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Dispersion of surface waves in nonlocal dielectric fluids

M. N.L. NARASIMHAN and B. M. McCAY (OREGON)

THe THEORY of nonlocal electromagnetic fluids developed in our recent work [1] is employed
to investigate the propagation of electromechanical surface waves in a dielectric fluid. The
solutions of the field equations and boundary conditions based on the linear nonlocal theory
are found to lead to a decoupling of the waves into Rayleigh type mechanical waves and Zenneck
type electromagnetic waves. It is found that dispersion does occur for the consequence of in-
corporating viscous and nonlocal effects. Assuming the nonlocal magnetic effects to be negligible,
a dispersion relation involving the nonlocal electric effects is derived. The electromagnetic wave
also is found to be dispersive only if the nonlocal effects are incorporated.

Teorig nielokalnych cieczy elektromagnetycznych, rozwinigta w poprzedniej pracy Autoréw
[1], zastosowano do badania propagacji powierzchniowych fal elektromagnetycznych w cieczy
dielektrycznej. Stwierdzono, ze rozwigzania réwnafi pola i warunkéw brzegowych oparte

na liniowej teorii nielokalnej prowadza do rozprzezenia fal na fale mechaniczne typu llayleuﬂn
i fale elektromagnetyczne typu Zennecka. Stwierdzono, Ze rozproszenie istotnie wystgpuje
w przypadku mechanicznych fal powierzchniowych w uecznch dielektrycznych jako wynik
uwzglednienia efektow lepkich i nielokalnych. Przy zalozeniu, ze nielokalne efekty magnetyczne
mozina pomina¢, wprowadzono zwiazek dyspersyjny uwzgledniajacy nielokalne efekty elektryczne.
Stwierdzono, ze rowniez fala elektromagnetyczna ulega dyspersiji w przypadku uwzglednienia
jedynie ¢fektow nielokalnych.

Teopna HENOKAMEHBLIX 3NMCKTPOMATHHTHLIX MKHJKOCTeH, pasBMTaA B npeAbiaymneit paGore
aBTOpoB [1], mMpHMeHEHR JUIA HCC/ICOBAHMA PACTIPOCTPAHCHHA MOBEPXHOCTHBIX 3JICKTPO-
MACHHTHBIX BOJH B JAH3JIEKpHYecKoil »xaaKrocTn. KoHCTRTRPOBARO, UTO pellieHHsA, ypaBHEHRH
NOJIA B FPAHHYHBIX YCJIOBHil, ONHPAIOIIHECA HA JHHEHHYI0 HEJIOKANBHYIO TEOPHIO, IPHBOAAT
K PSCIIPSDKEHHIO BOJIH HA MEXAHHYECKHE BOMHLI THNA Pajest K 3/1eKTPOMATHHTHBIE BOJHLI THNA
3ennexa. KoHcrarupoBaso, 4WTO paccesHHME CYIICCTBEHHBIM OOpasoM BEICTYNAST B Cydae
MEXAHWYECKHX NOBEPXHOCTHBLIX BOJH B JHIICKPHUECKAX JKHIKOCTAX, KAK PESY/LTAT y4dera
BASKAX H HOJIOKAMLHLIX adpexros. [Ipu npepnoenmn, 9To HENOKAMBHEIE MATHATHBIE 3¢yde-
KThI mpeHeGpe}mmMo Ma/IbI, BRIBCRCHO AHCOCPCHOHHOE COOTHOIICHHS, YYMTHIBMJOIISE HEJO-
KaNbHbIE 3JICKTPHYCCKHE 3¢¢e1cm KoucratupoBaso, YTO TalOKe 3/ICKTPOMATHMTHAA BOJHA
MOMANEIKAT QHCTIEPCHH B CIIyHdac YUeTa TOMBKO HENOKATLHRIX 3ddexToB.

1. Introduction

THE PHENOMENON of dispersion of surface waves in elastic solids is experimentally well
documented [2] and theoretically well supported by lattice dynamical studies [3]. When
a surface wave propagates through a medium, for example, a seismic wave propagating
in the earth’s crust which consists of materials existing both in solid and fluid states, a variety
of complicated phenomena occur depending on the nature of the material response to the
wave. The most outstanding of these phenomena is the scattering of the waves into several
trains of waves each propagating with its own frequency and wave length. The frequency
of these waves is dependent on their wave length in a nonlinear manner. Thus waves with
different wave lengths will propagate with different phase velocities. It is this dependence of
frequency on the wave number (reciprocal of the wave length) that is termed as wave
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dispersion. The study of dispersion of surface waves in materials is of great importance
since it contributes to a proper understanding of the internal make-up of the material as
well as the nature of the long range cohesive forces that are responsible in binding together
the various internal substructures of the material.

