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Dispersion of surface waves in nonlocal dielectric fluids 

M. N. L. NARASIMHAN and B. M. McCAY (OREGON) 

THE THEOJt. y of nonlocal electromagnetic fluids developed in our nicent work [1) is employed 
to investigate the pr9paption of electromechanical surface waves in a dielectric fluid. The 
solutions of the field equations and boundary conditions based .on the linear nonlocal theory 
are found to lead to a decoupling of the waves into Rayleigh type mechanical waVes and Zcnneck 
type electromagnetic waves. It is . f9und that dispersion does occur for the consequence of in­
corporating viscous and nonlocal effects. Assuming the nonlocal magnetic effects to be negliaible, 
a dispersion relation involvina the nonlocal electric effects is _derived. The electromagnetic wave 
also is found to be dispersive only if the nonlocal effects are incorporated: 

Teorict nielokalnych cieczy elektromagnetycznych, rozwini~t'- w poprzcdniej pracy Autor6w 
(1], zastosowano do badania propagacji powierzchniowych fal elektromagnetycznych w cieczy 
dielektrycmej. Stwierdzono,__. Ze rozWi~ia r6\vnaD pola i warunk6W brzegowych oparte 
na Uniowej teorii nielokalnej prowadza\ do rozp~ienia fal na fale . mechiniczne typu Rayleigh& 
i fale elekttomagnetyczne typu Zcrinecka. Stwierdzono, Ze rozproszenie istotnie wys~puje 
w przypadku mechanicmych fat powierzchniowych w cieczach Ciielektr)'cznych jako wynik 
uwzglltdnienia efektow lepkich i nielokalnych. Przy zaloieniu, Ze nielokalne efekty magnetyczne 
mo:ina pomin~c, wprowadzono zwi~k dyspersyjny uwzaiitdniaj'lCY nielokalne efekty elektryczne. 
Stwierdzono, Ze rowniet fala elektromagnctyczna ulega dyspersji w przypadku uwzgl~nienia 
jedynie ~fektow nielokalnych. -

TeopuJJ HeJIOKam.RhiX 3JICKTpoManmTHbiX >KHro<OCTeA, p83BHT&JJ a npe~eA pa6are 
aBTOpoB ( J), DpHMCHCHI AJV1 HCCJICAOBaHHJJ paCDpocTp&HCHHJl noaepmOCTHiaiX 3JieKTpO­
MarmmDdX BOJIH B JU13JICKpll'lecKOA ~. KoHCTaTBpoBIHO, 11'1'0 pelllCHHJI, ypaBBeJIIdi 
DOJIJJ H rplllllfCDihiX YCJJOBHA, ODHPilOIIUICCJI Ha JIBHdiBylo HeJIOJWIWiyJO TeOpJUO, DPBBOAJJT 
K pacnp.fi>Keimlo BOJIH Ha MexaJi~AecKHC BOJIBW Tlma P3Jie.R H 3JICKTpOMai-mnm.Ie BOJIBW THDI 
3CHHeJ<a. KoiiCftTIIpoBaBo, qro pacceJJHHe ~BRhiM o6puoM BJ.ICT)'Ilaer a cnyqae 
MeX&IIIACCKHX DOBep;xHOCTIIhiX BOJIH B AH3JieKpJ111CCKHX >KIIro<OCTJIX, KaK ~JIJoftT yqCTa 
BJJ3KBX H HeJIOKam.Hbix ~B. ilpH DpeAJIO>KeHHH, 'ITO HeJIOKI.JIWil.Ie Marmmu..te 3CI>cl>e· 
KTbi Dpeue6pe>KHMO Ml.libl, BbiBCAeiiO ,IUICIICpcHOHHOC cOcmloWeHBC; · ~ HCJio­
KIJUdlble 3JICKTPJ111CCKHe . ~KTW. Ko&CTaTHposmo, 11'1'0 TBJOKC 3JieKTpoM8riiiiTIWI BOJIHa 
DOAJIC>KHT ,IUICDepcHH 8 CJIY'IBC }"ICTI TOJILKO HCJIOKIJIIdlhiX 3CI>cl>eKTOB. . 

1. Introduction 

THE PHENOMENON of dispersion of surface waves in elastic solids is experimentally well 
documented [Zl and theoretically well supported by lattice dynamical studies [3]. When 
a surface wave propagates. through a medium, for example, a seismic wave propagating 
in the earth's crust which consists of materials existing both in solid and tluid states, a variety 
of complicated ph~nomena occur depending on the nature of the material response to the 
wave; The most . o~tstanding of these phenomena is the · scattering of the waves into several 
trains of waves each .propagating _with its own- frequency and wave length. The frequency 
of these waves is dependent on their wave length in a nonlinear manner. Thus waves with 
different wave lengths will propagate with different phase velocities. It is this dependence of 
frequency on the wave number (reciprocal · of the wave length} that is termed as wave 
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dispersion. The study of dispersion of surface waves in materials is of great importance 
since it contributes to a proper understanding of the internal make-up of the material as 
well as the nature of the long range cohesive forces that are responsible in binding together 
the various internal substructures of the material. 

