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Direct continuum model of an . elastically-deformable polarizable · and 
magnetizable body 

ll. Field eqg:ations 

Z. BANACH (WARSZAWA) 

WE CONSTRUCT by means of the Lagrangian function introduced in the paper [1] and the prin
ciple of stationary action stated in this article the equations of motion and fields and also the 
equations of conservation of energy, momentum and moment of momentum. Finally, we make 
a study of the relations of our theory with the local approaches. 

Konstruuje si~ za pom~ wprowadzonej w pracy [l) funkcji Lagrange'a oraz iasady stacjonar
nego dzialania ustalonej w tej pracy r6wnania ruchu i p61 oraz r6wnania zachowania energii. 
~du, momentu p~du. Rozpatruje si~ powi~zania naszego modelu z lokalnymi metodami opisu. 

llpe,nnomeHHa.H B pa6oTe [1] cPYHKUH.H JlarpaiDKa H npmn(Hn crai..(HOHapHoro ]leikrau.H HC
nonh3~TC.H ,AJI.H llOCTpOeHH.H ypaBHeHHH COXpaHeHH.H 3HeprHM, MMllYJibCa H MOMeHTa MM
nyJibca. PaccMaTpMBaeTC.H CB.H3b npe,nnomeHHOH Mo,nenu c noKaJibHhiMH MeTo,naMu onH-
CaHH.H. 

1. Introduction 

THE PURPOSE of this paper is to continue the investigations in our previous aiticle [1]. 
The starting point of our discussion is the Lagrangian function and the principle of 
stationary action. In the equations of motion and fields and also in the equations of con
servation of energy, momentum and moment of momentum some of the quantities (the 
first-order Cauchy stress tensor, the first order spin interaction stress tensor and so on) 
are expressed entirely in terms of the generalized densities, the potential functions of 
different types, the magnetic moment per unit mass and the electric moment per unit 
mass, respectively. It must be remarked that these mechanical quantities can be intro
duced to continuum mechanics in spite of the lack of special knowledge about the range 
of interactions between two particles. For the sake of simplicity we confine ourselves to 
the second-order theory. It is very interesting to look for the conditions which allow to 
make a transformation of the exact form of the equations of conservation into_ the form 
corresponding to the so-called second-order theory (for instance). The discussion of this 
problem as well as the discussion of the relations of our theory with a nonlocal continuum 
of EDELEN and ERINGEN [2, 3, 4] will be the subject of another paper. 

The results of TIERSTEN [5] and COLLET [6] concerning ferromagnetic bodies under 
the quasi-stationary magnetic field are compared with those of ours. 
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.196 Z. BANACH 

.2. An inhomogeneous principle of stationary action 

The aim of this section is to establish an inhomogeneous principle of stationary action. 
We confine ourselves to the case of the magnetically saturated body which is of a particular 
interest. The saturation condit~on [5, 7] has the form 

m 
(2.1) ,u~(X, t),urxk(X, t) = ,u~(x, t),urxk(x, t) = (/-lrx) 2 = const, 

m 
where ex = a, b, and /-la. = lfLrxl denotes the saturation value of fLa.· This assumption, al-
though not valid when the critical phenomena are under consideration, is consistent with 
our reversible approach and can be used withouf doubt at temperatures much below the 
corresponding critical temperature: There exists a connection Between angular momentum 
per unit mass in the cx-subcontinuum sa. on the one hand and the magnetic moment per 
unit mass in the cx-subcontinuum l'a. on the other hand 

(2.2) . 

where Ya. = Ka.:B - denotes the so-called gyromagnetic ratio, Krx i~ the magnetomechanical 

coefficient, Jls is called the Bohr magneton, and his the Planck constant [8, 9, 10]. Gener
ally, the magnetomechanical coefficient Ka. depends on the ex-species (ex = a, b). If we 
assume that magnetic moments arise only from spin [10], then we have to write 

(2.3) Ka = Kb =g. 

It results directly from Eq. (2.1) that jn processes which occur in nature, the variation of 

the magnetic moment per unit mass in the cx-subcontinuum fLrx, denoted here by Lf0 fLa., 
during the time interval LJt has-the form . 