Since one is almost always confronted with the problem of deducing phenomenalogical
properties of a material from its internal substructures, it becomes at once clear that one
has to develop a suitable continuum approach to éxplain wave dispersion. It is well known,
for example, that classical elasticity predicts a constant phase velocity for all wave lengths
for plane longitudinal waves propagating in an isotropic elastic solid while the experiments
show that the phase velocity depends on the wave length. Thus the classical continuum
mechanics fails to predict wave dispersion. The main source of this difficulty stems from
the fact that classical continuum mechanics does not have a mechanism to take into account
the internal long-rarige cohesive forces in a medium. Nonlocal continuum mechanics
as developed by ERINGEN [4, 5] provides the necessary mechanism to take into account at
a local material point (or local substructure) of a body the influences due to allthe other
substructres within the body both near and distant (long-range or nonlocal effects) with
respect to the local material point. Using his concept of nonlocality, ERINGEN [6] succes-
sfully predicted the wave dispersion phenomenon in elastic solids obtaining both the
optic and acoustic modes of wave propagation thus overcoming the discrepancy of the
classical continuum theories. His results agree remarkably well with those of experiments
as well as lattice dynamiical results.

All real materials, regardless of their internal constitution, are dispersive in character
to varying extents with respect to waves propagating through them. These materials
range in their internal structures, from solids with a very high degree of molecular ordering
and structure to fluids with random distribution of molecules and practically devoid of
a structure. In between these .two_.cxtrgmitics,' there exijsts a well-known class of real ma-
terials, such a-liquid crystals, high polymers, colloidal suspensions, animal blood, gels,
emulsions, and thick oils such as lubricating oils with a certain degree of molecular ordering
and structure, yet possessing fluid properties such as viscosity and capacity to flow. In
particulas, there also exist fluids with an electromechanical constitution. The dispersive
nature of electromechanical surface waves ih dielectric fluids is of special importance since
such materials are utilized as insulators in energy transducers. In power generating proces-
ses the machinery involved is such that fluid insulators (or dielectric fluids) are preferred
to solid insulators since the former can readily deform and adapt themselves to the shape
of themachinery. Also, dielectric fluids are used as cooling media in nuclear reactors. Simi-
larly, wave dispersion in dielectric fluids is of major concern owing to their involvement in
natural oceanic and seismic disturbances as well as underground explosions. .

Utilizing the nonlocal continuum theory of electromagnetic fluids we have recently
developed [1], the dispersive character of electromechanical surface waves ina dielectric
fluid is undertaken in the present paper. The application of the linear nonlocal theory
results in the decoupling of thesurface waves in the medium with electromechanical consti-
tution into a purely mechanical wave and an electromagnetic-wave. Analyzing the mechani-
cal surface waves, we obtain a dispersion relation incorporating nonlocal effects and viscous
influences. In the absence of any experimental data for dispersion in real fluids, it is to be
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realized that the results obtained for fluids for which no lattice structure is possible.cannot
be meaningfully compared with the results available only for solids with lattice structure.
Our results must therefore await future experimental work for comparison. Furthermore,
due to the lack of experimental data, the dispersion curve for the electromagnetic surface
wave incorporating both nonlocal electric and magnetic effects is not obtained. Ignoring
nonlocal magnetic effects, however, a dispersion relation is derived, which incorporates
the nonlocal electric effects. Using a quantum-mechanical description for comparison,
this nonlocal dispersive relation yields a deterministic form for the nonlocal electric ma-
terial coefficient. Furthermore, in the high-frequency limit the nonlocal result is shown to
be in agreement with the classical electromagnetic frequency wave number relationship.

2. Nomenclature and notation

Since the present paper is a direct sequel to our previous work [1], we retain the same:
nomenclature and notation in the present work also. For full details of the derivation
-of the linear nonlocal theory of electromagnetic fluids we refer the reader to our previous
work [1]. We collect here, for convenience, the fellowing nomenclature and notations for:
further reference:

o — mass density, # — thermodynamic pressure, § — free charge density, ¢ — speed
of light in vacuum, u — displacement vector, v— velocity vector, f — total body force
density, t, — stress vector, g — electromagnetic momentum density, E — electric field,
H — magnetic field, D — electric displacement vector, B — magnetic induction vector,.
M — magnetization vector, P — polarization vector, J/ —free current density vector,.
E-Mfluids—electromagnetic fluids, y — free energy density, and

& = E+—l—vx]l, H = H—-—i—vxD; @ = D+—lc—vxl-l,
.1

S =¥ —qv.

