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Some simple flows with large density gradient layer
S. MAY (WARSZAWA)

SoruTions of Navier-Stokes equations for a gas flow, describing a specific type of layers, are
obtained for some simple geometrical situations (one-dimensional flow and flows with cylin-
drical and spherical symmetries). The layers, in which the density has a large gradient, separate
flow regions of a small density gradient (in the layer a density profile has a characteristic S-shape).
In contrary to the shock waves in the large density gradient layers, the flow velocity is much
smaller than the velocity of sound and the pressure variations are small while the density and the
temperature vary strongly. On the other hand, the existence of gas flow across the layer makes
the considered layers different from the contact surfaces. The large density gradient layers have
been observed experimentally in slow convective flows near a continuous optical discharge.

W pracy znaleziono rozwigzania robwnan Naviera-Stokesa opisujace dla kilku prostych sytuacji
geometrycznych (przeplywy jednowymiarowe, o symetrii walcowej i sferycznej) specyficzny typ
warstw w przeplywie gazu. Warstwy te, charakteryzujgce si¢ duzymi gradientami gestosci,
rozdzielajg obszary przeptywu o matych gradientach gestoéci (profil gestosci ma ksztalt krzywej
logistycznej). Warstwy duzych gradientow gestosci rdinig si¢ od fal uderzeniowych mala pred-
koscig przeplywu (M < 1) i prawie stalym ci$nieniem, przy silnej zmiennosci gestosci i tempera-
tury, za$ od powierzchni kontaktowej — niezerowa sktadowa predkoéci prostopadia do warstwy.
Warstwy duzych gradientow gestosci byly obserwowane do$wiadczalnie w powolnych przeply-
wach konwekcyjnych, wystepujacych wokol cigglego wyladowania optycznego.

B pabore nHaiinguer pemtenus ypasBHenmit Happe-Crokca, onuchiBarolliue, JUIfi HECKONBKHX
NMPOCTLIX TEOMETPHYECKHX CHTYaluit (OJHOMEDHBIE TeUYCHHA, TEYECHHA C LHIMHAPHYECKON
u chepuueckoit CHMMETPHAMH), cieluHYeCKHil THIT CJI0EB B TEYEHHH rasa. OTH CJIOH, Xa-
paKTepuayiouecs GONBIIMMH TPaHEHTAMH IUIOTHOCTH, Pasiensaior 061acTH TeUeHHA C Mabl-
MH TPajiHeHTaMM IUIOTHOCTH (NMpodHIb IUIOTHOCTH HMeeT (JOPMY JIOTHCTHUECKOH KpHBOI).
Crnon GONBIUIMX TPaJUEHTOB IUIOTHOCTH OTJIMYAIOTCA OT YAADHBIX BOJIH MAaJIOil CKOPOCTBIO
TeyeHnA (M <€ 1) 1 NoYTH NOCTOAHHBIM NAaBJICHHEM, NPH CHJIBHOH MEPEMEHHOCTH MJIOTHOCTH
M TEMNepaTypbl, OT KOHTaKTHOH <€ MOBEPXHOCTH — HEHYJIEBOH cocTaBiAloliell CKOPOCTH
nepHeHAMKYIApHON K cnoro. Cnon GONBIIMX I'PaJIMEHTOB IJIOTHOCTH HaOIOJAIHCh IKCMEepH-
MEHTAJIBHO B ME[JIEHHBIX KOHBEKIJHOHHBIX TEYECHHAX, BBICTYNAIOUIHX BOKPYT HEMpepLIBHOTO
ONTHYECKOIO paspAna.

1. Introduction

WHEN A LASER beam is focused in a very small gas region (especially in monatomic gas,
e.g. argon), then in certain conditions a continuous optical discharge arises. Because of
high temperature (10*°K or more) gas in the focus of the beam becomes plasma. The contin-
uous optical discharge is accompanied by a slow convective flow of an electrically neutral
gas in the vicinity of the-plasma region. The most striking feature of this flow is the high
ratio of temperature close to the plasma region to that far away. The regions of high and
low temperatures are, according to experiments, separated by a layer of large density
gradients [1, 2]. A picture of such a layer, obtained by means of the Schlieren method, is
presented in Fig. 1. The layer is neither a constant surface, since gas crosses it, nor a shock
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FiG. 1. A Schlieren photograph of continuous optical discharge. The large density gradient layer is indi-
cated by an arrow. The photograph was obtained in the Fluid Mechanics Department of the Institute
of Fundamental Technological Research in Warsaw.

wave since in the whole flow region the gas velocity is much smaller than the velocity of
sound. To the author’s best knowledge, the large density gradient leayers of the mentioned
type have not been considered theoretically as yet.