(2.4) (J"o,Urxt)(X, t; LJt) = -Ettmftrxl(X, t)wrxm(X, t)LJt, 

where wa.(X, t) is the angular velocity of the magnetization vector fLa.(X, t) at X at time 
t; this means that for a virtual motion we can write, instead of Eq. (2.4), 

(2.5) 

where ~o9a./~t denotes the axial vector which is not the time derivative of an actual vector 
function in the case of natural processes occurring in the cx-subcontinuum. Furthermore, 
we must introduce obvious conditions following from Eq. (2.1): 

(2.6) 

- !} !} -

Let us assume that ~0 W denotes ~0 W after a replacement of ~ofLrx by ~ofLrx (ex =a, b). 
(1-t. 12) (tl. 12) -

An inhomogeneous pri~ciple of stationary action [2] has the form 
12 

(2.7) ~o W + }; J t50 P a. dt = 0, 
(tit 12) (a.) l! 

where 

(2.8) ~oPa. = -(ya.)- 1 J dxea.(x, t)P,a.1(x, t)(~oea.i)(x, t). 
00 
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The main difference between our inhomogeneous principle of stationary action and the 
so-called principle of stationary action is caused by the existence of the additional term 

lz 

.L; f lJ0 Pa.dt in the equality (2.7). The IJ0 Pa. is postulated by means of the formula (2.8). 
(a.) IJ 

The principle (2. 7) (in contrast to the principle of stationary action) allows one to obtain 
Eq. (3.4) governing the behaviour of the magnetic moment per unit mass. 

A different approach to the same problem (the structure of the equation of balance 
of the electronic spin) is presented in the paper of S. KALISKI, Z. PLOCROCKI, D. ROGULA 

[23] and also in the article of M. LAX [24]. 
At first sight the principle of stationary action (2. 7) leaves much to be desired on account 

00 

of the variation 60 W of the action functional defined for the infinite spatial region oo. 
(tJt tz) 

00 

On the other hand it must be noticed that lJ0 W exists because of a continuous tran-
(th tl) • 

sition of the body from the material state to the vacuum one. The above statement is 
sufficient (in the case of short range forces and in the case of the small radius of correla
tion between particles) to obtain the equations of motion and fields in the local form at 
each point x belonging to Q where the homogeneity assumption is accepted from the 

D 

principle (2.7) using only the well-known expression 60 W for the finite region Q. 
(tlt tl) 

3. Equations of motion and fields 

In this section we study the structure of the equations of motion and fields. Let E and 
B be the electric field vector and the magnetic induction, respectively. There exists the 
relation between (({J, A) and (E, B) 

(3.1) 
1 E1 = -qJ, 1-- o,A, 
c 

B1 = e,,.A:,. 
The independent equations of motion and fields are: 

(i) balance of momentum, (ii) intramolecular force balance law, (iii) balance of the 
electronic spin, (iv) electromagnetic equations. In addition to the equations (i), (ii), (iii) 
and (iv), we must also require (v) continuity equations. It can be proved, using only the 
principle of stationary action (2.7), the defining relations (3.1) and results of the previous 
paper [1], that the equations (i), (ii), (iii), (iv) and (v) have the form 

(i) Balance of momentum 

(3.2) ( )•. 1 • ( e ( · 
(! x, t x 1 = P,E1 ,+- [xx P,B ,)]1+- DxB)1+.11,B, 1+ 1

1• . c . c . Ji 

(ii) Intramolecular force balance law 

(3.3) e(x, t) ~::i ii, = e(x, t) [ E+ +(X x B)], +e(x, t)0E1+e(x, t)LE,. 

3 Arch. Mecb. Stos. nr 2/81 
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198 Z. BANACH 

(iii) Balance of the electronic spin 

(3.4) (y1X)- 1 g~(X, t)p«Xi = (?«X(X, t)(p.IX X (B+effBIX)]i; (Cl =a, b). 

(iv) Electromagnetic equations 

(3.5) 
1 

VxE =--orB, 
c 

divD = 0, 

(v) Continuity equations 

1 
VxH =- orD , 

c 

divB = 0. 