Furthermore, we use Cartesian tensor notation throughout, x;, k = 1, 2, 3, being the
rectangular Cartesian coordinates of a spatial point. A subscript comma shall denote
partial differentation and a superposed dot shall denote material time-rate, for example,

Q=B~——i~vxE, 2 =P—%va, ._l_=M+—:;-vxP

_ov(x,t) ._ﬂ_ oq
22) Y= e 1T D T

We use the usual summation convention over repeated indices. Moreover, for any differ--
entiable vector field A = A(x, t), we define the convective derivative
0A

. A s
(2.3) A* = S +A,

where

(2.4) A= (V-A)v+V+(Axv).
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3. Basic equations of linear theory of nonlocal E-M fluids

The balance laws, the constitutive equations and the full set of field equations governing
the flow of E-M fluids having no discontinuities within the material volume v with bounding
surface &, and for which mass production and heat conduction are negligible, have been
derived in our paper [1]. Here we give only the pertinent constitutive equations and field
equations of the thgory for purposes of quick reference, and we refer the reader for full
details to reference [1). The stress constitutive equation obtained in [1] is

3.1 ty = (—7+4,d,,) 0+ 2p,du + f [o' + Aod;,) b4+ 2ppdy)dv’,
where
= _a‘Pi’aQLl‘ o' = op/or-t, dy= ;‘ (v t+o),
3.2) A
r'-t=pg-1—p-l, dv’ =dov(d), dy = —"(91': 1010,

0y — Kronecker delta, ¢ — mass density at a local point x (Eulenan frame) in the body
with material volume v; o’ — mass density at a nonlocal point x’ other than x in the same
body; 4/d represents Fréchet differentiation and denotes functional gradients. A is any
arbitrary vector in the function (Hilbert) space chosen for purposes of defining the Fréchet
derivative and the functional gradients [I]; A, and u, are, respectively, the classical dila-
tational and shear viscosity coefficients and 2, and g, which depend on ||x—x’|| for ho-
mogeneous fluids are, respectively, the nonlocal dilatational and shear viscosity coefficients.
Note that in the linear constitutive theory the stress constitutive equation becomes un-
coupled from the electromagnetic constitutive equations [1]. The constitutive equations
for the electromagnetic response functions & and 2 are given by [1]

(3.3) ¢ = ols:P+s,9+ [ Ldv'y,
(3.4) o = olb, B+ o+ [rav],
where

o =b,4+b,9+b,9, A =52 +5.9

v =b, @ +b, 8 +b,D +b, 9 +bp,

and s3, 5, b; are the E—M material coefficients, while s3, s4 and b are the nonlocal E—M
material coefficients and are functions of [|x’'—x|| for homogeneous materials;, and the
nonlocal mechanical measure B’ is given by [1]: _

(3.6) B'=Vv (x'—x)+v—v.

The frelds & and 2 are as defined in Eq. (2.1). V' denotes the spatial gradient with respect
to the nonlocal variable x’; v' = v(x’, t). &', 2', Q' and 9’ are the nonlocal fields which
are functions of x’ and t and have corresponding physical interpretations as their unprimed
counterparts. It is to be noted that x represents the_local point of interest in the body (in

(3.5)
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the Eulerian frame), at which the influences of all other points x’ of the body are sought
in the nonlocal theory. Unless otherwise stated, the primes over the various physical
quantities denote that they are functions of the nonlocal variables such as x’ while the un-
primed ones are functions of the local variables such as x.

The full set of field equations governing the flow of nonlocal E—M fluids is {1]:

e
at
(3.8) (=74 ph), (+ (Ao + p) vk, o+ g7, u+9[53(9x91).x+54(9:k-@r).t+ (re B,), k+ Tar, 1

(3.7) +(ev).x = 0,

* f {(Got 1)k v+ poOiierw +0[D1(53 Dh o + 54Dk 1) + D1.4(83 D+ 56 B)
+Bril}dv'+ § sudap+olfi—94~g)—ofs = 0,
&>
2 2 822 . v V . v -~
(39 V2-a BT V(g +8)+(54/53)V x V x D+ (1 /gess)V x (B —Db)
¥ gt 2 5 ¥ Tt 1 b4 b
+(1/ps3) V%V x f._a{dv —co _a_[ng+Vx frdﬂ - (@+f+j],
s t : ¢ =

2 v v A
(3.10) V2@ —a? aag = Vrit+(1/gb,)V x V x o —(1/gch,)V x (@ + F + 5)
—(1/ob )V x V x !r’dv’+ca2% [gsﬁ'x@-i-\Vx ”J‘ g’dv’+l? (é—ﬁ)] 2

where da, is the nonlocal surface element, and

Sk = 'O+ A0, . S+ po(vy, l'+Ul,x')+9(9:539;:+9:5;9;+Qir;),

2 = 1/@)b,55,  wh=-5 (& D+L"B),

(3.11) ; ;
N = bz @x+bxgg+b393+b4gk

T = - (VX E), ~8,(xH)].