2. Assamptions

The main purpose of the present work is to analyse, in some very simple geometrical
situations, the solutions of Navier-Stokes equations describing the large density gradient
layers. For the sake of simplicity we shall limit ourselves to stationary flows depending
on one space coordinate, with plane, cylindrical -and spherical symmetry. Gas flow is
directed from the low to the high temperature region. In particular, in spherical and cyl-
indrical cases there is a radial inward flow of cold gas from infinity toward a hot sphere

Fi16. 2. General view of the layer in flows of cylindrical and spherical symmetry.
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or cylinder on which positive heat sources and negative mass sources are distributed
(Fig. 2). Analogically, in the case of plane symmetry gas flows in a half-space from infinity
toward a given plane.

It is assumed that the gas is perfect and the specific heat of the gas and the Prandtl
number are constant:
(2.1) ¢p, Pr = const.
The coefficients of viscosity and heat conductivity are power functions of temperature with
the same exponent n. The flow is then governed by the following equations:

('!?urm_l)r =0,

p _
Pr = —euly—— —r,..’%(r"'"u),] +2(pu,),+2(m—l),u(%) )

r

2 2
(22)  ouc,T, = —r-,,.l_—.- (r"'-'M”,).hu[i (u,—ﬂ_—l i) +(m—1)(3—m) (':_) ]
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where r denotes the space coordinate, p — density, p — pressure, T — temperature,
u and A — viscosity and heat conductivity coefficients, u — flow velocity, » — adiabatic
exponent. The constant m becomes 1, 2, 3 for plane, cylindrical, and spherical symmetry,
respectively. The index r denotes differentiation with respect to the coordinate r.

Our interest is limited to the very slow, strongly subsonic flows with

(2.3) M? <1
(M is the Mach number) and very strong variations of temperature. In such flows the pres-
sure variations are small with respect to the temperature variations. As a consequéence,
the pressure is taken to be constant in the equation of state, while the density is inversely
proportional to the temperature. The small flow velocity assumption makes it also possible
to neglect the viscous dissipation term in the energy equation. Upon these assumptions
Egs. (2.2) may be replaced by Egs. (2.4)
(our™= l)r =0,
ouc, =" = (P"-1AT),,
2.4 £ o5
Ho Ao To
e _T
2o T*
p = const.

A specific property of the considered flow is that the fields of velocity, density and tem-
perature do not depend on the momentum equation. As a result of the flow symmetry,
the continuity equation has its integral, and hence the velocity may be expressed as a known
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function of density and coordinate. Should the density be constant, the velocity field would
be determined by the equation of continuity. But the density varies as the inverse of the
temperature. However, because of the specific form of the equation of state the energy
equation does not include the pressure and can be integrated independently of the mo-
mentum equation, making it possible to determine the velocity, density, and temperature
fields. :

To solve the continuity and energy equations the following boundary conditions are
assumed: T = T, for a given value of r = r;, T — T, for r - oo, and the constant and
negative value J of the mass flux (equivalent to the boundary condition for u). For a given
mass flux the general solution of the energy equation includes 2 independent constants.
For that reason it is rather inconvenient to use 3 different parameters T, T, r, in the
boundary conditions, as we did. In Sect. 4 we shall introduce alternative, more con-
venient, boundary conditions, making use of certain properties of the solutions.

It will follow from further considerations that the assumed model loses its validity
if the flow is continued too far on the hot side. That is the reason why we have introduced
a certain surface r = r; bounding the flow. To give to this surface physical interpretation,
we may imagine it as a boundary of a plasma region in a flow in the case of lack of grav-
itation (for m = 1 an upward flow in the presence of gravitation is admissible). A certain
mechanism of sucking of gas inside the plasma region should be supposed. In another
interpretation, valid for T, moderately large, the surface r = r; may be thought as a hot
porous wall on which gas is sucked in.

