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Stability problems for inelastic solids with defects and imperfections
P. PERZYNA (WARSZAWA)

THE oBIECTIVE of the present paper is to investigate the influence of internal defects and imper-
fections in the dissipative material of a body on the instability of plastic flow. The importance
of constitutive modelling for the instability and fracture phenomena is discussed. The modified
material structure with internal state variables is formulated. Conditions for stability and asymp-
totic stability of the equilibrium intringic state are investigated. A model of an elastic-viscoplastic
material with internal defects and imperfections is proposed. Moreover, a physical motivation
for this model is given. A description of the model is presented within the framework of the
modified material structure with internal state variables. It is postulated that the evolution
equations for some of the internal state variables have the form of the partial differential equa-
tions, namely the diffusion equations. The initial-boundary-value problem is considered. Parti-
cular attention is given to the investigation of the influence of the diffusion cooperative effects
on the onset of instability by necking.

Celem pracy jest zbadanie wplywu wewngtrznych defektow i imperfekcjii w dysypatywnym
materiale ciala na niestateczno$¢ plastycznego plyniecia. Przedyskutowano znaczenie modelo-
wania konstytutywnego dla zjawisk niestatecznoéci i zniszczenia. Sformutowano zmodyfikowana
struktur¢ materialna z parametrami wewnetrznymi. Zbadano warunki statecznosci i asympto-
tycznej statecznoéci dla stanu réownowagi wewngtrznej. Zaproponowano model materialu
sprezysto-lepkoplastycznego z wewngtrznymi defektami i imperfekcjami. Opis tego modelu
zostal przedstawiony w ramach zmodyfikowanej struktury materialnej z parametrami we-
wnetrzoymi, Przyjeto, ze réwnania ewolucji dla niektérych parametréw wewnetrznych majg
posta¢ réwnani rozniczkowych czastkowych, mianowicie réwnan dyfuzji. Rozwazono problem
poczatkowo-brzegowy. Szczegblng uwage zwrécono na zbadanie wplywu wspoldzialajacych
efektéw dyfuzyjnych na powstawanie niestatecznoci postaci szyjkowania.

Ueneo paborbl ABNAETCA HCCNCOBAHWE BAMSHWUA BHYTpeHHHX AedeKToB M mmiepderini
B JMCCHTIATHBHOM MaTepHa/ie Tejla HA HeYCTOHUMBOCTh ILTAaCTHYecKOoro Teuenus. OOGcyxaeHo
SHaYuCHHE ONpeNeNAIIEro MONCIHPOBAHHA [UIA ABJIEHHH HEYCTOHUHMBOCTH M paspyLUeHHA,
Coopmymposana MOmH(HMUHPOBAHHAS MaTePHANEHAA CTPYKTYPa C BHYTDEHHMMH apame-
Tpamu. McctenoBane! ycioBus yCTOHUMBOCTH M 8CHMITOTHUECKOH YCTOHUHBOCTH Ui COCTO-
AHMA BHYTpPEeHHEro pasHoBecHd. IlpeanodkeHa Mopmesls YNPYro-BA3KOIUIACTHUECKOrO Ma-
TepHaJIA C BHYTPEHHUMH AedexTamu 1 mMaepdeximamn, Onucanne 310l MOAEHN IPEACTABIIEHO
B pamKax MOIM(HUAPOBAHHOM MATEpHAJLHON CTPYKTYPBl ¢ BHYTPCHHHMMH IAapaMeTpami.
TlpuBATO YTO ypaBHEHMA JBOMIOLMM 1A HEKOTOPHLIX BHYTPEHHMX IaPAMETDPOB MMEIOT BHIL
i epeHUMaNbHEIX YPABHEHH B YaCTHBIX IPOM3BOJHBIX, HMEHHO YpaBHeHHI mudbdyann.
PaccMoTpena nauanmsHo-kpaeBas samaua. OcobeHHoe BHMMaHuMe o6pAleHO HA HCCIIEAOBAHHE
mmﬂ::moneﬁmymnx Juddysuex addexToB Ha BOSHHKHOBEHHE HEYCTOHYMBOCTH
THINA IOEHKH.