Moreover, the superposed carats () over the various quantities in_Egs. (3.8)-(3.10)
denote the following localization residuals at the point x (for example, f denotes the non-
local body force, say, due to chemical reactions) induced by all other points x’ of the body:
f — nonlocal body force, § — nonlocal charge, b — nonlocal magnetic induction,
f — nonlocal conduction current, m — nonlocal magnetic pole strength.
These localization residuals must satisfy the following relations [5]:

[oldv=0, [(b 5 da=0,
(3.12) Y a,”‘ L
£ =¥-gv, a—':'+v-(£w)=v-ﬁ,

where v is as before the material volume, S is a surface within v, and J¥ — nonlocal free
current.

5 Arch. Mech. Stos. nr 3/81
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4, Basic assumptions of the problem

Before formulating the problem we specialize the field equations (3.7)-(3.10)-by in-
troducing the following assumptions. The fluid is assumed to be an incompressible, ho-
mogeneous, isotropic and dielectric material. We restrict our attention to the case of
dielectric, conducting materials and to the nonrelativistic case where v?/c? < I, v being
the local material speed and c is the speed of light in vacuum. Following GroT [7] we make
the following assumptions:

(i) Nonconducting assumption: # =0,

4.1) (ii) Dielectric assumption: M= -:'—P XV,

(iii) Nonrelativistic assumption: g=0.

The nonconducting assumption states that there can be no current flow in a dielectric
medium. For this to be tru¢ we should have no free charges; consequently, we take ¢ = 0.
For nonconduction at all parts of the body.the localization residuals, f =0and g =0.

The dielectric assumption states that the dielectric material has no magnetic moment
when viewed in a frame moving with the material. Thus the magnetic pole strength in-
duced on a material point by all of the other material points in the body is zero. Hence
we take m = 0, which through Egs. (3.12),,, implies that b = 0.

The assumption that g = 0 requires a careful understanding. GROT and ERINGEN
[8] have shown that, basing on the relativistic principle, the total energy-momentum
tensor is symmetric. This is equivalent to assuming that the balance law of moment of
momentum is valid in every inertial frame. From this principle one can deduce the equi-
valence of momentum flow and energy flux following TRUEsDILL and TouriN [9]:

(4.2) g = (g/c?)—(t- v/c*)+[o(e—c?)v/c?],

where pe — total energy density, q — total energy flux vector, t — stress tensor, g — electro-
magnetic momentum density, v — velocity vector, and ¢ — speed of light in vacuum.
Since we have already assumed the heat conduction Q—q—& x# = 0, see [1] and in
view of the Lorentz approximation v?/c? € 1, the assumption g = 0 is equivalent to
assuming

4.3) (trt})'? < pc?,  o(e—c?)| < ec?,

where the notation tr stands for the trace operator.

In the classical E—M theory, the constitutive equations for a linear, homogeneous
isotropic medium are given by '

4.9 B=uH, D=:¢E,

“where u and e are, respectively, the magnetic permeability and electric permittivity of the
medium. Following along these lines we are mativated to simplify our linear constitutive
relations of the nonlocal theory for the fields £ and 2 by restricting our attention to the
class of dielectric fluids whose electromagnetic constitution pcrmlts Eqgs. (3.3) and (3.4)
to reduce to.the form

@.5) 8 =9+ [ePiv, H=p'B+ [p@dv,
L] v :
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with
(4.6) et =ps;, p'=opb,, e&*=ps;, up*=pb],

so that the classical theory is included as a special case of our nonlocal theory.

Furthermore, since we are concerned with wave phenomena, we find it advantageous
to express our basic equations in terms of the displacement vector u where i = v, as dp-
posed to the velocity vector. Since we are considering a completely linearized set of field
equations, we note further that

. Du du(x, t) ., ou(x',1)

D =T —a > T a -
Utilizing Eqgs. (4.1), (4.5)-(4.7), the linearized field equations (3.7)-(3.10) governing the
flow of nonlocal E—M fluids with the incompressibility condition (4, = 0, 4, = 0) for
which the thermodynamic pressure # is replaced by an undetermined fluid pressure p (which
can be determined by solving the field equations and boundary conditions of the problem),
in the absence of all body forces take the form

43) sy = 0,

4.9 ta,x = iy,

(4.10) Dy, "“zbt = J.(E: uDi —3:119;)""' —caeym J‘F" lﬁ:udv',

@4.11) Biu—*B, = [ (B~ uBdv' + caeyn [ € Didv,
v v

where ey, is the permutation tensor and
(4.12) o = epfc?, €& =ee*, W = up*,
and 1, is given by the constitutive equation (3.1) which can be written in the form

(4.13) fa = —pou+poliin, i+, )+ [ {0+ piliy, 1+, )},
L)

with dy as the Kronecker delta and p — total fluid pressure. Thus a decoupling of the
electromechanical surface wave occurs, allowing the study of the mechanical surface wave
(Rayleigh type) and the E—M surface wave (Zenneck type) to be undertaken separately.

