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Optimization problems for elastic anisotropic bodies 

N. V. BANICUK (MOSCOW) 

OPTIMIZATION problems for anisotropic bodies are considered in the paper. Certain variational 
problems connected with the rotation of matrices are discussed, and sufficient" conditions of 
optimality are derived. The results are then used to determine the optimum distribution of 
moduli in anisotropic nonhomogeneous rods exhibiting maximum torsional rigidity. Optimi­
zation problems of anisotropic properties of elastic media are also considered in connection 
with two-dimensional problems of elasticity. Several examples are discussed dealing with opti­
mization of the form of anisotropic bodies, and with simultaneous optimization of the form 
and properties of anisotropic materials. 

W pracy rozwai:ano zagadnienia optymalizacji dla cial anizotropowych. Rozpattzono pewne 
zadania wariacyjne zwi<\ZClne z obrotem macierzy i otrzymano watunki wystarczajllce opty­
malizacji. Zastosowanie tych wynikow pozwolilo uzyskac optymalny rozklad modulow w ani­
zotropowych prC(tach sprC(iystych wykazujl!cych maksymaln~ sztywnosc skr~nia. Problemy 
optymaliza(ji anizotropowych wlasno8ci osrodkow sprC(iystych rozwai:ano rowniez w odniesie-, 
niu do plaskich zagadnieri teorii sprC(zysto8ci. Przytoczono kilka przykladow dotyc7.'leych wy­
znaczenia optymalnej postaci cial anizottopowych oraz rownoczesnej optymalizacji postaci 
i wlasno8ci cial anizotropowych. 

B ~aHHoii pa6oTe o~aiOTcH nOCTllHOBKH 3~aq OIITHMH3al.UfH aHH30TpOIIHbiX Ten. Pac­

cMOTPeHbi HeKOTOpbie BapHQlUIOBHbie 3a,I{aliH, CBJI3aHHble C Bpaii{eHHeM M2TPHU, H H3yqeHbi 

AOCT2TOliHbie YCJIOBHJI OnTHMaJILHOCTH. C npHMeHeHHeM 3THX pe3yJihT2TOB HaHAeHbi OIITH­

MaJILHble pacnpe~eneHHH MOJ{yneii a Heo.[{Hopo,lUibiX aHH30TpOIIHbiX crep>KHRX, o6n~aronuoc 
MaKCHMaJILHOH >KeCTKOCTb npH KpyqeHHH. Bonpocbi omHMH3al.UfH aHH30TpoiiHbiX CBOHCTB 

ynpyrOH cpe~H paCCMOTpeHbl TaK>Ke npHMeHHTeJihHO K llJIOCKHM 32~2llaM TeopHH ynpyroCTH. 

flpHBe~eHbi HeKOTOpble pe3yJibTaTbi, K2CaJOI.IUiecH OTbiCKaHIDI OIITHMam.Hoit cPoPMbl 2HH30-

TpOnHbiX TeJI H COBMeCTHbiX 3a~aq OllTHMH3QlUIH cPoPMbl H llHH30TpOIIHbiX CBOHCTB. 

1. Formulation of the optimization problems for anisotropic bodies 

ELEMEINTS of a structure acted on by external loads are usually subject to complex states 
of stress and strain, what means that the stresses and strains measured at different points 
and directions of the body are also different. This is the reason why anisotropic and non­
homogenedus materials are widely used in engineering practice. The fundamental idea of 
reinforcement consists in reducing the material in the unstressed parts of the body, in 
weakening the structure in "unemployed" parts and directions and, conversely, in strength­
ening these directions or portions which transmit the principal forces or contain dan­
gerous stress concentrations. 

The ability of modelling various type of structural anisotropy widens the range 
of applicability of structures made of composite materials and makes it possible to utilize 
the anisotropic properties of materials in elastic constructions. Such tasks like determination 
of the form of anisotropic bodies (made of materials with prescribed anisotropy), optimum 
distribution of elastic moduli in the deformed body, and simultaneous optimization of the 
form and internal structure of the body are of pr~ncipal interest. 
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It should be mentioned that the formulation and solutions of the problems of opti­
mization of reinforced structures presented in this paper are based on a purely phenom­
enological approach. The well-known equations of the theory of elasticity of anisotropic 
bodies are assumed to be satisfied. The elastic moduli Aijld which appear in the generalized 

Hooke's law 

(1.1) 

and in other equations governing the behaviour of structures are determined by the ne­
cessary tests performed on the reinforced materials. The stresses u;i and strains Eii represent 
second-order tensors, and the components Aiikl form the fourth order tensor of elastic 

X 

FIG. 1. 

moduli. In the general case of anisotropic materials the number of ·independent moduli 
A1ikl in Eq. (I. I) equals 21. If the structure of. the anisotropic body reveals a certain type 
of symmetry, the elastic constants also possess certain symmetry properties, what is mani­
fested at each point of the body by the existence of such directions which are equivalent 
from the point of view of elastic properties; consequently, the number of independent 

moduli A1,1" is reduced. 
It should be noted that, since the magnitudes A;i'" form a fourth-order tensor, rotation 

of the coordinate axes makes it transform according to a linear law, the transformation 
coefficients being represented by products of the cosines (n1,1, ••• , n1,1) of the angles made 
by new (primed) and original (unprimed) directions of the axes, A1,i'l''' 

= Aiilcln;,;nnnt'kn,,,. 

