses as functions of place
and time can be directly obtained. In the case of elastic-plastic material behaviour the
domain E, of admissible stress-states remains constant during the deformation procgss
and the functional (2.8) may be reduced to:

(3.19) 5(stp) = sup  (sip—sis S3)es  SB—SupEE,.

80— syyek:
The test function sas(x, , X2, X3, t) minimizing Eq. (3.19) is then the solution of the problem
in the chosen subspace of approximation.

If we use n3s(x,, x,, t) instead of s3g, then we obtain from Eqs. (2.8)-(2.10) and (3.6)~
(3.8) the minimization functional

(3.20) Af(nsp) = sup  (nip—nis, hide; n—nis € E,,
"gﬂ_";;eg:

where E‘, denotes the domain of admissible stress-states in terms of two-dimensional
representatives, Minimizing the test function ngs(xy, x,, t) is then the solution of the
problem in the chosen subspace of approximation.

4. Numerical example

A simply supported elastic-ideal plastic square plate is proportionally loaded bya
vertical sinusoidal distributed load . The von Mises and Tresca yield criteria are used
parallely to determine the domain of admissible stress. We determine the state of stress
at the end of the loading process (Fig. 4).

@1 (%, %) = doc0s (% 551) cos (;—a f,).
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x3 4

Fic. 4.

We introduce the dimensionless quantities
(42) X3 = “Z‘E: 0y = "E"

with E as the elastic modulus. The Poisson’s ratio » and the dimensionless uniaxial yield-
limit o, are chosen as » = 0.3 and o, = 1.8 10~ respectively in our calculations.

We use the two-dimensional representatives N3s(x;, X,) up to order two. As we con-
sider a special case of proportional loading, time does not appear as a parameter [1].
As test functions fulfilling statical boundary conditions we choose

NP = ¢(1-x3) (1=x2)+c,(1-x2) (1—-x%),

43 NP = cy(1=x}) (1= xP+ca(1-x3) (1-x),

1
NP = NP = ¢ [Zx, X;— % (x3x,+ xix,)] +¢6 [Zx1 Xp— ?-(xi X3 +x§xl)] 3

After fulfilling the conditions of statical admissibility in F (3.17) and using the symmetry
of load and geometry of the plate, we obtain for the analytically given purely elastic solution
NO® [4] the minimization functional A2 as a function of ¢, and ¢,:
(44)  Aj(ey,c)= | sup [(c2—cyct)- 4.01468 + (c2—c, c}) - 6.01351

NOD - NS2)(c¥ o %) EE‘

+ (2(:1 C—0Cy c;—CZCT) - 5.21 1331-

E, is determined either by the Tresca or von Mises yield criteria expressed by N{3’. Mini-
mizing A3, we obtain the unknown coefficients c,, ¢, as result:
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@.5)

9o € c2 yield cond.
L5 0.1933 —0.2708 | v. Mises
’ 0.1575 | —0.2351 | Tresca
25 -0.3327 0.1234 | v. Mises
h —0.3673 0.1580 | Tresca

Figures 5 and 6 show the domain of admissible stresses defined in the ¢, , c,-plane. Figure 7
shows the qualitative distribution of the purely elastic solution N°%2), statically admissible
representative N*® minimizing A3 and superposition N%? 4+ N2 as the researched
solution N using the von Mises yield criterion for g, = 2.5.

aj: ="
1
0.30 éﬁ’

015

o
04‘\" 5

S

-045

FiG. 5. Domain of admissible parameters ¢, , ¢, for load parameter go = 1.5; inner domain: Tresca yield-
condition, outer domain: Mises yield-condition.

cz 4
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o -015 -0.30 -045 -060 -0.75

FiG. 6. Domain of admissible parameters c,, ¢, for load parameter g, = 2.5; inner domain: Tresca yield-
; condition; outer domain: Mises yield-condition.
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N,EI' N:,mf N‘.":ﬁ

Anig'= Nt ni

—
N

o T e
e R T m

CrETTITTI

2)_ o) , sz
1 =Nz +Ngz

Fic. 7.
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