5. Formulation of the problem

We consider an incompressible dielectric fluid in a half-space covered by a rectangular
Cartesian coordinate system, x;,k = 1,2,3. The half-space occupies the region
X, € (—0, ), X, > 0 with x, = 0 as the free surface of the fluid. We consider plane
surface disturbances propagating in the x, direction and the resulting surface waves are
assumed to be confined to a very thin layer near x, = 0. As in the classical treatment of
the Rayleigh surface wave in an elastic medium, the problem will be considered as a two-
dimensional one in the domain x; € (— o0, ®), x; € (0, ), everything being uniform
in the x, direction. For the geometry under consideration the Zenneck wave may be describ-

1
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ed by only two componets D; and D, of the field D and one component of B; of the field
B (see reference [10]).

ERINGEN [4] has shown for the mechanical case that the expression for sy, in Eq. (3.11),
incorporates surface effects such as surface tension, surface stresses, surface viscosities,
etc., at the material surface. He has also demonstrated that an analysis of o’ which appears
in Eq. (3.11); leads to the fact that it represents the surface tension density. Utilizing
ERINGEN’S results [4] and, in particular, assuming no continuous surface effects (for
example, physico-chemical), ' may be expressed in a thin layer near x, = 0in our problem
as

(5.1 o' = 7 '7'(u3, 22+u1, 22),
where u’ is the displacement vector at the nonlocal point x’ and 7’ is given by
(5.2) v = v(x, —Xy, ¥, —X3, 1) = '0F; [0’ ~*,

in terms of the nonlocal function F; representing the jump suffered by the free energy
density across a surface of discontinuity, which when evaluated at x, = 0 and substituted
in Eq. (5.1) yields the value of o’ (representing the surface tension density) at the free
surface x, = 0. p and g’ are, respectively, the mass densities at x and x'. The derivations
of the expressions (5.1) and (5.2) are an immediate consequence of ERINGEN’S Egs.
(13.4)-(13.8) derived in reference [4] and hence will not be repeated here. Since the problem
becomes two-dimensional in the domains x, € (—, o), x, € (0, ) and everything
being uniform in the x; direction, the volume integrals in Eqgs. (4.10), (4.11) and (4.13)
reduce to surface integrals over x; and x, in their ranges.

In the absence of external body forces, the field equations governing the Rayleigh
type surface waves thus take the form '

tiy, i, =0,
(5.3) tyg,+t2g,0—0ly =0,
tia,1 22,2 -0l =0,
where
o -0

"P"‘zﬁ‘vl:‘l.x‘*'f f [o~'7"(uz, 22+u1,12)+2ugti 1, Jdx dx;,.
0 o

(5.4) tya = tay = wo(ly, 3 +iiz,)+ f f [us(ity, 2+, )dx dx;,
0
-

o0
s = —p+2hin, b [ [ (077, 20 b 12 + 20, 1.
| Ly _

The boundary conditions to be satisfied are: that on the surface, x, = 0, the surface trac
tion must vanish and as x, — o, the fields must vanish, that is,
2 t22=0=‘11. at x2=0,-

59 u,»0 as Xx,— 0.
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The field equations for the Zenneck type waves may be written as
- /I ]

- +]
Dy,11+Dy,2,—a*D, = f f (&l 12D;— ¢ 3, Dy)dxidx; —co? f @2 Bydxydx;,

o

o0 oo
Dy,1u+D;, 2, —-a*D, = f f (5:1291 —E:I,D;)dx;dx;+caz f K, "1 Bidx{dx;,
0 - 1]

é"'—ﬂs s“‘ﬂa

(5.6)

oo o o« o
By, + B3 3~ Bza = _f f o+ zz)Badxldxz‘Fcazf I(E::D;
0 - 0 -

—¢& ,D})dx,dx}.
Since all surface tractions must vanish at the free surface and since the dielectric medium
is nonconducting, the boundary conditions for the E—M waves are
D, =0=D,, 0@B3/ox,=0= 0B;/0x; at x,=0,
(5.7) : D,=0=D,, B;=0 as x;— .