3. Solutions of the continuity and energy equations

Upon integration the equation of continuity (2.4), may be presented in the form

J
(3.1) ou = a1
where
o =1,
o, = 27,
oy = 4m.

To solve the energy equation it is convenient to introduce the dimensionless variables 6
and R

T r FC,00Uo
9 = —— = — = —'._..-.-_.
To e R L Zn !
where
— 20 -
CpQolo

is a characteristic length connected with heat conduction, and all symbols with an index 0
correspond to a certain characteristic point not specified as yet. It should be mentioned
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that for the inward flow both L and R are negative. Taking into account Eq. (3.1) and (2.4),,
and integrating once the energy equation with the boundary condition at infinity, one
obtains

d0 _ [Re\"' 0-0,
02 @R (_R_) 7
Upon second integration one gets
R = I(0) for m=1,

R _ I(B)) ¥,
(3.3) - exp( R, for m=2,

R e Lo 6 3

_}_.z_o._ = o0 1(6) or m=9J3,

R,
where
6 0o,

n " o 6 ! l i
(3.4) 100)= | ———dr =02 Z _dz=0n, [1(—) -1 (——)I
lf T—0 ”.! z—1 0 0

o0

It was assumed that 6 =1 for R=0if m=1,and 6 =1 for R= Ry #0 if m # 1.
For m = 1 R, is not defined. Let us remark in this place that the solution (3.3) depends
on two constants R, and 0. The question of boundary conditions will be discussed later
in Sect. 4. The indefinite integral / may be expressed analytically for any rational
value of n, although a corresponding expression is rather complicated. Assuming n = k/I,
where k and / are irreducible integers, we have the following formulas for even and odd
values of 1, respectively:

7 z" S g in

I(z) = = —(=D**'In(x+1)+In(x—1) + Z cos(2m:.'x)ln(l —2x cos-};— +x‘)

i=1

J-1 x—cosl—J.t—
-2 Z sin (2inz) arc tg 7”‘} +const
i=1 sin —
)
for I = 2j, and
J
— " Q2i-1kn 2i—1
I(z) = =— +1 R k+12 S R el 2
(2) = +In(x—1)—(-1) e cos 1 ln(l+2xcos 25+1 T+ X
J x+cos——i_ b1
V. Qi-1)kn 2j+1
_9( —1)k+1 (&b — 1) N v
2(-1) lé(sm 1 arctg P 2-1 +const

.—“
2j+1
for I = 2j+1, where x = z'/! and k <1 > 2 (see [3].
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Generally, values of the viscosity exponent n lie between 1/2 and 1. For both these
values of »n there are much simpler formulas:

0—0,

I=0—1+0m1ﬂ]"’:ew for ﬂ=l,
e /o y—
I=2(/0-1)+y0s ln('—-?_ﬂ—if"— A0 - B el
Vo+10., 1-y0s 2
For the asymptotic cases 6" > 1 and 6"—0", < 1 there are approximative formulas:
(3.5) Ix1* = % for 6">1,
(3.6) I I** = 0"In(0"—0%) for 6"—6% < 1.
Knowing the field of temperature one may determine the fields of density and velocity:
=8
(3.7) e=
Jo

4. Structure of the layer

A density profile (3.7), resulting from the solution discussed in the previous section,
has a form of a logistic curve with a characteristic deflection point (Fig. 3) which will be
referred to by the previously introduced index 0. As it follows from the boundary condi-
tions, o tends to a constant value g, when r — co. In a flow with plane symmetry there
is another asymptotic value of ¢ for r - —o0; in this case ¢ — 0. Thus the regions of

[ |
=1 s 1

=5 6/ 5 -R

Fi1G. 3. Profile of density in a plane layer for n = 1.
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a very small gradient of density are separated by the layer of a large gradient near the
deflection point. For cylindrical and spherical symmetry r > 0 and p -0 as r —» 0. In

these cases we shall say that a layer of large density gradient exists if a thickness & defined
with the aid of a derivative in the deflection point is small with respect to the layer radius r,

@1 T I W T L .