·· Various optimization problems may be formulated within the framework of the theory 
of anisotropic bodies [1-5]; some of them will be discussed here. 

· Determination of the optimum forms of elastic anisotropic bodies constitutes an essen­
tial generalization of the corresponding problems concerning isotropic bodies. Principal 
difficulties arising here are due to very complex forms of the equations governing the 
behaviour of anisotropic structures. 

As an example of nonclassical formulation, the problem of optimum distribution 
of elastic moduli may be quoted. These probJems will be treated in detail in this paper. 
_For definiteness let us assume that the deformability of the structure will be minimized 
under the condition of its limited weight. ·Let us assume the body to consist of identical 
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infinitesimal crystals arbitrarily oriented with respect to each other. The fact that the crys­
tals are identical but arbitrarily oriented means that the positions of the axes of elastic 
symmetry with respect to a fixed Cartesian reference frame change with the position within 
the body, but the values of the elastic moduli measured along the axes of elastic symmetry 
remain unchanged. Let us denote the orientation of the axes of anisotropy at each point 
x = {x1 , x 2 , x3 } of the medium with respect to a fixed Cartesian coordinate system 
(x1 , x2 , x3) by the angles cx1 (x), cx2 (x), cx3 (x) representing the components of a vectorial 
function cx(x), that is cx(x) = {cx1(x), cx2 (x), cx3 (x)}. Let cxi (j = I , 2, 3) denote the angle 
made by the elastic symmetry axis xj and the fixed coordinate axis xi. The problem of 
determination/ of the optimum orientation of the axes of anisotropy, i ~e. finding the vector 
function cx(x) from the condition of minimum compliance, is now reduced to 

(1.2) J. = mi~ J(a.). 

Another optimization problem may be formulated by assuming that the anisotropy 
axes at each point of the body are fixed, while the values of the moduli corresponding 
to such axes represent the unknown functions sought for. Certain conditions tnay be 
imposed on the moduli resulting from the structure of the composite and from the me­
chanical properties of its components. 

Solution of these problems and determination of the optimum distribution of elastic 
moduli makes it possible to find the most suitable directions of the reinforcement, and to 
evaluate the quality of the structures traditionally used in practice. Even in cases in which 
the optimum structural anisotropy proves to be difficult to realize in practice, solutions 
of the optimization problems may be used to determine the limiting possibilities and the 
quasi-optimum reinforcement schemes. 

Before passing to the discussion of particular optimization problems of anisotropic 
bodies, let us first consider the auxiliary problem dealing with the determination of optimum 
rotations of a given matrix. 

2. On the problem 9f extremum connected with rotation of the matrix 

Let us assume the system to be described by a scalar function cp and a square matrix T. 
The function cp = cp(x, y) and the elements tii = tii(x, y), (i, j = 1, 2) of the matrix T 
are defined in the region Q of the variables x, y. The function cp = 0 at the boundary r of Q, 
and the matrix Tsatisfies the orthogonalityconditions, i.e. T*T = E, where T* -transpose 
of the matrix and E- unit matrix. Let us define the functional J on the elements cp and T: 

(2.1) J(cp, T) = f j [(Vcp, T*ATVcp)-2fcp]dxdy. 
0 

Here f > 0 - a prescribed function, V - gradient, and the parentheses denote the scalar 
product. 

In Eq. (2.1) the symbol A denotes a symmetric positive definite matrix with the ele­
ments ali = aii(x, y), (i, j = 1, 2). Positive definiteness of the matrix means that a11 > 0, 
a1 1 azz- aiz > 0 and that its eigenvalues are also positive (A.1 > 0, i = 1, 2). Let us assume 
for the sake of simplicity that A.1 (x, y) < A.2 (x, y). 
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The prQduct of the matrices T* AT appearing in Eq. (2.1) is now denoted by M, i.e . 
. M= T* AT. Note that the eigenvalues of M are identical with those of A. 

Under the complementary conditions introduced above, let us consider the problem of 
:minimization of the functional J with respect to q> and T, 

J* = minrmi~J(q>, n, 
(tp)r = 0, T*T = E. 

-(2.2) 

Let us determine the neccessary conditions of optimization for the variational problem 
{2J) and (2.21- To this end compare the function q> and matrix T with the value 
~+~q>, T(E+ ~T). The variated values satisfy the boundary condition and the orthogonal­
ity condition (2.2) provided the variation of q> at the boundary r vanishes, and ~T is askew­
·symmetric matrix. Using the equalities (dffJ)r = 0, (~T)* = - ~T, the first variation of 
the functional corresponding to the variations dq> and <ST is written in the form 

<SJ = 2 f f lJTVq>, MVq>)dxdy+2 f f [(Vdq>, MVq>)-fdq>][dxdy. 
n n 

From the condition of the vanishing of lJJ for an arbitrary scalar function dq> equal to 
zero at rand an arbitrary skew-symmetrix matrix lJT, we obtain t~e necessary conditions 
of extremum for q> and T. The condition of extremum of J with :respect to q> has the for111: 
·of the Euler equation div(MV q>) = -f. The necessary condition for J to assume extremum 
values with respect to T is easily found to be the collinearity of the vectors V q> and MV q>. 
Consequently, the vector V q> is one of the eigenvectors of the matrix 

(2.3) MVq> = ).1 Vcp. 