6. Solution for the Rayleigh type waves

We consider a solution field in the form of the Fourier integrals:

o0 o

1
ur(xlsts r) =_2}? f f ir(E; xz,co)e"“"‘l“‘“’dfdw, yiz= ]’2;
(6.1) _mw _"’m
p(xl » X2, f) e Bt f f p(En X2, w)e'“exd“'dfdw

In Eq. (6.1) £ and w, representing the wave number and the frequency, respectively,
of the surface waves, can in general be taken as complex numbers (see ERINGEN [11]).
In that case if these quantities were to have any physical identification at all, then only
their real parts, denoted by Re(£) and Re(w) become relevant. Substituting Eq. (6.1)
into Eq. (5.3) yields .
—ifly +y,, =0,
"1'5“114'{21.2"’9‘“251 =0,
—iff_u""_zz 2 +ew?u, =0,
where 7,,, 1, and 1, are obtained from Egs. (5.4) and (6.1), and are given by

et !

o 2&’5"14‘}‘ [o=%' (3, o —iuy, ;) —2wEji, Uy ]dx;,

ta

(6.3) tiy =1y = _"’Pn(i'_‘l'.2+fﬁz)+f (—owpy) ity  + Euz)dx;,
0

I

F9

i _
~p —2iopdy, o+ [ [0717 @5, 2, ik}, 5) ~2icojiyit, 51dx;,
[1]
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where a superposed bar on letters indicates the Fourier transformation. The nonlocal
material coefficients u, and 7’ are expected to change very sharply as we move from the
surface, x, = 0, to within the medium. Since they obey the axiom of attenuating neigh-
borhoods [12, 9], they must die out rapidly as ||x’—x|| = co. We idealize this situation
mathematically by considering the behavior of these nonlocal coefficients to be d-functions
in the x,-variable, that is
(6.4) T =T(E)8(x—x3D),  Fo = Mel(§)8(Ix, —x3)).
Using Eq. (6.4) in Eq. (6.3) and substituting the result into Eq. (6.2), the field equations
take the following form:

—ifu, +i,,, =0,
(6.5) ibp—ifo="T(u;, 22 —ikty )+ 2w (py+ gy —iootly 55 (p, + i)

—w&lty, o (uy+ 1) +ow’u; = 0,
=D.2+ 07T (3,222 — 8y 22) +iwE* (1y+ oz = 2i0 (o + pio)i2, 22
—ofiy (o + py) +00%u; = 0.

Now letting
(6.6) k= 1/(uy+po),
‘we may write Eq. (6.5) as

—iku +u, , =0,
(6.?) ifkﬁ—ise-i‘?k(ﬁz.zg —ifﬁl_z)'l'Ziwezil "iﬂ)ﬁl.gz —mfﬁ;_;+ngf_cl_ﬁ = 0,

—kp, 2+ 07 Th(idy, 222 —ibidy 27) +iwé%, —2i0l, 5, 0l +ow?ku, = 0.

Since Rayleigh surface waves are assumed to decay exponentially as they penetrate the
medium, we have
ur(és X2, (\‘J) = [_f,(f,w)e""", r= 192;
P&, x5, 0) = P(§, w)e=**2,
where the real part of the rate of amplitude attenuation, namely, Re(a) > 0. Substituting
Eq. (6.8) into Eq. (6.7) yields

6.8)

lE(_Il +aa; = 0,

(6.9) . iZkP— [i.w(u2 =28 —pw’k —£? % _—]‘ﬁ’, + [méa —ika® %?] U,=0,

akP + [w.fa—-i«fa‘%_] U, - [i.t:.i(‘Za2 —£%)—pw?k+a? --:—:-?]ff; =0,

which has nontrivial solutions for U,, U, and Pif alid _onl)f if tEe roots for a® in the de-
terminantal equation formed by the coefficients of P, U, and U, in Eq. (6.9) are given
by

(6.10) 6l =8, ai=E-iko.
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Thus we may write the general solution of Eq. (6:9) in the form

u, = e~"*:U; +e"""U,,

(6.11) Uy = Yy 6", +y,,e7%U,,,
P = y3, €50, +y3,6%U,,
where
(6.12) vy = —ifla;, j=12, vy =igw?l§, y3,=0.

Using Eq. (6.11) the boundary conditions f,; = 0 = 1,, can be satisfied if and only if
(282, )ity + [(282 —iowk)/a;]U,, = 0,
(28? —l'ewk)fju+2$’f}u =0,

which has nontrivial solutions if and only if the following frequency equation is satisfied:

(6.13)

(6.14) ’——;—?’+%?-~I%=0‘

where

(6.15) y = Efipwk.

Noting that k = 1/(u,+ u,) from Eq. (6.6), Eq. (6.15) can be expressed as
(6.16) o = (£/iy)(u./o)(1 +E(E)I_#.J-

The cubic equation (6.14) in y yields two roots that lead to the following dispersion re-
lation:

(6.17) o = K(u,/0)|§12(1+ u.(8)/1),
where
(6.18) K = 3.087.

Thus the above analysis shows that the surface waves in nonlocal viscous fluids are de-
finitely dispersive.