(3.6) Otn«XB + _;_ ( n«X{JvP(x, t) )+ _;_ ( n«X{JvP(y, t)) = 0, (Cl, {3 = a , b) , 
uXp uyp 

where we introduced the following useful notations and abbreviations: 

(3.8) 

(3.11) 

D = E+4nP, 

1 
M= Jl--vxP, 

c 

iq 

+ecxp(x, y, t)Rcxa(x-y)Ilq(x, t)), 

iq 

+ecxp(X, y, t)Ccxp(x-y)p«Xq(x, t)), 

H = B-4nM, 

Jt = 2; eiXP.IX = eP.· 
(ex) 

In accordance with our previous remarks [1], we use either the usual Cartesian tensor 
notation or the direct dyadic notation. We have no possibility to discuss these equations 
in all details. Nevertheless, it must be remarked that the term P,E;,,+(l/c)[v x (P,B,,)]1+ 
+ (e/c)(il x B)1 + Jl ,B,,1 in the right hand side of Eq. (3.2), and the term [E+ (1 /c)(v x B)]1 

in the right hand side of Eq. (3.3) denote the body force caused by electromagnetic pro
cesses, and the effective electric field vector of electromagnetic nature (the local electro-
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motive intensity), respectively. Our electromagnetic body force is identical to that of 
TIERSTEN and TsAI [11] but deduced from another point of view. At the same time, an 
equation very similar to our intramolecular force balance law (ii) has recently been obtained 
by MAUGIN (12-14], NELSON and LAX [15] but under significantly different assumptions. 
The equation (iii) has the accepted form but a detailed discussion of the structure of the 
effective magnetic induction errBcx must be postponed to another place. We believe that 
the similarities to the purely phenomenological theories will become then obvious. We 
take only note of the fact that the effective magnetic induction errBcx is, in accordance 
with the now well accepted results of the purely phenomenological theories [5, 6, 10, 11, 
16, 17], to be decomposed into two parts, the isotropic exchange part and the anisotropic 
local part (see the last section of this paper). The equation M=.A- (1/c)(v xP) is not postu
lated but follows directly from our Lagrangian approach. The magnetizations Jt and M must 
be understood as magnetizations in the instantaneous local rest system of inertia and in 
our rest system of inertia, respectively [11, 18]. Ji, 0 Eh LE, err Ba1 are associated with the 
strictly internal mechanical interactions and· are expressed entirely in terms of the gener
alized densities, the intermolecular potentials of different types, the ionic polarization 
per unit mass and the magnetic moment per unit mass, respectively. Generally, Eqs. 
(3.2)- (3.4) tell us that the material fields x(X, t), D(X, t), fLa(X, t) are subjected to the 
actions of external agencies (electromagnetic fields) and internal agencies of different 
types. There is no problem to show that the internal volume force is the divergence of the 
so-called nonsymmetric Cauchy stress tensor but we prefer another way of investigating 
this problem (see the next section). We refer the reader to ZoRSKI's papers [19-20], 
in particular to his definition of the nonsymmetric Cauchy stress tensor. 

It follows directly from Eq. (3.3) that if the external agencies (electromagnetic fields) 
vanish, the ionic polarization field still exists because of the term o E1• On the other hand, 
the microscopic characteristics of particles belonging to the a-subcontinuum and the 
b-subcontinuum as well as the macroscopic states of two continua described by the set of 
generalized densities are different. The main conclusion is that even if the electromagnetic 
field does not exist, the internal agencies influence on the behaviour of the a-subcontinuum 
and the b-subcontinuum in a different way. We are now in a position to look for the 
arbitrary mathematical assumption associated with the macroscopic states of two continua 
corresponding to the arbitrary (from the theoretical point of view) but useful (from the 
practical point of view) hypothesis that the term o E1 has no importance. Our assumption 
has the form 

(3.12) 
1 

(!ap(X, y, t) = 2 [1]ap(X, y, t)+1]pa(x, y, t)], (~, fJ =a, b), 

where 

17ap(X, y, t) = ?Jpa(y, X, t). 

The above arbitrary statement removes partly the differences between particles and can 
be understood as a specific kind of counting the average over types of particles. The physical 
sense have only the integrals over macroscopic volumes. For instance, we are interested 
in the following expression: 

3* 
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200 Z. BANACH 

(3.13) J dxe(x,t) 0E1(x,t) = - ~ J; I I dxdye""(x, y,t)~(x- y) 
(«, /l) !J 00 

1 i 

~ - T ,2; J J dxdye«p(x, y, t)Rcxp(x -y) 
(a.,/I)!J !J 

1 . . 
= -4 ,2; J J dxdye~~p(x, y, t)[Ru11(x-y)+~(y-x)] = o. 