On substituting the relation (2.3) into the Euler equation, we obtain the equations 

div(J., Vq>) = -f, i = 1, 2, 

(2.4) 
;., = ~ [au+a22+(-1)1 y(au-a22)2+4ai2], 

which may be used to determine the stationary values of q> in the case of T being given 
by Eq. (2.3). 

The elements of the orthogonal matrix Tare now represented in the form t 11 = cos ex, 
112 = -t21 = sinex, t22 ~ cosex, where ex-the angle ofrotation prescribed by the matrix 
T. Equation (2.3) is used to derive an explicit relation expressing the angle ex = ex(x, y), 
in terms of q> = cp(x, y). For definiteness let us assume that the vector Vcp = {lf'x, q>1 } 

corresponds to the eigenvalue J.1• But then the eigenvalues ).1 (i =I= j) will correspond to 
the eigenvector b ·= { cp,,- ffJx}. Let us perform scalar multiplication of both sides of the 
vector equation (2.3) by b; we obtain then (b, MV cp) = 0. The relation contains two separate 
cases. The first one 

sin21X = Q, Q = 
(2.5) 

cos21X = P, P = 

2(a 11 -a22)ffJxffJy -2a12(tpi -tp~) 

(Vcp)2 Jl (a 11 -a22)2 +4af2 

(au -a22)(tpi -tp;)+4a12ll'xfPy 

(Vcp)2 y' (a 11 -a22)2 + 4af2 
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corresponds to the smaller eigenvalue At. The second case cos2rt = -P, sin 2rt = -Q 
corresponds to the greater value A2 • Thus the stationarity condition does not yield the 
unique method of determining the angle rt and does not allow for the formulation of a closed 
boundary value problem necessary to find the values sought fo~. In order to find the unique 
dependence of rt upon ({', it is necessary to consider the sign of the second variation of the 
functional subject to optimization, and to determine which of the two cases corresponds 
to the minimum of J. 

It will be demonstrated that the functional J attains its minimum if the state (2.5), which 
corresponds to the smaller eigenvalue, is reached in the entire domain Q. To this end 
let us write down the expression for the second variation of J resulting from varying ({' and 
T under the conditions (2.2) 

(2.6) b2J =I I {(Vbq;, MVbq;)+ (bTVq;,MbTVq;)+ (MVq;), bTbTVq;) 
D . 

+2(bTVq;, MVbq;)-2 (Vb({J, bTMV({J)}dxdy. 

Let V q;- be the eigenvector corresponding to the eigenvalue At. Then the . orthogonal 
· eigenvector bTVq; corresponds to the eigenvalue A2 • If the matrix bT is represented in the 
form bT = brtB, B denoting the skew-symmetric matrix with the elements b11 = b22 = 0, 
b12 = -b2 t = I, then bTbT = - (brt) 2E, bTVq; = brt{q;1 ,-q;x}· Using these relations, 
the expression (2.6) is transformed to 

(2.7) b2J = J J (p, Cp)dxdy, p = {b!X, bq;x, bq;;}. 
n 

Here c - the symmetric square matrix 3 X 3 with the minors Ll1, Ll2, Ll3 of the first, 
second and third order are L1 1 = ( A2 - A1)(V q; )2, Ll 2 = A1 L1 1, L1 3 = A1 Ll 2 • The integrand 
in Eq. (2.7) represents a quadratic form of the components ofp = {brt, bq;x, dq;1 }. 

From the assumption of positive definiteness of the matrix A and the inequality 
At(x, y) < A2(x, y) it follows that all the minors are nonnegative (LI 1 ;;?; 0, i = I, 2, 3). 
The minors Ll i vanish if V q; = 0. The · vanishing of the gradient over a finite subregion 
!J0 c Q contradicts Eq. (2.4) and hence the strong inequalities Ll 1 > 0 (i = I, 2, 3) hold 
true almost everywhere on !J. From these inequalities and the Silvester criterion it follows 
that the quadratic form (p, Cp) is positive definite and, consequently, b2J > 0. Thus if 
the function a(x, y) is related to ({'by means of Eq. (2.5) in the region Q (the case ofmi- . 
nimum eigenvalue), then J attains its minimum. 

3 . . On tbe optimum anisotropy of rods under torsion 

The results obtained in Sect. 2 will be used to determine the optimum distribution 
field of moduli in twisted rods. 

I) Let us consider the problem of torsion of an elastic anisotropic cylindrical rod. 
The rod is parallel to the z-axis in the rectangular coordinate system (x, y, z), and is 
subject to torsion about the axis by torques applied to its ends. The cross-section of the 
rod on th~ xy-plane is denoted by Q, and the boundary of Q- by r. The rod is assumed 
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to be rectilinearly anisotropic and to possess at each point a plane of elastic symmetry 
perJ>endicular to the axis z of the cylinder. Let us introduce the stress function qJ(X, y) related 
to the components of the stress tensor Txz, Tyz and the rate of rotation per unit axial length 
()according to the laws Txz = OqJ,, Tyz = -OfPx· In order to determine the stress function 
the variational principle is used ( cf: [ 6]): 