The dispersion relation (6.17) can also be expressed in terms of the phase velocity
¢, as

(6.19) & = -I‘;—I = KvEI(1+2,(8) ),

where v = u,[p is the kinematic viscosity, and which gives the surface wave velocity for
the nonlocal viscous fluid. Letting

(6.20) cx = Kv|él,

where cp is analogous to the classical Rayleigh type surface wave velocity for the viscous
fluid, we may express the dispersion relation (6.17) in the form

Cp _ (] - -
(6.21) e 1+ (@o(8)/p0)-
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It is to be noted that when the nonlocal material coefficient ,(£) vanishes, ¢, reduces to
the classical value cg. Thus nonlocality which enters the frequency relation clearly predicts
that the surface waves in nonlocal viscous fluids are dispersive.

7. Solution for Zenneck type waves

We again assume a solution field in the form of Fourier integrals:

w w0
D,(x,, Xz, )= '2L f f BF(E, X2, w)e—lféx.i-wl)dsdw; r=1;2,
e -0 -
(7.1)
: o © ;
Bi(x;,Xx;,1) = oy f f Bi(&, x5, w)e~'¢x it dEdy
- =—o

Substituting Eq. (7.1) info the field equations (5.6) yields
(@w? =)Dy +Dy 22 = — | (i683 D+, Dy)dx; +icwa? [ il Bydx;,
o 0

w0 - ]
(12) (@Pw*=§)Dy4 Dy, = — [ (€5, Dy —828'Dy)dx; —cwaé [ WBidx;,
0 0

w o
(?w?*—E2) B3+ By 5, = f (675 . 22) B'ydxy +icwa? f (i€e'Dy+ ¢, D})dx}.
1] 1]

Assuming that the nonlocal E—M material coefficients attenuate rapidly as we move
into the medium x, > 0, in accordance with the axiom of attenuating neighborhoods [1]
we idealize, as before, this situation mathematically by considering their behavior to be
d-functions in the x,-variable. Thus we have

13) ¥ =8O -x5D, = AE)d(%;—x)).
Since the delta function has compact support, using Eq. (7.3) in Eq. (7.2) yields
(n+1)Dy 2, +m*nD, —itD, , +icwa*(n/l)Bs,;, = 0,
(1.4) ~ibDy 3 +nD; 55+ (m*n—§2) D, —cwa?é(n/l) B,z = 0,
icwa(l/n) D, ,+cola?(lfn) Dy + (1+1)B; 2.+ (m* —E%)B; = 0,
where
(7.5) n=¢t I=p"' m?=dle?®-§.
Since Zenneck type waves die out exponentially as they penetrate the medium [1],
we have
Dt 0) = 4 e, r=1,2;

7. - o
( 6) B;(‘Ea X2 w). = h;(f, w)e-‘h,'
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where the real part of the rate of amplitude attenuation, Re(d) > 0. Using Eq. (7.6) in
Eq. (7.4) gives _ 3 B
[b3(n+1)+m?n)d, +iébd, —icwa*b(n/l)hy = 0,
(1.7) i£bd, + [n(b*+m?) —&,)d, + cwaé(n/Dhy = 0,
—icwa?bd, + cwoa?td,+ (n[D)[I(b2 + m?)+b% —£2]h; = 0.
A nontrivial solution set for d,, d, and h; for the linear algebraic system (7.7) exists for

values of b satisfying the following determinantal equation formed by the coefficients
of d,,d, and h; in Eq. (7.7):

[62(n+ 1)+ m?n] itb —icwa?b
(7.8) | ith [n(b?+m?)—£?] cwné =0.
| —icwab coat [I(b*+m?)+b*—¢2)

Equation (7.8) results in a sixth degree algebraic equation in b with nonvanishing coeffi-
cients which are functions of the E—M material parameters n, / and m. Of these three
parameters, only m is a known function of & given by Eq. (7.5);. But the determination
of the nature of the dependence of n and ! on £ requires experimental data to be fitted
into our theoretical formulation. The nature of determination of these material parameters
n and / is, in principle, no way different from that of the détermination, for instance, of
the classical shear viscosity coefficient by using a Couette rotational viscometer and fit-
ting the experimental data with the expression for the torques on the cylinders of the
viscometer. For a complete and objective determination of the roots for b from the sixth
degree algebraic equation in b given by Eq. (7.8) one must resort to numerical means.
However, to follow such a procedure the dependence of n and / on & must be known.
At present, due to the lack of the experimental data this dependence cannot be determined
for the given material, namely, lubricating oil. Once the values for b are known, one can
determine the dispersion relation for the Zenneck type wave by following an identical
procedure as given in Sect. 6.