Since one is almost always confronted with the problem of deducing phenomenalogical 
properties of a material from its internal substructures, it becomes at once clear that one 
has to develop a suitable continuum approach' to explain wave dispersion. It is well known, 
for example, that classical elasticity predicts a constant phase velocity for all wave lengths 
for plane longitudinal waves propagatingin"an isotropic elastic solid while the experiments 
show that the phase velocity. depenqs on the wave length. Thus the classical continuum 
meehanics fails to predict ·wave dispersion .. The main source of this difficulty stems from 
the fact that classical continuum mechanics does not have a mechanism to take into account 
the internal long-range cohesive forces in a medium. Nonlocal continuum mechanics 
as developed by ERINGEN [4, 5] provides the necessary m_echanism to take into account.at 
a local material point (or local substructure) of a body the influences due to all the other 
substructres within the body both near and distant (long-range or nonlocal. effects) with 
respect to the local material point. Using his concept of nonlocality, ERINGEN (6] succes­
sfully predicted the w~~e dispersion phenomenon in elastic solids obtaining both the 
optic and acous~ic · modes of wave propagation thus oyercoming the discrepancy of the 
classical continuum theories. His results agree remarkably well with those of experiments 
~ well as lattice dynamical results. 

All reat materials, regardless of their internal constitution, are dispersive in character 
to varying extents with respect to waves propagating through them. These materials 
range in their internal structUres, from solids with a very high degree of molecular ordering 
and structure to fluids with random distribution of molecules and practically devoid of 
a structure. lit between these ~ two extremities; there exjsts a well-known class of real ma­
terials, such a..:liquid crystals, high polymers, colloidal suspensions, animal blood, gels, 
emulsions, and thick oils such as lubricating oils .with a certain degree of moleCular ordering 
and structUre, yet possessing fluid properties such as viscosity and capacity to flow. In 
particulas, there · also ,exist fluids with an e-lectro~echanical constitution. The dispersive 
nature of electromechanical surface waves ib dielectric fluids is of special importance Since 
such materials are utilized as insulators in energy transducers. In power generating proces­
ses the machinery involved is such, that fluid insulators (or dielectric fluids) are preferred 
to solid insul~tors since the former can readily deform and adapt themselves to the shape 
of the machinery. Also, dielectric fluids are used as cooling media in nuclear reactors. Simi­
larly, wave dispersion in dielectric fluids is of major concern owing to their ·involvement in · 
natural oceanic and seismic disturbances as well as underground explosions. 

Utilizing the nonlbcal ·continuum theory of -electromagnetic fluids we have recently 
developed fl], the dispersive character of electromechanical surface waves in-a dielectric 
fluid is undertaken in the present · paper. The application of the linear nonlocal theory 
results in the decouplingofthesurface waves in the medium with electromechanical consti· 
tution into a 'purely mechanical wave and an electromagnetic-wave: Analyzing the_ inecJ:tani­
cal surface waves, we obtain a dis{>ersion relation incorporating nonlocal effects and viscous 
intiuences. In the absence of any experimental data for dispersion in real fluids, it is· to be 
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realized that the results obtained for fluids for which no lattice structure .is possible: cannot 
be meaningfully compa~ed with the results available only for solids with lattice structure. 
Our results must therefore await future experimental work· for comparison. Furthermore, 
due to the -lack of experimental data, the dispersion curve ·for the electromagnetic surface 
wave incorporating both nonlocal electric and magnetic effects is not obtained. _Ignoring­
nonlocal magnetic effects, hmvever, a dispersion relation is derived, which incorporates 
the nonlocal electric effects. Using a quantum-mechanical description for comparison, 
this· nonlocal dispersive relation yield_s a deterministic form for the nonlocal ~lectric ma­
terial coefficient. Furthermore, in the high-frequency limit the nonlocal result is shown to 
be in agreement with the classical electromagnetic fr~quency wave number relationship~ 

l. Nomenclature and notation 

Since the present paper is a direct sequel to our previous work [I], we retain the same­
nomenclature and notation in the present work also. For full details of the derivation 
-of the linear nonlocal theory of electromagnetic fluids we refer the reader to our previous 
work [I]. We collect here, for convenience, the following nomenclature arid notations for· 
further reference: 

e - mass density, n - thermodynamic . pressure, q - free charge density, c - speed 
of light in vacuum, u- displacement vector, ~-velocity vector, f- total body force · 
density, _ tt- stres~ vector, g--:- electromagnetic momentum density, E.:_ electric field, 
H - magnetic field, . D ~ electric displacement vector, B ~ magnetic induction vector,. 
M- magnetization vector, P- polariZation vector, Jl- free curr~nt density vector,. 
E-M1tuids-electromagnetic fluids, 1p- free energy density, and 

(2.1) 

I 
8=E+-vxB, - c 

1 
91=8--vxE, - c 

.I= Jl -qv. 

I 
.1f'= H--vxD~ 

1 
~ ·= D+--vxH, - c - c 

I 
~ = P--vxM, - c 

. I 
JI=M+-vxP -- c 

· Furthermore, w.e use Cartesian tensor notation throughout, Xa:, k = 1 , 2, 3, being the 
rectangular Cartesian coordinates of a spatial . point. A. subscript comma shall denote 
partial differentation and ·a superposed dot shall denote material time-rate, for example,. 