(3.1) J = I I (m,,(/); -2m, 2 (/Jx(/Jy+m 22 q;; -4q;)dxdy--+ minq>. 
n 

The minimum in Eq. (3.1) is sought for in the class of functions satisfying the con­
dition (q;)r = 0. The symbols m11 , m12 , m22 denote the deformation coefficients in the 
system (x, y, z). In addition to the system (x, y, z) introduce at each point (x, y) E Q 
another system ~, 'YJ, C, the C axis being parallel to x, and the axis ~ - inclined by the ang1e 
cx(x, y) to the x-axis (Fig. I). In the system (~, 'YJ, C), the material of the rod is characterized 
by the deformation coefficients a11 (x,y),a12(x,y) a22(x,y) which are considered to 
be known functions of x and y. The coefficients mii are expressed in terms of aii by means 
of the relations [6] 

(3.2) 

m 11 = aucos 2ct-a 12 sin2ct+a22 sin2a:, 

m22 = allsin2ct+a 12 sin2ct+a22 cos2ct, 

m12 = ~ (a11 -a22)sin2a:+al 2 cos2a:, · 

which may be represented in a matrix form M = T* AT (notations of Sect. 2). 
Let us consider the function cx(x, y) governing the orientation of the axes ~, 'YJ, C and 

formulate the following optimization problem: determine the function ex = cx(x, y) ·such 
that qJ(x, y) given by Eqs. (3.1) and (3.2) leads to the maximum torsional rigidity K of 
the rod (K equals twice the integral of fP over the region Q). Let us note that if the material 
is locally orthotropic and the axes ~, 'YJ, C coincide with the axes of orthotropy (in this 
case a12 = 0), the optimization problem consists in determining t\l,e optimum distribution 
of the angles of inclination of the orthotropy axes. 

Taking into account the fact that for the function q;(x, y) minimizing the functional 
(3.1) under the boundary condition (fP)r = 0 the equality J = - K holds true, the relation 
between J and K is written in the form K = - minq)'. With this in mind, the problem 
of maximization of the torsional rigidity K may be reduced to a consecutive evaluation 
of the minima of J with respect to qJ and ex, i.e. K* = max~r K = -min~r min~~' J(cx, qJ). 
In this manner, the problem of determining optimum orientations of the anisotropy 
axes is reduced to the solution of the variational problem considered in Sect. 2. Conse­
quently, the results of Sect. 2 may be applied to the analysis of-the problem of maximi­
zation of the torsional rigidity of rods. 

2) In the general case, the determination of q; and ex is reduced to the solution of the 
boundary value problem: 

(.1.1 (/)x)x+ (J.l (/Jy)y = -2, (fP)r = 0, 
(3.3) 

A1 = -}(au+a22-y(au-a~2)2 +4a:zl 
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and to the computation of ex according to Eq. (2.5). The boundary value problems of such 
kind have been solved for various methods of prescribing the coefficient A.1 (in connection 
with the problems of torsion ofnonhomogeneous rods) and are presented in [6, 7]. 

3) Let the deformation coefficients all and, consequently, the eigenvalue A.h be in­
dependent of x, y. Then the equation of torsion of an optimum rod is reduced to the 
Poissonequation ({Ju+f/Jyy = -2A.:t 1 which describes, under the boundary condition (cp)r = 
= 0, the torsion of isotropic rods with the shear modulus G = A.:t 1

• Since the theory of . 
torsion of isotropic homogeneous rods is well developed and solutions of the corresponding 
boundary value problems are known (in analytical or numerical forms) for most of the 
practically important cases of cross-section forms (cf. [8]), the method of reduction mention­
ed above makes possible the solution of the optimization problem posed in this section. 

4) Let us consider the problem of optimization for a rod made of a locally orthotropic 
material: a11 = 1/G1 ,a22 = 1/G2,a11 = 0, where G1 ,G2-shear moduli. In this case · 
the distribution of the angles of inclination of the orthotropy axes is given by the formula 

(3.4) 
1 

a = 2 arctg,u, ,u = 2(/Jx(/)1 /(qJi- (/)~), 

(3.5) 
1 n . 

rt. = -
2 

arctg,u+ 2 . 

Angle ex is found from Eq. (3.4) provided .u ~ 0, (/Jx(/Jy ~ 0 or .u < 0, fl'xfp1 < 0. Equation 
(3.6) is used to determine ex if .u > 0, (/Jx(/)1 < O·and i.f fJ < 0, (/Jx(/)1 ·> 0. 

It is easily demonstrated (cf. [4]) that each point (x, y) E D, the .11-axis corresponding 
to the greater shear modulus G 1 is tangent to the cp contour line, while the E-axis connected 
with the smaller modulus G2 is orthogonal to this line. 

X 

FIG. 2. 

In Figs. 2 and 3 are shown the examples of solutions of the optimization probler;ns 
concerning rods with elliptical and square cross-sections. Solid and dashed curves represent 
the respective families of contour lines of the stress function and of the orthogonallines. 
The TJ-axes with the greatest shear modulus G 1- are tangent to the lines belonging to the 
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FIG. 3. 

first family and the axes~ (with the shear modulus G2 ) are tangent to the lines of the second 
family. 