1. Introduction

NowaDAys stability phenomena have become major problems of investigations in
mechanics of continuous media. Many recent theoretical and experimental investigations
have been focussed on some aspects of instability of plastic flow. The instability phe-
nomena may be treated as a prelude to fracture initiation and therefore is a matter of
great interest.
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In plastic flow problems the onset of instability is usually connected with the localiza-
tion of plastic deformations (cf. J. R. Rice [34]). )

* It is very well recognized and confirmed experimentally that there are two main modes
of localization of plastic deformations, namely necking and localization in the direction
of pure shear (cf. A. K. CHAKRABARTI and J. W. SPRETNAK [4]).

Experimental investigations have shown that the intrinsic failure (necking or instability
in the direction of pure shear) is strongly dependent upon such effects as temperature,
strain rate, diffusion, defects and imperfections in a material and coupling between diffe-

rent dissipative mechanisms (cf. P. J. Wray [35], T. B. Cox and J. R. Low [8] and W. Pav-
INICH and R. Ras [26]).

A. NEeDLEMAN and J. R. RicE [23] have proved that the onset of localization does
depend critically on the assumed constitutive law.

The influence of strain rate effects on the necking phenomena has been the subject
of consideration in the recent papers by J. W. HuTcHINSON and K. W. NEeLe [16] and
by G. K. GHosH [11, 12] for the simplified one-dimensional case of loading and by the
author [30] for straining cylindrical specimens in axisymmetric state of stress.

A- instability by necking
B- shear band localization

o Concentralion of imperfections (cracks)

Distance From instability point

Fic. 1. Distribution of intergranular cracks along the length of a specimen suggested by experimental
results.
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All these investigations have shown the great importance of the constitutive modelling
for instability and fracture phenomena.

Basing on experimental observations (cf. A. K. CHAKRABARTI and J. W. SPRETNAK
[4], W. PavinIcH and R. RaJs [26] and P. J. WRAY [35]), we can come to the conclusion
that the concentration of the internal imperfections (cracks at grain interface, voids nuclea-
ting on grain boundaries) in a material during straining process of a specimen does depend
on the boundary conditions. Thus the evolution of the concentration of imperfections has
to be described by means of partial differential equations.

The transport phenomenon of imperfections (kinetics of crack growth) during the
deformation process plays an important role and frequently has a predominant influence
on the onset of instability and, consequently, on the fracture mechanism, cf. Fig. 1.

Therefore it is of great importance to formulate a model of inelastic material in which
not only properties essential for the plastic flow process but also fundamental for critical
situations like instability and fracture phenomena are taken into considerations.

It is obvious that the constitutive model of an inelastic material appropriate for the
adequate description of instability and fracture has to contain additional information
specific for these phenomena.

Although the instability phenomenon is determined by many factors it seems that the
synergic nature of coupling effects is most essential. During the evolution of the deforma-
tion process of a body these cooperative effects usually lead to the onset of the particular
instability mode. g

A description of such a complex problem is the subject of the present paper. It can be
achieved within the framework of a modified structure with internal state variables. The
modification concerns the evolution equations for the internal state variables. It is postu-
lated that some evolution equations can have the form of the partial differential equations.
The equilibrium intrinsic state for a body is defined and the conditions for its stability
and asymptotic stability are investigated. In this study the results of the analytical theory

of semi-groups are used.
A model of an elastic-viscoplastic material with internal defects and imperfections

is proposed. This model is justified by the physical mechanisms of a polycrystalline matter
flow in some regions of temperature and strain rate changes. A thermo-activated mecha-
nism is assumed to cause elastic-viscoplastic flow, a mechanism of grain-boundary sliding
with accommodated diffusion introduces an evolution of defects and a mechanism of void
growth plus its diffusion field insert the evolution of imperfections in the material con-
sidered. B

To describe this model a set of the internal state variables is introduced. In this set one
scalar internal variable is interpreted as the scalar measure of the concentration of defects
and the other as the scalar measure of the concentration of imperfections. It is postulated
that the evolution equations for both of these internal state variables have the form of the
diffusion equations.