,(2.2) 
ov(x, t) . 

V,a:= ox" _. ; 
. Dq oq " q = - = - . +q "V • · Dt ot · · · 

We use the usual summation convention over repeated indices~ Moreover, for any differ~-
entiable vector field A = A(x, t), we define the convective derivative · 

(2.3) 

where 

(2.4) 

oA ., 
A*= -- · +A ot ' 

A= (V· A)v+V+(Axv). · 
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·--·-------·- -- -~------· - - - --

3. Basic equations of liilear theory of nonlocal E-M tlaids 

The balance laws, the constitutive equations and the full set of field equations governing 
the flow of £-M fluids having no discontinuities within the material vo~umev with bounding 
-surface f/, and .for which mass production and heat conduction are negligible, have been 
derived in our paper (1]. Here we give only the pertinent constitutive equations and field 
equations of t_he th~ory for purposes of quick reference, and we refer the reader for full 
-details to reference [1]. The stress constitutive equation obtained in [ll is 

(3.1) t1, = ( -:- n+lvd,,)l5u+2,u11dt,+ J [O''+).~d;,}t5"1 +2,u~di,]dv' , 
" 

where 

{3.2) 

r'- 1 = e' -1 :-e-•-, dv' = dv(l.), . d' 1 ( ' , ) "' = T Vt , ,+v;,a;, 

l5"'- Kronecker delta, e- mass density at a local point x (Eulerian frame) in the body 
with material volume v; e' - ·mass density at a nonlocal point x' other than x in the same 
body; l5/d represents Fre~het differentiation and denotes functional gradients. ). is any 
.arbitrary vector in the f\lllction (Hilbert) space chosen for purposes of defining the Frechet 
derivative and'the functional.gradients [I]; A., and p11 'are, re_spectively, the classical dila­
tational and s~ear viscosity coefficients and A:, and p~ whic~depend on llx-:x'll· for ho­
mogeneous fluids are, ~espectively, the nonlocal dilatational and shear viscosity coefficients_. 
Note that in the linear constitutive theory the stress constitutive equation becomes un-: 
~oupled from the electromagnetic constitutive equations [1]. The constitutive equations 
for the electromagnetic response functions~ and .1t' are given by ·[t] 

(3.3) 
(I 

(3.4) Jf' = erbJ a.+~+ I r'dv'], 
11 

where 

~ = b2~+b3f!_+b4~, .91' = s;!'J'+s4!'J', 

r' = b~~'+b;~'+b;gt.f.b~~'+b;~', _ 
(3.5) 

.and s3, s4, b; are the E-M material coefficients, whiles~, s~ and b~ are the nonlocal E-M 
material coefficients and are functions of llx'- xll for homogeneous materials; and the, 
nonlocal mechanical measure~' is given by [1]: · 

(3.6) ~' = V'v' · (x' -x)+v' -v. 

The fields~ and !'J are ~s defined in Eq. (2.1). V' denotes the spatial gradient with respect 
to the nonlocal variable x'; v' = ~(x', t). ~', !'}', !i' and q;, are the nonlocal fields which 
.are functions ofx' and t and have corresponding physical interpretations as their unprimed 
counterparts. It is to be noted that x represents the. lacal point of interest in the body (in 
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the Eulerian frame), at which the influences of all other points x' of the body are sought 
in the nonlocal theory. Unless otherwise stated, the primes over the various physical 
quantities denote that they are functions of the nonlocal variables such as x' while the un­
primed ones are functions of the local variables such as x. 

The full set of field equations governing the flow of nonlocal E-M fluids is [1]: 

0(! 
(3.7) Tt + (ev")·" = o, 

(3.8) ( -n+ Mh), t + (Av + !'v)Vk, kl + !tvVz, kk + (![S3( !?}k!?} z), k + S4(~k!?Jl),k + (rk81z), k + Tkt, "] 

(3.9) 

(3.10) 

+ J { (J.~ + ,u~)v"'· "''' + ~t~v,,"."' + (! [!?J ,(s; !?J~. "' + s~~~. "') + !?J, "(s;!?J~ + s~~~) 
tl 

+~1 ."'r~]}dv' + f s~zda~+e(J"-v"-i")-eh = o, 
!/' 

()2!7) " • . " " 
V2!?J-rJ.2 

012 
= V(q+q)+(s4 /s3)VxVx!!)+(l/ecs3)Vx(.sf-b) 

+ {l/es3)V x V x J .9/'dv' -ca.2 __!_ [v x .91'-t V x Jr'dv'- _!_ (iJ + J + J], 
tl ot tl c - --

o2~ " V " " 

V2~-a.2 

012 
= Vm+(l/eb1)VxVx.91-(1/ecb1)Vx(@+.I+J) 

- (1/eb,)V X V X! r'dv' +c«' :t [ es. V X .@-J;,.V X! .of'dv' ++(~-b)]' 
where da~ is the nonlocal surface element, and 

(3.11) 

I 
Mh = - (8 · D + Jf' · B) 2 - - ' 

'" = bl 81k+b2rjk+b3!!)k+b4~k 
1 r"' =- [Jf'"(v x E),-G,c(v x H)1]. 
c 

Moreover, the superposed carats ( ") over the various quantities in Eqs. (3.8)-(3.10) 
denote the following localization residuals at the point x (for example, i denotes the non­
local body force, say, due to chemical reactions) induced by all other points x' of the body: 

f- nonlocal body force, q - nonlocal charge, b- nonlocal magnetic induction, 
j - nonlocal conduction current, m - nonlocal magnetic pole strength. 
These localization residuals must satisfy the following relations [5]: 

J efdv = 0, J (b, }) · da = 0, 

(3.12) 
(/ (! 

om " " at +V· (mv) =V· b, 

where v is as before the material volume, S is a surface within v, and Jl- nonlocal free 
<:urrent. 