Let us estimate the efficiency of optimization. T_o this end let us equate the rigidity K* 
of the optimum rod to the rigidity of the homogeneous isotropic rod having the same cross­
sectional area D and the shear modulus Gc = (G1 + G2)/2. The gain in rigidity due tQ 
optimization is independent of the form of the cross-section and equals 

K. -KC GJ -G2 
---y;--= G1 +G2. (3.6) 

From Eq. (3.6) it is evident that the relative gain changes between 0-100% with the ratio 
of moduli Gt/G2 changing from 0 to oo. 

4. Optimization of anisotropic· properties of elastic media in plane elasticity problems 

Let us consider the problems of optimization of anisotropic characteristics of elastic 
bodies in the cases of plane strain and plane stress problems. 

1) Let us consider a plaiie problem of the theory of elasticity written in the rectangular 
-coordinates x, y and concerning the equilibrium of an elastic anisotropic body, loaded .by 
the forces qx, qy on one part F1 of the contour and clamped on another part F2. Th,e 
material properties will be assu.Qied to be constant in the direction of z perpendicular· 
to the plane (xy), and the strain e2 = 0 (plane strain). The elastic medium is also assumed 
to be locally orthotropic, the axes of orthotropy being ~ and 17· The position of the ax~s 
of orthotropy ~, 17 relative to .x, y at a point with the coordinates x, y is given by the ~~~ie 
ex = cx(x, y)(cx- angle made by the axes x and ~). The constants of orthotropy 
A~t' A~2 , A~3 , A~2 ,-A~3 , Ag3 , A~4 , A~5 , Ag6 are given. Equilibrium of the elastic ~ody 
under the boundary conditions· prescribed above is characterized by the :variational prin-

, ciple 

http://rcin.org.pl



· 0YFIMIZ!TION P!tOBLEMS FOR ELASTIC ANISOTROPIC BODIES 355,; 

fl = JJ fdxdy- J (uqx+vqy)ds-+ min.,, 11 , 

(4.1) n r1 

Here u, v- displacements along the axes x and y, and Ex, ... , tx1 = If2Yxy, qx, ... , Txr 

denote the components of the strain and stress tensors. The elastic moduli Aii in a fined~ 

coordinate system x, y' are expressed in terms of the constants A~ prescribed in the system_ 
.e, 17 by the known transformation formulae [9, 1 0] 

(4.2) 

Aa = Ctcos4 cx+C2sin4 cx+C3 , 

A12 = (Cl +C2)sin2cxcos2cx+A~2 , 

A26 = sin et cos ct(C2cos2 et -C1 sin2cx), 

A22 = C1sin4 ct+C2cos4 cx+C3 , 

At 6 = sin ex cos cx(C2sin2cx- C1 cos2ct). 

A66 = (C1 +C2)sin2 ctcos2ct+A~6 

in which C, = A~~-A~2 -2A~6 , C2 = A~2 -A~2 -2A~6 , C3 = A~2 +2A~(,. The mag-­
nitudes Aii are functions of the angle ex, Aii = Aii(ex), and II is a functional of ex(x, y) .. 
Observe that the minimum with respect to u and v in Eq. (4.1) is sought for in the class 
of functions u(x, y), v(x, y) satisfying the kinematical conditions at F2 • The boundary· 
conditions at F1 are known to be natural for the functional (4.1) and they do not need 
tp be satisfied in advance. 

The work done by external forces applied to the contour will be assumed as the opti-· 
mization criterion property: 

(4.3) J(ct) = -~ f (uqx+vqy)ds. 
r1 

Consider now the optimization problem of this functional and seek the corresponding: 
distribution of the angles of inclination of the orthotropy axes at each point (ex = ex(x, y)) 
to the fixed coordinate system x, y. As it has been mentioned before, the functional J is.. 
called the deformabiljty (compliance) of the elastic body. 

2) It is known that in the standard motion of determining the optimization conditions,.. 
use is made of the differential constraints (in our case - the equilibrium equations in the 
displacements u and v). However, in the problem under consideration, owing to the fact 
that the equations of equilibrium written in the displacements represent Euler's equations­
for the functional (4.1), the problem of optimization may ·be reformulated to follow the 
approach used in the preced~ng section, and . to eliminate the differential relations from 
further consideration. To this en(! Clapeyron's theorem is used and the transformations. 
are performed·: J* = mi~i -min.,, 11Il) = - ma~ min.,,.,II. Thus the original problem 
ls.te.duced to the determination of a ~aximum. To simplify the procedure of deriving the­
stationarity conditions of II with respect to ex and to shorten the transformations, ·let us.. 
introduc_e at each point x, y a system of principal axes of strain X, Y and denote the strain. 
tensor components by Ex, Ey, Exy(Exr = 0). Let tp and x denote the respective angles made 
by the axes X and ~' x and X so that tp = ex- x (Fig. 4). The strains eJ" E1 , Ex1 , an<i 
Ex, e;;·Exr are related to ea-ch other by the known transformation formulae 
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X 

X 

FIG. 4. 

Ex = Excos 2x+ eysin2x+rx ... sinxcosx, 

(4.4) er= Exsin2 x+eycos2x-rx ... sinxcosx, 

1 . 1 2 0 Exr = 2 (ey-Ex)sm2x+ yYxyCOS X= . 