[de 0.8 1

(dr )r=ra n‘:’( d‘R a R=R,
From the equality d?p/dr? = 0, which is fulfilled in the deflection point, the value of ¢
in this point was found to be

0o _ l+n m—1

0n  24n T @F¥mR,
It follows from Eq. (4.2) that for plane symmetry

(4.2)

g_u_l+n
00 2+4n°

4.3

which means that for n in the range from 1/2 to 1, go/e,, lies between 3/5 and 2/3. For
other symmetries the formula (4.3) is approximately valid if |Ry| > 1. The layer thickness
is then found as

2
_ (2+nm) L
1+n

From Eq. (4.4) it follows that the layer thickness is of the same order as the characteristic
length L connected with heat conduction; in other words, the condition for the existence
of a large density gradient layer, which was previously formulated as é < r,, is equiva-
lent to |Ry| = |ro/L| > 1. Let us remark that R,, the value of the nondimensional coordi-
nate R in the deflection point, may be interpreted as a Peclet number

(4.4) 8=

Cplololo

FIE
This interpretation is not valid, however, for the plane symmetry flow because in this
case rp has not any physical meaning.

It was mentioned in Sect. 2 that another, more convenient form of boundary condi-
tions would be introduced. Instead of r, and the corresponding temperature T, it is
sufficient to give the layer radius r,. Thus three parameters of the boundary conditions:
Ty, Ty, ry are replaced by two: T, and r, because the temperature T is determined by T,
For the plane flow the solution depends in fact on one parameter T, because the layer
radius has not any physical meaning in this case. The initial value of R for integrating
Eq. (3.2) was taken arbitrarily as O; another initial value of R would only translate the
origin of the coordinate system.

The density profiles for spherical flow for different values of » and R, are shown in
Fig. 4. As opposed to the density profiles, the profiles of temperature and velocity have
no deflection point. Both these parameters increase more and more as r decreases and tend
toinfinity while r — 0 (if m # 1) orr = — oo (if m = 1). The examples of temperature and

R°=Pe=
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Fig. 4. Profiles of density in spherical layers:'
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FiG. 5. Profiles of temperature in spherical layers.

l L
1 2 R/R,
FiG. 6. Profiles of velocity in spherical layers.
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velocity profiles are shown in Figs. 5 and 6. The convective energy flux E behaves in a way
similar to that of temperature:

E.=Je, T
equally as the heat flux Q
Q = Je,(To—T)

since they both depend linearly on the temperature and tend to + and — infinity, respec-
tively, for r -+ 0 (r - — oo for m = 1), the full energy flux E (E = E.+ Q) being constant.
For plane symmetry the velocity is proportional to the temperature. In other cases it increas-
es downstream even more sharply than the temperature. It is evident that the flow cannot
continue up to r = 0 (for m # 1) but should be bounded by a surface with mass and heat
sources distributed on it. In particular, a position of this surface should be assumed such
that the Mach number on it would be much less than 1, otherwise the assumed model would
not be valid.

5. Global characteristics of the layer

In this section we shall examine the influence of the boundary conditions and the ma-
terial constants on geometrical characteritics of the layer, i.e. its thickness and the distance
between the layer and the boundary surface. First we shall show that some simplifications
are possible because Ar, the distance between the layer (deflection point) and the boundary
surface is of the same order as the layer thickness 8. For Ar we have

-ry for m=1,

dir:ir",—r1 for m#1.

A ratio d/4r may be obtained from Egs. (3.3) and (4.4)

é o n+2)? 1
E—:ﬂ-—;—z-—-—-—-—".‘ul Tl- fof m=l.
d é (n+2)3 1
. —_— = — =, = 2‘
G.0) Ar ro—r, n+1 (1 —cxp(z'lj'R‘,))R.J for | m
d 6  (n+2)? ( 1 1 s
R ey _I,__R_o forr m = 3.