5 Arch- Mech. Stos. nr 3/81 
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4. ·Basic assumptions . or. the problem 

Before formulating the problem we specialize the field equations· (3.7}-(3.10)--by in­
troducing the following assumptions. The ftu~d is assumed to be an incompressible, ho­
mogeneous, ·isotropic and .dielectric material. . We restrict our attention to the case of 
dielectric, conducting materials and to the nonrelativistic case where v 2 fc2 ~ 1, v being 
the local material speed and c is the speed of light in vacuum. Following GROT [7] we make 
the following assumptions: 

(4.1) 

(i) Nonconducting assumption: ,:1 = 0, 

(ii) Dielectric assumption: 

(iii) Nonrelativistic assumption: 

1 
M=-Pxv, 

c 

g = 0. 
The nonconducting assumption states that there can be no current flow in a dielectric 

medium. For this to be true we should have no free charges; consequently, we take q = 0. 
, . . A . 

For nonconduction at all parts of the body/the localization residuals, ,I= 0 and q = 0. 
The dielectric assumption states that the dielectric material has no magnetic moment 

when viewed in a frame moving with the material. Thus the magnetic pole strength in­
duced on a material point by all of the other material points in the body is zero. Hence 
we take m= 0, which through· Eqs. (3.12)2.4 implies that b = 0. . 

The assumption that g = 0 requires a au'eful understanding. __ GROT and ERtNGEN 
[8] have shown that,. basing on ·the relativistic principle, the total energy-momentum 
tensor is symmetric. This is equivalent to assuming that the balance law. of moment of 
momentum is valid in every inertial frame. From this principle one can deduce the equi­
valence of momentum flow and energy flux follow~ng TRUESDELL and TOUPiN [9): 

(4.2) g = {qfc2)-(t· T/c2)+ [e(e-c2)v/c2
], 

where ee- total energy density, q ....:;. total energy flux veetor, t- stress tensor, g- electro­
magnetic momentum density, v-velocity vector, and c- speed of light in vacuum. 
Since we have already assumed the heat conduction Q-q-~_ xJt' = 0, see [I] and in 
view of the Lorentz approximation fJ 2 fc2 ~ 1, the assumption 1 = 0 is equivalent to 
assuming 

(4.3) (trt2
)

1
'
2 ~ (>C

2
, le(e-c2)1 ~ ec~, ,-

where the notation · tr stands for the trace operator. 
In the classical E-M theory! the constitutive equations for a linear, homogeneous 

•isotropic medium are given by ' 

(4.4) B = pH, D .;;, eE, 

· ~here p and e are, respectively, the magnetic permeability and electnc permittivitY of the. 
medium. Following along these lines we are motivated to simplify our linear constituti\'e 
~elations of the nonlocal theory for the fields l and 3t' by restricting our attention U:> th~ 
class of dielectric 1luids whose ·electromagnetic constitution permits Eqs. (3.3} apd (3.4) 
to reduce to_ the form 

(4.5) ~ = · e-1!?1+ J s*~'dfJ', .1t' = p-1£1+ J p*£1'df1', 
V V 
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with 

(4.6) 

so that the classical theoryis included asa _special case of our nonlocal theory. 
Furthermore, since we are concerned with wave phenomena, we find it advantageous 

to express our basic equations in terms of the displacement vector u where u = · v, as ~p­
posed to the .velocity vector. Since we are considering a completely Jinearized set of field 
equations, we note further that 

(4.7) 
. Do oo(x, t) 
u = Dt = ot ' 

. ' oo(x', t) 
u = ot · 

Utilizing Eqs. (4.1), (4.5)-(4.7), the linearized field equations (3.7)-(3.10) governing the 
ftow of nonlocal E-M fluids with the i~compressibility condition . (Av = 0, A~= 0) for 
which the thermodynamic pressure n is replaced by an undetermined fluid pressure p (which 
can be . determined by solving the field equations and boundary conditions of the problem). 
in the absence of all body forces take the form 

(4.8) ut.t = o, 
( 4.9) t1,,t = eii,, 

( 4.1 0) D~~:. u- ~X2 D1 = J ( e: 1a;D~- e: 11 D~)dv' ...... c~X2e1,. J /J:, B~dv', 
·" 

where ell,.-is the permutation tensor and 

(4.12) cx2 = ep/c2
, e' = ee*, p' = p.p*, 

and ta;1 is given by the constitutive equation (3.1) which can be written in the form 

(4.13) t., = -P~~:,+~J.,(ua;,,+u,.a;)+ f {a'~t,+P~(u~ .• +u,,a;)}dv', 

with ~t1 as the Kronecker delta and p - total fluid pressure. Thus a decoupling of the 
electromechanical surface wave occurs, allowing the study of the mechanical surface wave 
(Rayleigh fype) and the E-M. surface wave (Zenneck type) to be undertaken separately. 