The expression ( 4.1) for f is transformed to 

f = + All('f')ei+Al2(1f')ExEr+ ~ A22 (1p)e~ =Ncos41p+Qcos21p+R, 

<4.5) N = -~-(C 1 +C2)(ex-Er)2 , Q = (ex-Er)(CtEr-C2ex), 

R 1 Ao 2 o 1 o 2 =y 22Ex+At2Extr+2Auer, 

where Ex, Er are defined by the relations (4.4). Hence the functional 11 is represented by 
means of Eqs. ( 4.2), ( 4.4) and ( 4.5) in terms of two angles 1p and x satisfying the relation 
1p + x = ex. In the derivation of the necessary condition of extremum, it is required that the 
first variation of the functional 11 corresponding to the_ variations c5ex, c5u, oo should 
vanish. Let us note that variation of 11 with respect to u, v and ex should be done under the 
assumption that the variables are 'independent (like in all cases of functionals depending 
~n vector functions [11]). Consequenly, the angle x which enters the expressions (4.4) 
and ( 4.5) and is calculated from the third relation ( 4.4) as a function of the strain com­
ponents tg2x = Y:x1 f(e:x- e,), may also be considered as independent of ex. Thus in writing 
·down the first variation we put off 01p = off oex. The condition of stationarity with respect 
to ex takes the form sin2VJ(2Ncos2VJ+Q) = 0. This condition ·contains three different 
schemes of orientation of the axes: 

(4.6) 
(l)cos1p = 0; (1I)sin1p = 0; 

(III)cos21p = -Q/2N · for 0 ~ -Qf2N ~ I. 
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The orientation according to the third form is possible only under the condition of 
satisfying the inequality in Eq. (4.6). To clarify this condition, let us represent/in the form 
of a second-order trinomial F = Nt 2 + Qt + R of the variable t = cos2 1p. Since t varies 
in the interval 0 ~ t ~ 1, the extremum off with -respect to t may be furnished either at 
the boundary points t = 0, t = 1 (what corresponds to cases (I) and (II) ), or at an irtternal 
point. The inequality ( 4.6) expresses the condition oft belonging to the interval [0, 1 ]. 

3) Let us apply the conditions ( 4.6) to a particular case of optimization of the anisotropic 
properties of an elastic plane containing a circular hole. For definiteness it will be assumed 
that A? 1 > A~2 • The region Q has the form r ~ a, 0 < 0 ~ 2n, where a- radius of the 
hole, and r, (J- polar coordinates of the system located in the center of the hole. The 
constant normal stresses p are applied to the boundary r (r = a), i. e. a, == p, -r,6 = 0. 

Due to axial symmetry, the angles of inclination of the axes of orthotropy ex and 
the radial displacements u are independent of 0, i. e. ex = ex(r), u = u(r ). Tangential 
stresses, ·shear strains and hoop displacements vanish: -r,9 = 0, y,6 = 0, v = 0. The 
principal axes of the strain tensor at each point r, 0 of the region Q have the radial. and 
circumferencial directions. The minimized functional (4.3) evaluated along the contour 
r will be proportional to the radial displacement u(a) of the contour points, and its value 
J = 2nr p u(a) is assumed as the stiffness measure. 

In the solution of the problem of stiffness optimization let us first consider the case 
when for all points of the region Q the same scheme of orientation of the axes takes place. 
Let cos 1p = 0 in Q; this corresponds to the case when the axis of orthotropy with the 
greatest modulus A? 1 is oriented in the circumferential direction, and the axis with the smal­
lest modulus A~2 -in the radial direction. It follows that!= 1/2Ag2 e:+A~2 e,e6 + 
+ 1/2 A~ 1 ei and the equilibrium equation takes the form u,+u,fr-x2u/r2 = 0 where 
x = y A~1 /Ag2 > 1. Integrating the equation and determining the integration constants 
from the boundary conditions a, = p and the condition at infinity a~ = 0, we obtain 

(4.7) 
pa"+ 1 

u = ---
yr" ' 

3 Arch. Mech. Stos. nr 3/81 

F1o. _S. 
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Solid and dashed lines in Fig. 5 indicate the respective directions with greater and smaller 
moduli. 

If for r ;;?; a sin tp = 0, the orthotropy axis with the greater modulus A? 1 has a radial 
direction. Directions corresponding to the greater and smaller moduli are shown in Fig. 6 

FIG. 6. 

by solid and dashed lines. In this case/= l/2A? 1e;+A12e,e9 + l/2A 22e:, and -the equa­
tiondescribingradialdisplacementshastheformu,+u,/r-k2u/r2 = 0 withk = 1/x < 1. 
Integrating the equation of equilibrium and · using the boundary conditions u, = p at 
r = a and u, = 0 at r = oo, we obtain · · 

(4.8) 

Comparison of Eqs. (4.7) and (4.8) yields the conclusion that the schemes of orien- . 
tation of the orthotropy axes (Q and (11) lead to the same value of the functional subject 
to optimization. 