(«, {J) !J !J 

At the same time, we have 

J Q(X, t)LE,(x, t)dx ::F 0. 
D 

4. Principles ·or conservation 

Although there are in principle no difficulties to obtain the local statements of balance 
of total momentum, total moment of momentum and total energy in the most general 
form, it is definitely convenient if we take only into account the generalized forces being 
the first and the second-order volume integrals with respect to z (see Eqs. (4.5), (4.6), 
( 4.14), ( 4.15), ( 4.16) and ( 4.17) ). It is entirely consistent with CoLLET's approach [ 6] 
requiring only the first and the second spatial derivatives of generalized velocity fields v, 
ii, fL« to be important (the second-order theory). In spite of the lack of special knowledge 
about the range of interactions under consideration desired in classical approaches, we 
introduce concepts of the first-order Cauchy stress tensor, the second-order Caucby stress 
tensor, the first-order ionic polarization stress tensor, the second-order ionic polarization 
stress tensor, the first-order spin interaction stress tensor, and the second-order spin 
interaction stress tensor, respectively. We are looking now for the conservation laws which 
are n9t new physical laws but result directly from the equations of motions and fields. 
On the other band, it is interesting to see that these conservation laws can also be obtained 
by means of the Lagrangian approach. This problem has been extensively considered 
by ROGULA [21] for the abstract case of a system composed of a continuous local body 
with some internal degrees of freedom of material points of the body and certain external 
fields. It is now well known that the action functional has invariance properties with 
respect to certain transformations of space-time [21-22]. In the case of an inhomogeneous 
variational principle we must then write 

!J !J !J 

(4.1) {J W = fJo W + {Jt W = 0 
(lt. tl) (I to 12) (lt, h) 

if these transformations of space-time are taken into account. It is to be noted that no 
particular assumptions about the time interval (t1 , t2), the spatial region Q, the range of 
intermolecular potentials are necessary. 

1. Translation of Space coordinates. We obtain 

fJt = 0, fJXK = 0, fJx, = e, fJII, = 0, fJp,« 1 = 0, 

(4.2) fJq; = 0, fJA" = 0, fJ0 x1 = e, fJ0I11 = 0, fJ 0 p,a.1 = 0, 

d1 q; = -q;,,e1, fJ1 A" = -A~1 e, 
where ex = a, band e1 denotes the infinitesimal transformation parameter. 
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I. The principle of conservation of total momentum 

(4.3) 

where 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

•• 1 0 i} EM 
e(x, t)x1+ -4-~(ExB),+ -!)- [ -(t1,+ T,,)] = 0, 

ne ut ux, 

<1>t1,(x, t) = ~ J; J dzz'kx8(x, x-z, t), 
(a., {J) 00 

(l>t,,11(X, t) = ! 2 f dzz'zst11(x, x-z, t), 

(a., fJ) 00 

1 
Q 1 = E1+- (vxB),. 

~ 

201 

(l>ti, is the first order Cauchy stress tensor, (2>tir:r is the second-order Cauchy stress tensor, 
EM 

ti, should be interpreted as the nonsymmetric Cauchy stress tensor, and T1, denotes the 
so-called Maxwell stress tensor. For the first time the same Maxwell stress tensor was 
introduced to continuum mechanics by TIERSTEN and TSAI [11]. Our uniform variational 
approach is a very strong confirmation of their results. Nevertheless, the Cauchy stress 
tensor by no means can be understood as a sum of the Cauchy stress tensors defined for 
the a-subcontinuum and the b-subcontinuum, respectively. It is strictly connected with 
the interactions between two continua. It should be obvious, after using Eq. (3.6), that the 
Cauchy stress tensor depends nonlocally on the displacement vector, the ionic polarization 
per unit mass, and the magnetic moment per unit mass through a single volume integral 
(see also ZORSKI (19-20) and ERIN'GEN [4]). 