5. Formulation of the ptoltlem 

We consider an incompressible dielectric fluid in a half-space covered by a rectangular 
Cartesian coordinate system, Xa;, k = 1 , 2, 3. The half-space occupies the region 
x 1 e (- oo , oo), x 2 ~ 0 with x2 = 0 as the free surface of the fluid. We consider plane 
surface disturbances propagating in the x1 direction and the resulting surface waves are 
assumed to be confined to a very thin layer near x2 = 0. As in the classical treatment of 
the Rayleigh surface wave in an elastic medium, the problem will be considered as a two­
dimensional one in the domain x1 e (-oo, oo), x2 e (0, oo), everything being uniform 
in the x3 direction. For the geometry under consideration the Zenneck wave may be describ-

s• 
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ed by only two componets D1 and D 2 of the field D and one component of B3 of the field 
B (see reference [10]). 

EIUNGEN [4] has shown for the mechanical case that the .expression fors~, in Eq. (3.11) 1 

incorporates surface effects such as surface tension, surface -stresses, surface viscosities, 
etc.!.' at the material surface. He has also demonstrated that an analysis of a' which appears 
in Eq. (3.11)1 leads to the fact that it represents the surface tension density. Utilizing 
ERINGEN's results [4] and, in particular, assuming no continuous surface effects (for 
example, physico-chemical), a' may be expres~d in a thin layer near x2 = 0 in our problem 

as 

(5.1) 

where u' is the displacement vector at the nonlocal point x' and -r1 is given by 

(5.2) 

in terms ·or the nonloeal function F~ representing the jump suffered by the free energy 
density across a surface of discontinuity, which when evaluated at x2 = 0 and substituted 
in Eq. (5.1) yields the value of a' (representing the surface tension density) at the free 
surface x2 = 0. e and e' are, respectively, the mass densities at x and x'. The derivations 
of the expressions (5.1) and (5.2) are an iiilD,lediate consequence of ERINGEN's Eqs. 
( 13.4)-(13.8) derived in reference [4] and hence will not be repeated here. Since the problem 
becomes two-dimensional in the domains x 1 e (- oo , oo), x 2 e (0, oo) and everything 
being uniform in the x3 direction, the volume integrals in Eqs. (4.10), (4.11) and (4.13) 
reduce to surface integrals over x; and x~ in their ranges. 

. In the absence of external body forces, the field equations governing the Rayleigh 
type surface waves thus take the form · 

(5.3) 

where 

• +' 0 .ut,t U:z,:z = , 
tu,t +t21,1 -eiit = 0, 

tu, 1 +t:z:z.:z -eu2 ~ o, 

oo -oo 

(5.4) tu= t21 = p~~(zit.2.+zi:z,t)+ J J (.u~(u~.z+ti~.~)dx~dx~, . 
0 00 

The boundary conditions to be satisfied are: that Qn the surface, x2 = 0, the surface trac 
tion must vanish and as x2 -+ oo, the fiel<!_s must vanish, that is, 

t22 = 0 = t21 , at x2 = 0, , 

u~-+ 0 as · x2 -+ oo. 
(5.5) 
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The field equations for the Zenneck type waves may be written as 
00 00 00 00 

D1 , 11 +D1,22-a2D1 = J J (e:12D~-e:22Dadx~dx~ -ca.2 J J 11-:2iJ~dx~dx~, 
0 -oo 0 -oo -

00 · 00 00 00 

(5.6) 
D2,u +D2,22 -a2D2 = J J (e:12D~ -e:uD~)dx;dx~+crJ.2 J J 11-: 1 B~dx;dx~, 

0 -oo 0 -oo 

00 00 00 00 

B3,11 +BJ,22-rJ.2B23 =- j j (11-:u +11-:22)B~dx;dx~+c(X2 j j (< 1 D~ 
0 -oo 0 -oo 

-e: 2 D~)dx~dx~. 
Since all surface tractions must vanish at the free surface and since the dielectric medium 
is nonconducting, the boundary conditions for the E-M waves are 

(5.7) 
D1 = 0 = D2, oB3/ox2 ~ 0 = oB3fox1 at x2 = 0, 

6. Solution for the Rayleigh type waves 

We consider a solution field in the form of the ·Fourier integrals: 
00 00 

Ur(x.' x2' t) = 2~ f f u,(E~ x2' m )e-i(exl +OJt>dEdm' r = 1' 2; 

(6.1) -oo -oo 

00 00 

p(x1, X2, t) = 2~ J. J p(E, x2, m)e-i<ex1 +rut>dEdm. 
-oo -oo 

In Eq. (6.1) E and m, representing the wave number and the frequency, respectively, 
of the surface waves, can in general be taken as complex numbers (see ERINGEN [11]). 
In that case if these quantities were to have any physical identification at all, then only 
their real parts, denoted by Re(E) and Re(w) become relevant. Substituting Eq. (6.1) 
into Eq. (5.3) yields 