Some simplifications and particular cases of the constitutive equations proposed are
discussed.

As an example of application, the straining process of a cylindrical bar specimen
under the condition of uniform elevated temperature is considered. The tensile velocity
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is assumed to be constant. The problem is treated as axisymmetric and quasi-static. The
material of the specimen is-assumed to be elastic-viscoplastic with defects and imperfec-
tions. Particular forms of the material functions involved in the theory are assumed on
the basis of available axperimental data for mild steel. Numerical calculations are obtained
and discussed. It was found that the onset of the instability by the necking mode is very
much sensitive to the diffusion cooperative effects.

2. Modified material structure with internal state variables

In the previous papers [27] the author developed a general thermodynamic theory
of dissipative materials. In this theory the notion of the intrinsic state in a particle X
of a body # plays an important role. The intrinsic state ¢ of a particle X is defined as a
pair —the local deformation-temperature configuration P(r) = (C(z), #(1), V(1))
of a particle X and its method of preparation A(t), i.e.

2.1) o= (P(1),A)), P(t)e%, A(t)ex.

A method of preparation A(f) of the deformation-temperature configuration of a
particle X represents the way of inserting the additional information required to define
uniquely the intrinsic state of a particle X and is needed to describe the internal dissipation
of a material.

Through the particular realization of a method of preparation an internal state variable
material structure can be constructed. It is postulated that A(f) = a(t) is an element
of a finite dimensional vector space ¥ ,.

The principle of determinism for the material structure with internal state variables
is expressed by the constitutive equations

22) Z(t) = S(P(1), a(t)), Z()e¥

and can be stated as follows: A unique value of the response Z(¢) of a material at X, i.e.
unique values of the free energy y(), the entropy n(t), the Piola-Kirchhoff stress tensor
T(z), and the heat flux vector q(¢), corresponds to every intrinsic state 0 € Zc ¥ x ¥y,

The mapping S:Z — & is called the response function and represents the free ene
response function ¥, the entropy response function N, the stress response function T
and the heat response function Q, i.e. )

(2.3) S = (¥,N, T, Q).

The evolution for the material structure with internal state variables is postulated
by the initial-value problem for the operator differential equation of the form
(2.4) d,a(t) = La(t)+(0), a(0) = ao € H(Z),

where 2 is a linear, in general unbounded, operator with domain 2(£) and range #(%)
both contained in a real Hilbert space # and f is a (nonlinear) function defined on
into .

We need to endow the method of preparation space #* = ¥, with the properties of the
real Hilbert space .
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Let a body & be an open domain in the n-dimensional Euclidean space E with boundary
0% which consists of a bounded part 0%, and an unbounded part d%&,. Then the domain
(%) is defined as follows:

25 9(L) = {a(r) € #, a(t, X) da(t)+b(t, X)a(t) =
=0,t€[0,dp),X €0%,, lim a(t, X) = 0},
X—od,

where n is the unit outward normal vector on 84%,, a and b are bounded functions on
[0, dp] x 8#,. & is a bounded domain if 0%, is empty and # is whole space E if 04, is
empty. In general, d# consists of a bounded part and an unbounded part such as the
exterior of a sphere or a half-space, etc.

A modified material structure with internal state variables is defined by the constitutive
equations (2.2) and the initial-boundary-value problem (2.4) and (2.5).

The main feature of the material structure proposed is a more general evolution of the
internal state variables in a body &. The evolution is governed by the partial differential
equations and, as a result, depends on the boundary conditions assumed.

Of course, we can obtain a classical formulation (cf. B. D. CoLEMAN and M. E. GURTIN
[6]) under the condition that the linear operator % vanishes.