2. Rotation of space coordJnates. We have directly 

~~ = 0, ~Xx = 0, ~x1 = -e11,x1 e,, IJII1 = -e11,,l1 e,, 

(jflrxt = -elJmi'«.JEm, f5oXt = ~x, IJollt = IJII,, IJofla.t = ~flrxt' 
(4.10) ~rp = 0, IJA, = -EtJmAJe,, ~1 rp = elcJm'P,k XJE,, 

where a = a, b. 
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After very tedious calculations, we obtain: 
11. The principle of conservation of total moment of momentum 

(4 ) ( ) 
d j mamb 1111• '\.., ( ) _1 C(a t: s) \ 

.11 (!X, t ·dt 'EtJkxJvk+ lqaqbl Euk J k+ L.J Ya {1 +C(at:e)) ,Uaif 
(a) 

-e",ll1D,,-e"' 2 ,..,F.,-e",(x1,,'2lt,,+l11.P'D,,+ 2 p.1.,<2>~:P)} = 0, 
(a, {J) (a,{J) 

where 

(4.12) 

kr kr krs 

(4.13) Fa{J = (l)Fcxp+<l>pcx{J,s' 

(4.14) 
1 ~1 1 k 

U>Dk,(x, t) = T L.J j dzz'dcxp(x, x-z, t), 
(a, {J) oo 

(4.15) 

(4.16) kr 1 J k 
u>pcx8(x, t) = T dzz'fap(x, x -z, t), 

00 

(4.17) 
krs 1 J k 

<l>Fap(x, t) = 4 dzz'z'lap(x, x-z, t), 

(4.18) 
k 1 k kp 

dap(X, y, t) = TRap(x-y)(!ap(X, y, t)+lcxp(x-y)17,(y, t)(!ap(x, y, t) 

kp 

+Rcxp(x -y)11,(x, t)eap(x, y, t), 

k kp kp 

(4.19) fap(x, y, t) = lap(x-y),up,(y, t)(!ap(x, y, t)+Ccxp(x-y),ucx11(x, t)eap(x, y, t). 

kr krs 
(1> Dk, <2> Dkrs, Dk, <1>pcxf1' <2>Fcxp 

kr 

and Fcxp 

may be referred to, respectively, as the first-order ionic polarization stress tensor, the 
second-order ionic polarization stress tensor, the ionic. polarization stress tensor, the 
first-order spin interaction stress tensor, the second-order. spin interaction stress tensor, 
the spin interaction stress tensor. It follows directly from Eq. (4.11) that the electric moment 
per unit mass n and the magnetic moment per unit mass fLex in the a-subcontinuum ex
perience couples caused respectively by an ionic polarization traCtion vector D and a spin 
traction vector Fcx acting across surfaces of the ionic continuum. The spin traction vector 
Fcx is associated with interaction between the a-magnetic subcontinuum and the ionic 
subcontinua (see the second term on the right hand side ofEq. (4.19)) and also withinterac-
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ion between the a-magnetic subcontinuum and the spins belonging to the same a-magnetic 
subcontinuum or to the different magnetic subcontinuum (see the first term on the right 
hand side of Eq. (4.19)). The latter interaction is either isotropic (see Eq. (4.6) in our 
previous paper [1]) and then the spatial nonuniformities in the magnetic fields are impor
tant (see also [10]) or anisotropic and then the spatial distribution of magnetization can 
be neglected. From the formal point of view exactly the same remarks can be adopted 
for the ionic polarization traction vector D. On account of no saturation condition it is 
difficult, however, to consider phenomena arising from the spatial nonuniformities in the 
ionic polarization field. To complete the above discussion we give the expressions for the 
ionic polarization traction vector D and the spin traction vector Fe" respectively, 

Dk = n,Dkr, 

(4.20) k kr 

F« = _2; n,F«P (~=a, b), 
(/J) 

where n, denotes the unit vector normal to the infinitesimal element of surface under 
consideration. 

3. Time translation. The infinitesimal time transformation has the following form: 

bt = -e, bXK = 0, bx, = 0, bll1 = 0, bp.«1 = 0, 

(4.21) bp = 0, bAk = 0, b0 x 1 = v1 e, b0Il1 = fl, e, 

bof.l«t = P«t e, b1 p = (8,p) e, b1 Ak = (8,At) e, 

where a = a, b and e denotes the infinitesimal transformation parameter. 
Ill. The principle of conservation of total energy 

(4.22) :, {eK+ee-efl. · B+ ;,. (E2 +B2)l 

where 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

k k 
+(dcxpllk)s(x,y, t)+(f«fJf.l«t)s (x,y, t)}, 

a«p(x, y, t) = n«p(x, y, t) V«p(lx-yl), 

k 1 k k . 