-iEul +u2,2 = o, 
-iE~~ +i;1,2+ew2ii1 = o, 
-iE~2+i;2,2+em2il2 = o, 

where t11 , t21 and 122 are obtained from Eqs. -(5.4) an~ (6.1), and are given by 

00 

tu = -p -2mEul + J [e- 1"T'(u~. 22 7"iEu~. 2) -2mE,U~u~]dx;, 
0 

00 

(6.3) fi2 =t21 = -m11-v(iuL2+Eu2)+ J (-mj.t~)(iu~.2+Eu~)dx~, 
0 

00 

t22 = -p-2imi'Ji2.2+ J [e- 1"T'(u~.22-iEu;.2)-2imp~u~.2]dx~, 
0 
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where a superposed bar · on letters indicates the Fourier transformation. The nonloelll 
material c~fficients p; and 1:' are expected to change very sharPlY as we move _from the 
surface, x2 = 0, to within the medium. Since they obey the axiom of attenuating neigh­
borhoods [12, 9), they must die out rapidly as llx' -xll --. oo. We idealize this situation 
mathematically by considering the behavior of these nonlocal coefficients to be d-functions 
in lhe xrvariable, that is 

(6.4) 

Using Eq. (6.4) in Eq. (6.3) and substituting the result into Eq. (6.2), the field equations 
take the following form: 

-iEiit +iiz,z = 0, 

(6.5) iEp -iEe-1"T(iiz.zz-iEiit,z)+2iwE2(p.,+ p,)ii. -iruiit,zz<P.,+ ji,) 

-ruEiiz,z(!-'u+J!,)+eru2ii1 = 0, 

-"P.z + e- 1-=t(iiz.zzz -iEiit,2z)+iruE2(p,+iJ,)iiz-2iru(/l,+ p,)Uz,zz 

Now letting 

(6.6) 

we may write Eq. (6.5) as 

-ruEiit,z<P,+!l,)+eru1ii2 = 0. 

k = 1/{p,+ /~.,), 

-iEiit +liz.z = 0, 

(6.7) iEkp -iEe-1"ik(iiz,22 -iEiit,z)+2iruE21it -iwiit.n-wEiiz.z +eru2~ii1 = 0, 

-ki.2 + e-1-=tk(iil.zzz -iEii1.zz)+iruE2ii1 -2iwu2.zz -wEut.2 +ew2kiiz = o. 
Sinee Rayleigh surface waves are assumed to decay exponentially as they penetrate the 
medium, we have 

(6.8) 
u,(E, X1, eo) = UAE, ru)e-u 2 , 

p(E, X2, w) = P(E, w)e-"2, 

r = 1 2· 
. ' ' 

~here the real part of the rate of amplitude attenuation, namely, Re( a) > 0. Substituting 
Eq. (6.8) into Eq. (6.7) yields 

iEU1 +ailz = o, 

( 6.9) iEkP- [iw(a' - ~') -eru'k '-~' ~ -:r ]u1 + [ wEa -i~a' : -:r] U, = 0, 

- [ k ] [ . . k -]-akP+ ruEa-iEa 2 ei U1 - iw(2a 2 -E2)-ew2k+a3
eT Uz = 0, 

which has nontrivial solutions for U1 , U2 and P if and only if the roots for a2 in the-de­
tenninantal equation formed by the coefficients of P, U1 and U2 in Eq. (6.9) are given 
by 

(6.10) af=E2
, al=E2 :-ikew. 
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Thus we may write the general solution of Eq. (6:9) in the form 

(6.11) 

where 

ul = e-•·J(luu + e-•2"liJ12, 

u2 = Y21 e-a," 2 U11 +Y22e-01
"

1Ul2' 

p = Y31 ea•"]Ull +Y32ea1"2U12, 

(6.12) Y2J = -iEfab j = 1, 2, YJt = i(}w2 /~, ;'32 = 0. 

39S 

Using Eq. (6.11) the boundary conditions t22 = 0 = t21 can be satisfied if and only if 

(2~2/al)iiu + [(2e -iewk)fa2] ul2 = 0, 

(2e -iewk)Uu +2~2Ut2 = o, 
(6.13) 

which has nontrivial solutions if and only if the following frequency equation is satisfied: · 

( 
3 J2 I 1 0 

6.14) y --fy +2,_16 = ' 

where 

(6.15) 

Noting that k = 1/{p.,+"fi,) from Eq. (6.6), Eq. (6.15) can be expressed as 

(6.16) w = (~2/iy)(p,fe)(l + "fi,(~)/p.,). 

The cubic equation (6.14) in y yields two roots that lead to the followingdispersion re.: 
lation: 

(6.17) 

where 

(6.18) K = 3.087. 

· Thus the above analysis shows that the surface waves in nonlocal viscous fluids are de­
finitely dispersive. 