3. Thermodynamic restrictions

DEerFINITION 1. Every pair (P, Z) such that

(i) DomP = DomZ;

(ii) The constitutive equations (2.2) and the evolution equations (2.4) are satisfied,;

(iii) For every instant of time t € [0, dp] the dissipation principle in the form of the Clau-
sius-Duhem inequality

(3.0 -p()— 19(1)'?(‘)+—tr['1'(f)(3(f)] :9(:) q(t) V(1) 2 0

is satisfied; will be called an admissible local thermodynamic process.

We postulate such assumptions for the response functions S= {‘I’ N T Q} and
for the differential operator .# and the nonlinear function f that the dissipation principle
leads to the results as follows

dpon¥'(-) =0, T(t) = 2eaqn‘i’(-) () = —dan¥(-),

(3.2)

d(0) = —un¥(-)- da(t)— Qo) V(1) 2 0

19(1)
for every t € [0, dp].
The internal dissipation function is defined by the expression

(3.3) i(0) = = du P () * [La(t) +H(9)].

f?(t)

Our considerations were based on the Clausius-Duhem inequality as a fundamental
dissipation principle. Different results can be obtained when the I. MULLER [20, 21] con-
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ception is used as a basic thermodynamic postulate. A discussion of constitutive restric
tions according to the I. MULLER idea for the modified internal state variable structure
will be given in a separate paper.

It is easy to prove that in both cases the thermodynamic condition is weaker than
that needed for stability requirements, (cf. results obtained by R. L. Fospick and K. R. Ra-
JAGOPAL [10] for fluids of third grade and by M. E. GurTIN [13] for global stability).

4. Stability of equilibrium intrinsic states

The following definitions specify what we mean by a solution, an equilibrium solution
and the stability of an equilibrium intrinsic state.

DEFINITION 2. By a solution a(t) of Eq. (2.4) we mean the following: (i) a(t) is unjformly
Lipschitz continuous in t for each t 2 0 with a(0) = @ € D(£) in a Hilbert space #;
(ii) a(t) € D(%) for each t = 0 and the strong derivative 8,a(t) = La(t)+ (o) exists
and is strongly continuous except at a countable number of values t.

DEFINITION 3. An element a* of D(¥) is an equilibrium solution of Eq. (2.4) if and
only if

@.1) Pa*+(P*, a*) = 0
Jor all t 2 0 and for P* = _(C‘(X), 9*(X),0). Then the state
“4.2) o* = (C*X), #*(X), 0, a*(X))

is called an equilibrium intrinsic state for the material at X of a body %.
DEFINITION 4. An equilibrium intrinsic state o* is said to be stable (with respect to initial
perturbations of a) if given any € > 0, there exists a 8.such that

4.3) [la(0)—a*|| < 6 = [|a(t)—a*|| < &
Jor allt = 0, where a(t) is any solution of
(4.4) d,a(t) = La(t) +f (P*xa (1)), a(0) = a,e2(2L).

Then a subset D(L) of H# is said to be a stability region of the equilibrium intrinsic state
a*.

DEFINITION 5. An equilibrium intrinsic state o* is said to be asymptotically stable if
(i) it is stable, and (ii)

@.5) lim|jae(f) —a*|| = 0,

where a(t) is any solution of Eq. (4.4).

From the analytical theory of semi-groups (cf. E. HiLLE and R.S. PriLLips [14],
K. Yosipa [36], T. Kato [17], F. E. BROwWDER [2] G. LuMer and R.S. PriLLiPS [18],
G. J. MinTY [19], C. V. Pao [24] and C. V. Pao and G. VoGt [25]) we know that if the
operator ., = £+ f(P*, ) generates a nonlinear semi-group {T,; ¢ = 0}, then a solu-
tion

(4.6) d,a(t) = La(t) +{(P*, a(t)), =0
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starting at ¢ = 0 from any element a, € 2(¥) is given by
4.7 a(t;a) = Tya, forall =0 with a0;a,) = a,.

Thus the existence of a solution to Eq. (4.4) is ensured and the stability property can
be determined from the family of nonlinear operators {T,;t > 0}.