In order to reveal the dispersive character introduced through the nonlocal conside-
rations, we will examine the situation where the nonlocal magnetic effects in the x,-di-
rection are small in comparison with the nonlocal electric effects. Thus we shall set u = 0,
which reduces Eq. (7.8) to

b2 +n(m?+b?) itb 0 !
(1.9) ith n(b?+m?)— &2 0 |=0.
| —icwa?h cwa’t n(m?+b?) |

Solving Eq. (7.9) yie:lds two possible values for 5%:
(7.10) b? = —m?, b3 = (£2—nm?)(n+1).
Thus the general solution to Eq. (7.7) may be written in the.form
d, = e"%F,, + e~ F,,,
(7.11) d;, = ;7" + a7 F,,
hy = a3, e~"%F;, +ay,e" "% F,,,
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where
oy =iby[E, ay; = iffb,,
(7.12) )
oy, arbitrary, a3, = —icwa®(b,.

Under Eq. (6.1) the boundary conditions at x, = 0, given by Eq. (5.7), become

(7.13) d,=d, =0 =h,.

Using Eq. (7.11), Eq. (7.13) can be satisfied if and only if
Fi +F,=0,

(7.14) dy Fiy+05,F, =0,

J35.\1F11 +'132F12 =0,
which has nontrivial solutions if
(7.15) Oaz = O3y, Od33 = —dszfm'fl 1-

Using Eqgs. (7.12) and (7.10), Eq. (7.15), yields the following frequency equation which
must be satisfied:

(7.16) nm* —tm?*—(n+1)&* = 0,

where m? is given by Eq. (7.5). Recalling that n = ¢~(£) and a2 = eu/c?, Eq. (7.16)
yields the following dispersion relation:

(7.17) (&) = c&[(2+%(&))/epl".

The index of refraction, k,,, for nonlocal electromagnetic waves may be defined by

(7.18) Kne = _“E. = k(2+E(®)-12,

where k = (eu)'/? is the classical expression for the index of refraction. In terms of the
phase velocity for nonlocal electromagnetic waves, c,., and the classical expression for
‘the phase velocity, ¢, = ck™', we have

(7.19) ‘:':—" = (2+%(®)">.

Hence it is clear that nonlocal electric interactions do affect the phase velocity of the electro-
magnetic waves.

In classical electromagnetic theory the dispersive character of the propagating waves
is brought out by relating the dielectric constant to the frequency, i.e. £ = &(w), through
microscopic considerations. By ignoring the magnetic force effects and assuming the
bound charges e to be harmonically bound, a simple model relatirig  to ¢ is given by
(see JACcksoN [12], p. 285)

(7.20) e(w) = 1+4F,
where

2
a.21) F =T Y] -0t -ion)!
i
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In Eq. (7.21) N is the number of molecules per unit volume, m is the mass of each charge
e, f; are the numbers of electrons per molecule with binding frequencies w; and dampmg
constants »;, and the “oscillator strengths f;” satisfy the sum rule

(1.22) ZJ: P s

Z being the number of electrons per molecule. “With suitable quantum-mechanical de-
finitions of fj, 7;, and w; Eq. (7.20) is an accurate description of the atomic contribution
to the dielectric constant” ([12], p. 285). Using Eq. (7.17) and k = (ex)'/?, we find that

(7.23) T e() = 26282 (uo? — 27 (§)),
where e*(£) is the Fourier transform of ¢* under Eq. (6.1).

Requiring Eq. (7.23) to coincide with the dispersive relation from the microscopic
considerations (7.20) yields

(7.24) e* = (u/2)(k[kue)* —2/(1+F).

Thus, once f;, @;, and y; are determined from quantum mechanical considerations, one
can, at least in principle, determine the nonlocal electric material coefficient.
In the high-frequency range, where w is far above the resonant (binding) frequencies w;,
the dielectric constant (7.20) takes on the simple form
2

(1.25) e(w) ~ 1 —% ,
where
(7.26) w, = NZe*|m

is the plasma frequency of the medium. Furthermore, the wave number varies with fre-
quency as for a mode in a wave guide with tut-off frequency w,. In such a situation the
following dispersion relation is obtained ([12], p. 344):

eaf[of -2

Comparing Eq. (7.17) with Eq. (7.27) yields the following expression for ¢:

(1.28) E’(( ) )/("“))

For dielectric media Eq. (7.25) is valid only when @ » ,, so that e is then close to unity
although slightly less. Thus, in the limit w,/w — 0 we have, from Eq. (7.28),

(7.29) g~ —1.

Substituting Eq. (7.29) into Eq. (7.17) we recover the classical frequency-wave number
relationship

(7.30) w = c&/(ep)'? = ck1E&.

Thus, in the high-frequency limit the nonlocal interactions reduce to the classical results.
_ It is important to note that if we ignore all the nonlocal effects, that is, examine the
problem in the classical setting, then no dispersion relation can be obtained. In other words,
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excluding nonlocal effects reverts the E—M field equations back to the classical hyperbolic
system. Thus the dispersive character of the Zenneck type waves is brought out only by
the inclusion of the nonlocal effects.
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