Values of 8/4r for the plane flow are shown in Fig. 7 as a function of the temperature
ratio T, /T, (for different values of n). It is seen that /4r decreases when the temperature
ratio and n increase, but even for such a high temperature ratio as T, /T, = 30 it is of
the order 1. The same goes for cylindrical and spherical flows, If

(5-2) IROI } Il:

the formulas (5.1), and (5.1); reduce to Egs. (5.1),. Otherwise 8/4r is even greater. As
a consequence we shall put r, = r; (for m % 1). This assumption is not valid only for
a very large temperature ratio which is difficult to achieve physically because of gas ioni-
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FiG. 7. Ratio of the layer thickness & to the distance between the layer and the surface of the tempera-
ture 7, (for a plane layer).

sation. For the sake of simplicity the fulfillment of Eq. (5.2) will be assumed. Now L,

é and Ar may be simply expressed by the boundary conditions and material con-
stants:

. EERe (2+n )' H o2

" Cpoote  \1+nm T I

(2Fn)2agd ot
I T LT R

ar = — (2+n )ll o ArT ™! ) O
1+n cd |
Some of the parameters (these which determine L) act on the layer by the effect of dila-
tation or compression of the scale, i.e. they increase or decrease in the same ratio as the
thicknes of the layer ¢ and its distance Ar from the boundary surface. In particular, the
rise of the mass flux makes the layer more compact while the rise of r, or 4., havean opposite
influence. In different way acts the temperature ratio which influence on Ar but not on 8.
When T,/T,, increases, the layer thickness remains constant, but the layer moves apart
from the boundary surface. Similar is the effect of the heat flux because

O ., s

1 o

(5.3) B

As an example we shall discuss argon. It is assumed that this gas is in normal conditions
at infinity and the radius of the boundary sphere is r, = 1 mm. In this case

iy 3-10-* gcm
BN | T

In particular, for J = — 102 g/s there is d 2~ 0.03 cm.
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6. The pressure

In the previous considerations the pressure was taken to be constant, and a solution
for u, p, T was found. This solution, being an exact solution of Eq. (2.4) may be interpre-
ted as a first approximation solution of Eq. (2.2) for the square of the Mach number being
a small parameter. To find how the pressure varies one should obtain a second approxima-
tion solution, i.e. to integrate the equation (2.2), with the right side determined from
the first approximation. This equation has the form

R
(6.1) 'ﬁ Peo - = xMOT T 3 Pr—1

Ryl 4 8

rm-0() " g -re (5 o))
It may be seen that the pressure derivative in Eq. (6.1) is proportional to the small para-
meter MZ. Without solving this equation we shall indicate some of its consequences. The
formula (6.1) becomes particularly simple for m = 1. In this case a sign of the derivative
exhibits a change for Pr = 3/4. It follows then that for Pr < 3/4 gas moves in a direction
of smaller p. In the reverse case gas moves against the pressure. The last result follows from
the fact that the viscous forces, which are determined by the continuity and energy equa-
tions, have the opposite direction with respect to the pressure forces; and for Pr > 3/4
they prevail over the pressure forces. For Pr = 3/4 the pressure is constant in the flow.
For the cylindrical and spherical flows the formula for the pressure derivative is more
complicated. The second component in braces is much smaller than the first one if T is
not very close to T, and Pr is not very close to 3/4(]0"/R,| < 1 as a result of Eq. (5.2)).
The sign of the pressure derivative is then determined by the first component, analogically
as in the plane flow (depending on Pr). However, far enough from the layer, where T is
very close to T, the second component becomes predominant and gas moves in a direc-
tion of smaller p independently of Pr.

7. The range of validity of the model

In the previous considerations we made various assumptions about orders of magni-
tude of some parameters and expressions. Now we shall analyse thoroughly these assump-
tions and their consequences. We have neglected the viscous dissipation term in the energy
equation and we have assumed pressure in the equation of state to be constant. These

assumptions may be expressed in the form of strong inequalities (7.1)—(7.2) which should
be valid in the whole flow region:

.1 Bt gy

T dp
7.2 =
(7.2) Y IT <1,
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where ¢ is a viscous dissipation term omitted in the right side of Eq. (2.4),

7.3) PR LI O - L) o ey {1y
(7. _”?’TT +(m )(-—m)-;_ .
Next, we have assumed another strong inequalities about some constants:
(7.4) M? <1,
(1.5) —’L"_ >1, form 1,
(7.6) _A_r= E—'— €1, form#1,

TFo Fo

T;

1.7 >

As a consequence of the inequality (7.4), the Mach number is small in the whole flow region
because M is a decreasing function of r:

T [r 2(m-1)
2 _a2 1 (M1
=t (1)

The inequality (7.4) is closely connected with inequalities (7.1)-(7.2). In the following
we shall consider this connection more profoundly. The inequality (7.5) is a condition
of existence of large density gradient layer, while the inequality (7.6) and (7.7) were assumed
for the sake of simplicity.