The problem is to impose conditions on the operators & and f such that the operator
Z =%+ f(P* *) generates a nonlinear contraction or negative contraction semi-group
in  from which the existence, uniqueness and stability or asymptotic stability of the
solution (4.4) are insured.

Basing on the results presented by C. V. Pao and W. G. VoGt [25], we can prove
the theorems as follows:

THEOREM 1. If a nonlinear operator ¥, = £ +1(P*,). is dissipative, i.e.

(4.8) (Zao—Zw,a—w) £0 for a,we2(¥)

then (i) there exists a unique solution of the initial-boundary value problem (4.4) in the sense
of Definition 1;

(ii) any equilibrium intrinsic state o*, if it exists, is stable;

(iii) a stability region of o* is 2(%).

THEOREM 2. If a nonlinear operator ¥, = & +?(P*, *) is strictly dissipative, i.e.

4.9) (Z,0—Zw,a—w) £ —flla-w||? a,w e D(L)

then all the results in Theorem 1 hold, and moreover, if an equilibrium intrinsic state o*
exists it is asymptotically stable.

In Eqs. (4.8) and (4.9) the symbol (-, -) denotes the inner product in a Hilbert space
. The supremum of all numbers f satisfying Eq. (4.9) is called the dissipative constant
of Z,.

It is noteworthy that to satisfy for instance the condition (4.9) in Theorem 2 we have
to assume:

1. The linear operator % is the infinitesimal generator of a negative contraction semi-
group of class C, (for definition see K. Yosina [36]) with the contraction constant S*.

2. The nonlinear function f is Lipschitz continuous on # with Lipschitz constant
k < f*ie. :

(4.10) IIf@*, a)— f(P*, w)|| < klla—w|| forall a,we k.

The Lipschitz continuity of f in the asymptotic stability theorem can be weakened
by using the condition

(4.11) (f(P*, a) - T (P*1w), a—w) < klla—wl[?

with k < p* forall a«, w € .

It can be easily proved that stability and asymptotic stability are invariant if the inner
product (-,-) of o is replaced by an equivalent inner product (-, ), with respect to
which a nonlinear operator &, = #+ f(P*,) is dissipative or strictly dissipative (cf.
C. V. Pao and W. G. Voar [25]). '

These results are of great importance for practical application to the study of stability
conditions for dissipative bodies with internal defects and imperfections.

8 Arch. Mech. Stos. 4/81
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5. Physical motivation

Recent physical investigations have proved the importance of interface kinetics in the
explanation of a complicated nature of polycrystalline matter flow in some regions of
tempesature and strain rate changes. When strain rate is small (10-2—10-* s-!) and the
temperature is high enough to permit diffusion and when strains are large (as in super-
plastic flow), the flow process can be modelled by a grain-boundary sliding mechanism
with diffusional accommodation. For higher strain rates (10~*—10-2 s~1) dislocation
creep flow is more dominant.

The main dissipative mechanisms for mild steel at room temperature for a strain rate
range from 10-*2 to 10% s~! are shown in Fig. 2.

M. F. AsuBy and R. A. VERRALL [1] suggested a model for a polycrystalline material
deformed at temperature above 0.3 9, (where $y is the melting temperature). This model
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FiG. 3. The isothermal deformation process of a group of four grains, at constant pressure and stress (After)
M. F. AsuBy and R, A. VERrRALL [1].
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is called non-uniform diffusion-accommodated flow and is generalization of the quasi-
uniform diffusional flow model proposed by C. HERRING [15] and R. L. CoBLE [5]. At
large strains the model of M. F. AsuBy and R. A. VERRALL [1] proceeds faster than Herring-
Coble creep.

The characteristic assumptions of the Ashby-Verrall model are as follows (cf. Fig.3):

(i) The grains do not suffer the same change as the specimen.

(ii) The grain switches its neighbours.

(iii) The number of grains across the cross-section of the specimen does not remain
constant.

(iv) The translation of the grains involve also their rotation. In this model grains
behave as if they consisted of a rigid .core surrounded by a plastic mantle.