The third scheme of orientation of the axes when cos2 tp = - Q/2N in Q, leads to the 
following equation of equilibrium: u,+u,/r-u/r2 := 0. The distribution of radial displace­
ments satisfying this equation and the boundary conditions yields the values of the 
optimized functional and of the angle tp, 

(4.9) 

In this case the axes of orthotropy are tangent to the lines shown in Fig. 7. Comparison 
of the values of J in Eqs. ( 4.1)-( 4.9) leads to the conclusion that if 

(4.10) yA?1Ag 2-A?2 > 2~g6, 

then the greatest stiffeness is obtained in the cases of orientation schemes <n and (II). 
If, however, the inequality sign in Eq. (4.10) is reversed, the smaller value of J is obtained 
in the case of the orientation scheme (Ill). · 

The stationary solutions derived above were obtained under the assumption that each 
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FIG. 7. 

of the orientation schemes was realized in the entire region Q. It may happen, however, 
that the optimum solution consists of regions with various stationary schemes of distribu­
tion of the moduli. A combination of schemes (1}-(III) is possible when the region Q is 
divided into annular subr.egions bounded by circles r = r;, in which different orientation 
sc~emes are realized. The solution of this problem leads to problems with unknown bo­
undaries across which the stresses (Jr are continuous and the derivatives u, suffer discon­
tinuities. Application of the Weierstrass-Erdmann conditions at r = r; enables us, after 
elementary but rather tedious transformations, to show that if the elasticity moduli 
A~ t. Ag2 , A~6 satisfy the inequality (4.10), then the "welds" of materials with different 
orientations of the orthotropy axes do not lead to the value of J smaller than that calculated 
from Eqs. (4.8) and (4.9). If the inequality (4.10) is not satisfied, combination of the dis-

-cussed regions does not allow for reaching the value of J smaller than that following from 
Eq. (4.9). It is noted that in the case of "welding" of an arbitrary number of regions (I) 
and (11) (in which the orientation schemes (I) and (II) are valid), the functional proves 
to be equal to the value J calculated from Eqs. (4.7) and (4.8), i.e. it remains the same as 
in the case when in the entire region Q any of those schemes is realized. Consequently, 
fulfilling of the inequality (4.10) implies the optimum orientation schemes (I) and (II), 
and in the opposite case- scheme (Ill). 

4) In the solution of two-dimensional optimization problems the numerical method 
· of consecutive optimizations was used ([12, 13]). Computations were made for _rectangular 

regions (o · ~ x ~ a, -b/2 ~ y ~b/2) under various boundary loads. The region was 
mapped onto a unit square Q and the solution was derived for several values of the pa­
rameter A = bfa. Elastic moduli of glass laminates were used as the physical constants. 
The optimum distribution of the angles of inClination of the orthotropy axes cx(x' y) are 
shown in Figs. 8 and 9. The lines tangent to the solid curves indicate the directions with the 
greatest modulus. . 

The distribution of ex shown in Fig. 8 corresponds to the case of a plate clamped along 
the edge x = 0, - I /2 ~ y ~ I /2 and extended by forces qx = 1 , q7 = 0 along the edge 
x = I , -I /2 ~ y ~ I /2. The edges y = ± 1, 0 ~ x ~ 1 are free from loads, qx = q1 = 0. 
The parameter A equals 2. It is seen that the lines with the maximum elastic modulus over 
most of the plate are parallel to the external forces, and in the entire region the lines are 
sy!nffietric about. the x-axis. · 

3* 
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The distribution of angles (X(x, y) in the case wh~n loads q1 = 0.001 , qx_ . = 0 are applied 
to ihe edge x = 1, ~ 1/2 ~ y ~ 1/2 is shown in Fig. ·9. The boundary conditions at the 
three remaining edges of the ~uare are the same as in the preceding cases; . the parameter 
). equals 1. Orientation of the elastic moduli proves · to be symmetric with respect to the 

'line y = 0. Comparison of the optimum plates with the orthotropic ·plates (with the same 
value of ).) in which the orthotropy axis with the greatest modulus is parallel to . the x-axis 
shows that with ). = l the relative gain in their stiffness due to optimization reaches 32%. 

5~ ·Choice of the forna of anisotropic bodies and·problems of simaltaneoas optimization of 
form and orleatation of the axes of aaisottopy 

Problems of determination of the optimum forms of structural eleme~ts made of 
materials with prescribed anisotropic properties and the problems ·of simultaneous opti-

http://rcin.org.pl



OPTIMIZATION PROBLEMS FOR ELASTIC ANISOTROPIC BODIES 361 

mization of the form and orientation of the anisotropy axes are frequently encountered in 
practice; the problem will be explained on the basis of the example of seeking the maximum 
torsional rigidity of a rod. 

1) The problem of maximization of the torsional rigidity K of a rod by means of a prop­
er selection of its cross-sectional form (contour I) has the following formulation, K* = 
= - minr mintpJ, where J is found from the formulae (3.1) and (3.2). Making use of 
the necessary condition for F to be optimum, of the isoperimetric condition and the equa­
tions and boundary conditions of the theory of torsion, we arrive at the boundary value 
problem of determining the stress function cp(x, y) and the form of r, 

all CfJxx -2a12 CfJxy+a22 'Pn = -2, (tp)r = 0, 

(a11tpi+a22'P;-2a 12'Pxtpy)r = const, mes.Q = S. 
(5.1) 

The solution of the optimization problem based on the relations (5.1) has the form 

'I' = 2(abl-c') [ ~ -a,x'-2a.,xy-auy']. v = Vaua, -a~,, 
r . 2 2 2 vS S2 

.a22x + a12Xy+a 11 y = ----;:;-' K* = 2nv . 

(5.2) 

In order to estimate the gain due to the optimization procedure, let us compare the 
obtained value of K* with the rigidity of a rod with a circular cross-section K0 = S 2 fn(a 11 + 
+a22) of the same cross-sectional area. We obtain (K.-K0 )/K0 = (a11 +a22)/2v-I. 