Taking into account the results of Sect. 3, in particular Egs, (3.1) and (3.2), one may
express § and y by means of R and 6:

_x—1 M?Pr R.,)"" 6—0,, {4[ 1.8 R\
p- e (R) TR

e 0 T R ™[0\ o \*
"R, e—ow] +('”"”‘3“"")(T°) (RT) (a—eq,) }

S I A T O |

The last equalities become very simple for the plane flow. It is easily seen that the assump-
tion of a small Mach number (7.4) is sufficient to provide that the conditions (7.1) and
(7.2) are fulfilled in this case. For non-plane symmetries these conditions are rather compli-
cated but they become simpler for the asymptotic cases @ > 1 and 6—0,, < 1. It may be
seen that in the first case the condition (7.4) is sufficient too, as for the plane symmetry,
while in the second case another condition (7.8) is needed:

(7.8) M3 < 0—0,.
The last inequality is bounding the flow field on the side of great radii. It results from the

fact that the velocity and the pressure tend to their asymptotic values as a power of r,
while temperature tends to the asymptotic value exponentially (that follows from Eq. (3.6)),
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hence far enough from the layer the pressure derivative is not small with respect to the
temperature derivative. It should be mentioned, however, that for a slow enough flow the
conditions (7.1) and (7.2) lose their validity in such a distance from the layer where the
temperature is practically constant and very close to T',,. In such a case it is justified to
assume-boundary conditions at infinity.

Now, going back to the conditions (7.4)-(7.7) let us observe that two of them containing
ro are required only for non-plane flow, and the inequality (7.5) is in fact a consequence of
the condition (7.6). Thus the conditions (7.4)-(7.7) reduce to the relations (7.9)-(7.10)

v e e
> () >
(7.10) Mi <1,

where the left side inequality of the relation (7.9) is required only for m # 1. It is con-
venient to express the Mach number using the mass flux and other parameters:

s ﬁ - Jal iz Jam Tl
0 M T Tt Tt l/‘ﬁ‘

Inserting the expressions (5.3); and (7.11) for L and M, into the conditions (7.9) and
(7.10), one obtains a double strong inequality for the mass flux J

T»

T,

If the mass flux is too large, the condition of a small Mach number is not fulfilled; on the

other hand, if it is too small, a layer of large density gradient does not appear. The right
side of the relation (7.12) should be much greater than the left side of it, or r; should be

large enough
— Gyl T,
> 7= )/

As an example a value of r for a spherical flow of argon will be given. For normal condi-
tions at infinity and a temperature ratio T, /T, = 20 it was obtained that 7 is of the order
10-# cm. For other gases values of r are of the same order as for argon. For plane symmetry,
the condition (7.13) should be fulfilled instead of the relation (7.12)

(1.9)

T'o
Y

-1
(7.12) O TT 2, <€ |J] € E'l'—ﬂﬁ‘——]/ for m=2,3.

o

T,
7.1 P =
(7.13) |J] < e

In this case there is only an upper limit for J which does not depend on r,. For a flow of
argon (with normal conditions at infinity and T,/T,, = 20)

[J] <7 gfs.
8. Final remarks

In the paper solutions of Navier-Stokes equations describing the large density gradient
layers have been obtained. In these layers the density profile has a characteristic S-shape
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(logistic curve) with a deflection point, the temperature and the velocity are increasing
more and more sharply downstream and the pressure is almost constant. The solutions
are based on the assumption of the inward (negative) mass flux and the outward (posi-
tive) heat flux (excluding the plane symmetry flow in which it was merely assumed that
directions of both fluxes are opposite). Solutions obtained for other combinations of
signs of Q0 and J do not descibe the layer of a large density gradient.

Of course, the flows considered depending on a one-space coordinate only are very
simplified analogues of real three-dimensional flows, observed near a continuous optical
discharge in which non-one-dimensional effects may be of great importance. Nevertheless
it seems that the solutions obtained describe some important features of real layers of
a large density gradient, and may be used as the basis for a more detailed analysis of more
realistic flows.
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