As it is shown in Fig. 3 the grains themselves suffer accommodation strains which
permit them to remain stuks together. In this model these accommodation strains are
accomplished by diffusion.

There are two independent diffusion paths in a polycrystal, namely bulk diffusion
through the grains and diffusion via the high-conductivity paths which the grain boun-
daries provide.

It has been assumed by M. F. AsuBy and R. A. VERRALL [1] that superplastic flow
is almost always boundary-diffusion controlled.

Basing on the dissipative process for the model, Ashby and Verral assumed that the
work drives four irreversible mechanisms:

(i) The diffusion process by which the grains temporarily change shape, suffering
accommodation strains.

(ii) The interface reaction. Grain or phase boundaries may be imperfect sinks or
sources for point defects.

(iii) Grain boundary sliding. Work is done against the boundary viscosity when shdmg
occurs.
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F1G. 4. The effect of changing the grain size on the stress-strain rate plot (After M F. Asupy and R. A. VER-
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(iv) Fluctuations of boundary area. The grain boundary area increases as the cluster
of four grains moves from the initial to the intermediate state, storing free energy in the
system. As the cluster moves from the intermediate state to the final posntlon the boundary
area decreases, releasing the energy (cf. Fig. 3).

Any polycrystalline material can deform by the mechanism described above. But its
characteristics will be apparent only in the presence of competing mechanisms like that
of dislocation creep or a thermally-activated process.

Many aspects of superplastic flow can be explained as a superposition of the non-
uniform diffusional mechanism. .

In Fig. 4 the effect of grain size for this model is shown and in Fig. 5 4 comparison
of the model predictions with the experimental data of R. C. Cook and N. R. RISEBROUGH
[7] for a dilute zinc alloy is presented.

100 ¢ ;
3 Theory — —‘
— 100F Experimental dala
L of Cook and Risebrough
a [ for Zn 02wl %Al;
£t V=300K, d=35y
wg oS
~ '
N ”
01 (TR ETTT| S RIS T RTTT] AN I S TRTT] B S T T NETTTI
06 e P w03 02 pot]

Strain rafe (sec)™?
F1a. 5. The comparison of the measurements of R. C. Cook and N. R. Risgsroucu [7] with theoretical
results of the diffusional-accommodated model (After M. E. AsaBy and R. A. VERRALL [1].

These results have lead to the conclusion that the threshold stress predicted by the
model is generally too small but in the range of strain rate from 10~ to 10~2 s~ agreement
of the theoretical results with experimental data is sufficiently good.

The main conclusion from the considerations of Ashby and Verrall concerns the
importance of the diffusion effects. We can say that in some ranges of strain rate and
temperature changes the diffusion effect is crucial for the appropriate description of the
complex behaviour of polycrystalline materials,

Recently G. H. EDWARD and M. F. Asupy [9] have analysed the growth of an array
of grain boundary voids during creep deformation in order to describe intergranular
fracture. They developed the coupled diffusion and power-law creep-model. In this model
each void grows by diffusion, but the void plus its diffusion field is contained within a cell
of power-law creeping material. The coupled model predicts times and strain-to-fracture
which appear to be consistent with observation.

On the other hand investigations on the growth of an array of grain boundary voids
called here imperfections during a deformation process showed the importance of a coup-
led diffusion and thermo-activated mechanism to explain complex fracture phenomena
in metals.
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-

We propose that each void grows by diffusion, but the void plus its diffusion field is
contained within a cell of a thermo-activated flowing material, cf. Fig. 6.

We assume that thermo-activated mechanism leads to elastic-viscoplastic flow of a
material. The mechanism of grain-boundary sliding with accommodated diffusion intro-

Diffusion zones
for voids

Voids (hales)
Cell of thermally activated Flowing

material with internal defects

FIG. 6. A model of a thermally-activated flowing material with internal defects and imperfections (voids).

duces the evolution of defects and the mechanism of void growth plus its diffusion field
inserts the evolution of imperfections in the material considered.

Basing on these physical considerations, we propose a model of an elastic-viscoplastic
material with internal defects and imperfections.