The dispersion relation (6.17) can also be expressed in terms of the phase velocity 
c11 as 

(6.19) 

where v = p,/(! is the kinematic viscosity, and which gives the surface wave velocity for 
the nonlocal viscous fluid. Letting 

(6.20) 

where~ is analogous to the classical Rayleigh type s~face wave velocity for the viscous 
fiuid, we may express the dispersion-relation (6.17) in the form 

(6.21) 
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It is to be noted that when the nonlocal material coefficient Po(E) vanishes, c, reduces to 
the classical value cR. Thus nonlocality which enters the frequency relation clearly predicts 
that the surface waves in nonlocal viscous fluids are dispersive. 

7. Solution for Zenne(k type waves 

We again assume a solution field in the form of Fourier integrals: 

00 00 

D,(xt, x2, t) = 2~ J J D,(e, x2, m)e-iCEx1+wt>dEdw; r = I, 2, 
-oo -oo 

(7.1) 

B3(x1 , ic2 , t) = 2~ I J li3(~, x2 , w)e-'<fx,+•'ld~dw. 
-oo -oo 

Substituting Eq. (7.1) in(o the field equations (5.6) yields 

00 00 

(ac2m2 -E2)D1 +D1.22 = - J (iE"E:~D~+"E: 22D~)dx~+icw~2 J p,:2ii;ax;, 
0 0 

00 00 

(7.2) (~2m2 -E2)D2 +-D2 , 22 = - J (iE"E:2D~ -E2e'i5;)dx;-cma.2e J "jiB~dx;, 
·o o 

00 00 

( 2 2 l:2)B- -B J (1:2-t _, )-B, d I • 2 J ("1:_'-D' _, D-')d ' ~m -s- 3+ 3,22 = s- fl -1',22 3 x2+1cma ls-e 2+e,2 1 X2. 
0 0 

Assuming that the nonlocal E-M material coefficients attenuate rapidly as we move 
into the medium x2 > 0, in accordance with the axiom of attenuating neighborhoods [1] 
we idealize, as before, this situation mathematically by considering their behavior to be 
f5-functions in the x2 .. variable. Thus we have 

(7.3) 

Since the delta function has compact support, using Eq. (7.3) in Eq. (7.2) yields 

(n+ l)D1,22 +m2n~ -ieii2,2+icm~2(n!l)B3,2 = 0, 

(7.4) -iED1.2 +n.5;, 22 + (m2n -E2)D2 -cmri.2E(n/l)B3,2 = 0, 

icma2(1-fn)D1,2 + cwEa.2(1/n)D2 +(I+ 1}~,12 + (m21-E2)B3 = 0, 
where 

(7.5) 

Since Zenneck type waves die out exponential-ly_ as they penett:ate the mediu~ [I], 
we have 

(7.6) 
D,(E, X2 m) = d,(E, m)e-b%2 , r = I, 2; 

if;(c, x2, m) = h3(E, w)e~b"2 , 
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where the real part of the. rate of amplitude attenuation, Re(b) > 0. Using Eq. (7.6) in 
Eq. (7.4) gives 

(7.7) 

[b2(n+ l)+m2n]d1 +iEbd2 -icwa.2b(n/l)h3 = 0, 

iEbd; + [n(b2 +m2)-E2]d-;+cwa2E(n/l)h3 = 0, 

-icwa2b~ +cwa.2Eii;+(nfl)[l(b2+m2)+b2-E2]h3 = 0. 

A nontrivial solution set for d1 , d2 and h3 for the linear algebraic system (7 .. 7) exists for 
values of b satisfying the following . determinantal equation formed by the coefficients 
of d1 , 'if; and h3 in Eq. (7.7): 

[b 2(n+ l)+m2n] iEb 

(7.8) iEb [n(b2+m2)-E2] 

-icwa.2b 

cwa.2E 

[l(b2 +m2)+b2 -E2] 

= 0. 

Equation (7.8) results in a sixth degree algebraic equati<?n in b with nonvanishing coeffi­
cients which are functions of the_ E-M material parameters _n, I and m., Of these three 
parameters, orily m is a known function of E given by Eq. (7.5)J. But the determination 
of the nature of the dependence of n and I on E requires experimental data to be fitted 
into our -theoretical formulation. The nature of determination of these material parameters 
n and I is, in principle, no way different from that of the determination, for instance, of 
the classical shear viscosity coefficient by using a Couette rotational viscometer and fit­
ting the experimental data with the expression for the torques on the cylinders of the 
viscometer. For a complete and objeetive determination of the roots for b from the sixth 
degree algebraic equation in h given by Eq. (7.8) one must resort to numerical means. 
However, to follow such a · procedu~e the dependence of n and I on E must be k~ow'n. 
At present, due to the lack of the experimental data this dependence cannot be determined 
for the given material, namely, lubricating oil. Once th~ values for bare known, one can 
determine the dispersion relation for the ~nneck type wave by following an identical 
procedure as given in Sect. 6. 

In order to reveal the dispersive character introduced through the nonlocal conside­
rations, we will examine lhe situation where the nonlocal magnetic effects in the Xt·di­
rection are small in comparison with the nonlocal electric effects. Thus we shall set /J = 0,. 
which reduces Eq. (7.8) to 

b2.f-n(m2 +b2) iEb 

(7.9) iEb n(b2+m2)-E2 

Solving Eq. (7.9) yields two possible values for b2 : 

(7.10) . b~ = -m2
, bi = (E 2 -nm2)(n+ 1). 