For an orthotropic material a12 = 0, a 11 = l/G1 , a22 = l/G2 , with G1 , G2 denoting 
the shear moduli corresponding to the axes x and y. In this case 

(5.3) K.-Ko = G_1 +G2 -I. 
Ko 2yG 1 G2 

From Eq. (5.3) it is seen that the gain due to optimization increases for both the cases of 
·Gt!G2 -+ 0 and G1 /G2 -+ oo, what means that the relative gain increases with the increasing 

degree of anisotropy. The minimum gain equal _to zero is obtained for G1 = G2 = G, 
that is for an isotropic material. In such a case K = K0 = GS2 f2n, and the optimum 
cross-section has the form of a circle. 

2) Consider the problem of simultaneous optimization of the form of the region and 
of the angles of inclination cx(x, y) of the anisotropy axes from the condition K* = 
= maxro maxa K, where F0 is the portion of the boundat'y of .Q sought for. Using the 
relations derived in Sect. 3, we arrive at the following formulation of the simultaneous 
optimization: 

(5.4) K* = -minr
0
minaminq;l. 

The functional J is determined from Eq. (3.1 ). The deformation coefficients aii are 
assumed to be independent of x, y. The minimum with respect to F0 is obtained under the 
isoperimetric condition of a constant <?Toss-sectional area of the rod, and the minimum 
with respect to tp is furnished in the class of fuctions satisfying the condition (cp)r = 0. 
The "governing" parameters ex and F0 are calculated from the system of two necessary 
conditions of optimality consisting of Eq. (2.5) and the relation 

(mutpi-2mt2tpxtpy+m22tp;)r
0 

= A2 (A2 -aconst). 
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Analysis of the optimality conditions and of the fundamental relations of the problem 
makes it possible to transform · the relation determining the contour F0 - to the following 
form: 

(5.5) 

In this manner, the determination of rp(x, y), a(x, y) of the optimum cross-section 
of the rod is reduced to solving the boundary value problem 'Pxx+rp,, = -2.i.1 1 , (rp)r = 0 
with the additional condition (2.5), and in the case of orthotropic materials~ by the 
formulae (3.4). If the region of the cross-section is simply connected and F0 is understood 
as the boundary of !J(F0 = F) then in the case of a locally orthotropic rod the region Q 
turns out to be a circle, and the axes of orthotropy at each point become parallel to the 
radius and to the circumferential direction. 

In the general case in which a part of the boundary of Q is prescribed and the other 
part is subject to optimization, the solution of the problem of simultaneous optimization 
is· obtained directly, provided the solution of the auxiliary problem is found. This solution 
must consist in determining the cross-sectional form of a homogeneous isotropic rod . 
(with shear modulus G) which exhibits the maximum torsional rigidity. In such a case .· 
the optimum fonri of Q will be the same as in the auxiliary problem and, in the expression 
for the stress function rp(x, y) governing the orthotropic medium, G must be replaced with 
G1 • The optimum distribution of the angles of orthotropy a(x, y) is determined by the 
stress function from Eq. (3.4). · . · 

6. Certain conclusions and remarks 

The problems discussed above are connected with a new class of problems of opti­
mization of tbe internal structure of elastic bodjes. Particular attention is paid to the . 
optimum orientation of the anisotropy axes. Analysis of the optimality conditions and of 
the stationary orientation schemes of the elastic moduli shows that the necessary con­
ditions of extremum do not allow for a unique determination of the best orientation of 
the axes. Fundamental difficulties in the solution of optimization problems result from the 
necessity of considering various combinations of the stationary orientation schemes 
valid in separate subregions and comparison of the values assumed by the functional. 
Application of both the analytical and numerical methods of solution is not simple due 
to the existence of a large number of local maxima. However, the analytical and numerical 
results derived in the paper demonstrate the considerable effects which may be attained 
by means of optimization of anisotropic properties. 

The solutions of optimization problems presented in this paper are based on the purely 
phenomenologicaJ approach and on the equations of the theory of elasticity of anisotropic 

. bodies. The elastic moduli occurring in these equations are assumed to be known (from 
experiments). A more detailed analysis of the problems of optimization of constructions 
made of composite materials indicates the possibility of the prospective utilization of 

· deformation and fracture mechanisms based on macrostructural properties. In this ap­
proach the mechanical · characteristics of reinforced materials depend on the .mechanical 
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characteristics of the materials of the matrix and reinforcement, on the reinforcement 
coefficients and dimensions and on other macrostructural parameters. Ttie advantages 
of such approaches lie in the possibility [14] of connecting the deformation and strength 
problems of elastic bodies, predicting the mechanical properties of composites on the 
basis of th<? mechanical properties of their components, solving the problems of optimum 
design of materials etc. The governing function of such processes of optimization of aniso­
tropic properties may be represented by certain distributed · paramete~s of the macro­
structure. In fact, viewing the elastic moduli A;i'" as certain averaged properties depend­
ing on the macro-structural parameters (concentration of materials, dimensions and 
position of reinforcing elements, etc.), the moduli may be assumed as the governing magni­
tudes. Such an approach to optimization problems enables us to take. into account various 
structural and technological limitations and, as a result, the solutions may answer the 
questions of practical interest. 
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