Let E, denote the inelastic strain, T the stress, ¢ temperature, £ the scalar measure
of the concentration of defects and £ the scalar measure of the concentration of imper-
fections (voids) in a material. '

The fundamental evolution equation for the inelastic strain E, has the form (cf. [29])'

.1) E, = yexp {(—U(T*/kd}, |
where y is the viscosity coefficient, U(T*) denotes the activation energy and k is the Boltz-
mann constant. The stress T* is determined by the relation

(5.2) ] e o

where T, denotes the athermal component of stress.
Experimental results and physics of solids for the thermo-activated flow mechanism
suggest the relations (cf. [29])

o = o[ -1),
(503) Y Shas 73(19’ E,; &, C)’

T.=T.0,E,. £, 0).
Then the evolution equation (5.1) takes the form

. W A
(5.4) : m:@(%—q

A
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If the range of strain rate changes is such that the main dissipative mechanism is the
dislocation creep, then we can assume

55 U= o (o),
where
(5.6) To = To(®, E,, &, ).
For this case the evolution equation (5.1) has the form
. & T
(.7) | B = 50 ( 'i‘o)'

It is noteworthy that the Norton law of the creep theory results from Eq. (5.7) as
a particular case.

It is sufficient to assume

T\ (T)\ .
(5.8) ¢ (TO—) = (_TD_) and EO =Y.
Then, from Eq. (5.7) we have
E T\
5.9 o= S (=S i
(5.9) " (Tn )

* From the considerations above we reach the important conclusion that the parameters
E,, &£ and { can be assumed as fundamental internal state variables in the model proposed

The viscosity coefficient y and the athermal stress T4 (or T,) can be treated as internal
state variables or after the assumption of Egs. (5.3) (or (5.6)) as material functions.

The evolution of the internal state variables £ and ¢ shall result from diffusion effects
and shall be described by the second order partial dlﬂ‘ercntlal equations (diffusion equa-
tions).

If the physical interpretations of the internal state variables & and ¢ are assumed as
the probabilistic densities respectively, for the distribution of defects and imperfections
in a body, then after introducing additional conditions we can obtain for & and ¢ the
Fokker-Planck evolution equations.

6. Elastic-viscoplastic material with internal defects and imperfections

To describe this physical model of dissipative material within the framework of a
modified structure with internal state variables let us introduce a set of the internal para-
meters as foHows (cf. a more restrictive assumption of the author [30]):

(6.1) a(t) = {E,(t), x(t), &), £(1)},

where E,(7) is interpreted as the inelastic strain tensor, #(¢) as the isotropic work-hardening
parameter, £(¢) as the scalar measure of the concentration of defects and ¢ () as the scalar
measure of the concentration of imperfections.



STABILITY PROBLEMS POR INELASTIC SOLIDS WITH DEFECTS AND IMPERFECTIONS 599

The evolution equations are postulated in the form

a0, = 9@ (23 -1 s,

62  3,ut) = tr[K () d,E,(1],

a,&(t) = VDl(or)VE(t)+ - ) (E‘—-E(t))-}-tr[é,(o)a,E,(:)],
0,L(1) = VDz(U)VE(tH ) (C*—~C(t))+tr[“‘z(cr)6 E, (1],
where
(6.3) f() = F(T(), 8(t), E,(1), £(t), £(1))

denotes the quasi-static yield function (loading function), and the symbol € []) is under-
stood according to the definition

0 if f(-) = «(),
(6.4 ([])==[] if () > x(t).

The material function @ is interpreted as the excess of stress over the quasi-static yield
condition and is motivated by the thermo-activated mechanism of viscoplastic flow,

y(0) denotes the viscosity coefficient, K(a) is the material function which for practical
application can be assumed as proportional to the stress tensor T(¢), D,(¢) and D, (o)

denote the diffusion coefficients for defects and imperfections, respectively,

1
ne *d

denote the velocities of generation of defects and imperfections, respectively, and

z()

_.l(a) and E,(a) describe the generation of defects and imperfections, respectively, caused
by plastic flow.