Thus the general solution to Eq. (7.7) may be written in the.form 

(7.11) 

dl = e-bl%2~1 +e-bax2~2' 
d2 _= fl21 e-b1x;jll +a.22e-b2JC2~.i ·, 

h3 = a.Jl e-bl%2Fu +·a.32e-b2%aFu, 

= 0. 
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- ---- ---------- ·- ·- ·· ------· -- - - -----~-

where 

Ci21 = ibtf~, CX22 = i~/b2, 
{7.12) 

cx 31 arbitrary, cx 32 = -icwcx2 /b 2 • 

Under Eq. (6.1) the boundary conditions at x2 = 0, given by Eq. (5.7), become 

(7.13) dl = d2 = 0 = h3. 

Using Eq. (7.11), Eq. (7.13) can be satisfied if and only if 

(7.14) 

F; 1 + £. 2 '= 0' 

ct21 F11 +ct22 F12 = 0, 

ctJtFll +cx32F12 = 0, 

which has nontrivial solutions if 

(7.15) ct22 = ct21, ct31 = - rt.32~ 2/F 1 1 • 

Using Eqs. (7.12) and (7.10), Eq. (7.15) 1 yields the following frequency equation which 
must be satisfied : 

(7.16) nm4 -~m2 -(n+1)~4 = 0, 

where m2 is given by Eq. (7.5). Recalling that n = e- 1 (E) and !X2 = ep/c2
, Eq. (7.16) 

yields the following dispersion relation: 

(7.17) w(~) = c~[(2 + e(E) )/ ep]l'2
• 

The index of refraction, kM, for nonlocal electromagnetic waves may be defined by 

(1.18) 

where k = (ep)112 is the classical expression for the index of refraction. In terms of the 
phase velocity for nonlocal electromagnetic waves, c.., and the classical expression for 
·the phase velocity, cc = ck- 1

, we have 

(7.19) 

Hence it is clear that nonlocal electric interactions do affect the phase velocity of the electro­
magnetic waves. 

In classical electromagnetic theory the dispersive character of the propagating waves 
is brought out by relating the dielectric constant to the frequency, i.e. e = e(c.o), through 
microscopic considerations. By ignoring the magnetic force effects and assuming the 
hound charges e to be harmonically bound, a simple model relatirig w to e is given by 
{see JACKSON (12], p. 285) 

(7.20) e(c.o) = 1 +F, 

where 

(7.21) F N e2 \-, I' ( 2 2 • ) - t =---;;a L,;JJ Wj -W -JW'}'j 

j 
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In Eq. (7.2.1) N is the number.of molecules per .unit volume; m is ·the mass of each charge 
e, Jj are the numbers of eleCtrons per molecule with binding freQuencies w1 and damping 
constants y1, and the "oscillator strengths//' satisfy the sum rule 

(7.22) ~ / 1 = Z, 
j 

Z being the number of electrons per molecule. "With suitable quantum-mechanical de­
_finitions of jj, y1, and w1 Eq. (7.20) is an accurate description of the atomic contribution 
to the dielectric constant" ([12], p. 285). Using Eq. (7.17) and k = (e!-')112, we find that 

(7.23) e(w) = 2c2~2/(p.w 2 -c2~2e*(E)), 

where e*(~) is the Fourier transform of e* under Eq~ (6.1). 
Requiring Eq. (7.23) to coincide with the dispersive relation from the microscopic 

considerations (7.20) yields 

(7.24) e* = (pf2)(kfk,.e)2 -2/(1 +F). 

Thus, once jj, w1, . and y1 are determined from quantum mechanical considerations, one 
can, at least in principle, determine the nonlocal electric material cOefficient. 

In the high-frequency range, where w is farabove the resonant (binding) frequencies w1, 

the dielectric constant (7.20) takes on the simple form 

(7.25) -

where 

(7.26) 

is the plasma frequency of the medium. Furthermore, the wave number varies with fre­
quency as for a mode in a wave guide with cut-off frequency w,. In such a situation the 
following dispersion relation is obtained ([12], p. 344): 

(7.27) w = cE /[•p(t-(:: nr. 
Comparing Eq. (7.17) with Eq. (7.27) yields the following expression for e: 

(7.28) 

For dielectric media Eq. (7.25) is valid only when w,. w,, so _that e is then close to unity 
although slightly less. Thus, in the limit w,fw-+ 0 we have,. from Eq. (7.28), 

(7.29) £ ~ -1. 

Substituting Eq. (7.29) into Eq. (7.17) we recover the classical frequency-wave number 
relationship 

(7.30) 

Thus, in the high-frequency limit the nonlocal· interactions reduce to . the classical results. 
It is imp~rtant to note tliat if we ignore all the nonlocal effects, that is, examine the 

problem in the classical setting, then no dispersion relation can be obtained. In other words, 
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excluding nonlocal effects reverts the E-M field equations back to the classical hyperbolic 
system. Thus the dispersive character of the Zenneck type waves is brought out only by 
the inclusion of the nonlocal effects. 
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