Practical applications need some simplifications. The most important of them is the
assumption of one internal state variable w instead of two & and {. Then w is interpreted
as the scalar measure of the concentration of defects and imperfections in the material.
The evolution equation for w is postulated in the form

69 200 = VDEVa() + — (0 —0()+tr[E@ A E]

and has an obvious interpretation.
Under this simplification the internal dissipation is described by

67) (o) = ﬁm{ @)@ (%%—1)) tr[(Ogy ¥ + 0. FK(0) + Py YE(9)) 10/ ()]

+ 8o ¥ [VD(U)Vw(I)-i- (w*—m(r))],

It is noteworthy that in the determination of the particular forms of the material func-
tions D(0), 7(0) and E(cr), the conditions of stability (4.8) or asymptotic stability (4.9)
should be taken into account.
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For the formulation of the initial-boundary-value problem it will be useful to have
the rate type material structure.

In the case of an isothermal process we have the constitutive equation for the stress
tensor as follows:

(6.8) () = T(oy) = T(E(), E,(1), x(1), o(1)).

Let us postulate that the intrinsic state o, for the rate type material structure is deter-
mined by the expression

(6.9 o2 = (E(1), T(t), x(1), w(t)).

The evolution equation for the stress tensor T(z) has the form (cf. [28])
(6.10) 0,T(t) = Bo+B[2E(),
where

Bo = #(@){® %—1)} {80 Tl0rf1+ 0, Ttr (Ko f]

©.11)
- amf'tr[ 01 f1} + 0o T [VD(U;)Vw(tH- (w* —w(!))]

él = an'i‘.

The evolution equation for » and w have the form as postulated by Egs. (6.2), and
(6.5)

,:x(t) = P(o2)tr[K(ay) or f] (‘D ﬁr)) —])'\”

(6.12)

)W
) "‘)/-

deo(t) = VD(U,)Vw+ — (w‘ —(t))+p(o)tr[E (urz) orf] (‘D ( x(

To keep our consideration as s1mple as possible we postulate

¥(02) = yo = const,
(6.13) () = (lIs)'/?, where S = T—(%m Tu)l,

D(o;) = D, = const,

7(g;) = 1, = const,
then
6.14) ROy .
(Is)'2
Basing on available experimental data the determination of the material constant y,
and the material function @ for rate sensitive plastic materials was presented in the prev-
ious paper of the author [30]. Using the results of that paper we have

1/2 5
(6.15) P = [—Qli)—-ll and y, = 25.82 571,
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7. Applications to instability and fracture phenomena

In a separate paper of the author [32] the rate type constitutive equations for an elastic-
viscoplastic material with defects and imperfections have been applied to the solution
of the initial-boundary-value problem. It has been studied the tensile deformation of a
circular cylinder bar of initial length 2L, and initial radius R,. The problem has been
treated in the cylindrical coordinates r, 0, z. It has been assumed that thevproblem is axi-
symmetric and additionally that the deformations are symmetric about the mid plane
z=0.

Two initial-boundary-value problems have been formulated. In the first of them the
ends of the specimen are assumed to be cemented to rigid grips, while in the second they
remain shear free. In both cases the bar is strained parallel to its main axis with a constant
velocity U. The lateral surfaces of the bar are required to remain stress free in both cases.
Similar problems for an elastic-plastic material were investigated by A. NEEDLEMAN [22]
for a cylindrical bar and by M. A. BURke and W. D. Nix [3] for a rectangular bar.

Particular attention has been given to investigate diffusion effects caused by the evolu-
tion of defects and imperfections on the onset of the instability of the straining process.

It has been found that the onset of the instability by the necking mode is strongly
dependent upon the diffusion cooperative effects.

The diffusion process enhances necking and the strain rate effect changes the onset
of the instability. The strain at the instability point decreases with an increase in strain
rate while the load at the instability point increases with an increase in strain rate (cf.
[30-32)).

These conclusions have proved the great importance and usefulness of the new theory
developed.
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