(d«fJilk)s (x,y, t) = T {d«p(x, y, t)Ilk(x, t)+d«p(y, x, t)Ilk(y, t)}, 

k 1 k k 

(f«fJf-l«k)s (x, y, t) = T {f«p(x, y, t)p.«t(~, t)+/«p(y, x, t) f-l«k(y, t)}, 
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where K is the kinetic energy per unit mass and e is the internal energy per unit mass. 
The internal energy of the material subbody occupying the spatial region !J, in accordance 
with the usual physical interpretation of the internal energy per unit mass, has the form 

(4.28) E3 = f e(x, t) e(x, t)dx = ~ 2 f f dxdy{aczp(x, y, t) 
!J (cz,P) !J oo 

k k 

+ (dczpil~c)s (x, Y '. t) + (fczp /lczk)s (x, Y, t)}. 

The above statement may be understood as stating that the energy of the material subbody 
occupying the spatial region !J depends on the environment oo of the material subbody 
as well. This fact follows directly from our Lagrangian approach and is a very strong 
confirmation of Edelen's suggestion on the same subject [2, 3]. Equation (4.22) states that 
the increase in the to~al energy of an infinitesimal fixed volume region of space associated 
with the material body and electromagnetic fields is due partly to the flux of energies 
of different types across the boundary, and partly to the works done by the generalized 
forces. Our equation of balance of energy is in many respects parallel to that of TIERSTEN 
and TSAI [11]. There is, however, one serious difference caused by the additional term efL ·B. 
We believe that our result is correct on account of the uniform Lagrangian approach. From 
the physical point of view the term-(>f' · B states that ~oupling exists between the material ' 
body and the electromagnetic fields. It must be remarked that if the theory is treated in 
the frame of quasi-magnetostatics and the ferro-magnetic body is under consideration, 
the equation of balance of total energy (4.22) can be easily reduced, in contrast to that 
of Tiersten and Tsai, to the following well accepted form [5]: 

+ (F.,n,)P,.-
4
: (Ex H),n,+ ;,. H2v,n,+ M· Hv,n,}, 

where 

krs 

- It is assumed here that the tensors <2>t~crs, <2> F are unimportant. 

5. Localization 

It is proposed now to study relations of our theory with the local approaches. The 
starting point of this discussion are the results of TIERSTEN [5] and COLLET [6] concerning 
ferromagnetic bodies under the quasi:stationary magnetic field. . 
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5.1. General considerations 

The main results of TIERSTEN [5] and COLLET [6], which will be the subject of our 

present study, have the form 

(5.1) tii.i+M1H~1 = ev1, 

(5.2) EtJkP.JHtrr = (y)- 1p1, 

(5.3) 

where 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

tu= au-P.uk,k+eLH[i!JiJ_Lffrt lkll-'iJ.b 

Hirr = H,+LH,+(e) -lLJtij,j, 

Du= v<I.J>' Du= vr1•11 , K 11k = v 1,ib 

m, = P,, -Dup.1 , _A,i = (p,,), 1 -D,kP.k.J· 

a11 = a11 is a first-order intrinsic stress tensor, P.tJk = P.tkJ is a second-order intrinsic stress 
tensor, L H 1 is the magnetic anisotropy field, L JfiJ is the magnetic exc~ange tensor (we 
adopt here the original terminology of COLLET [6] and TIERSTEN [5]). The above equations 
are valid without studying any particular constitutive equations. Nevertheless, if th~ 
constitutive equations are introduced, we must write 

(5.8) EptJL.tfUc!JJ,k = 0. 

In Tiersten's theory this condition is a consequence of the invariance of the exchange 
energy in a rigid rotation of the entire spin continuum with respect to the lattice contiuum 
(we adopt here the original TIERSTEN's terminology [5]). 

We are now in a position to start our discussion. Equation (5.1) is the direct conse
quence of Eq. (3.2). Indeed, in the ferromagnetic case we obtain very easily 

(5.9) 

where 

(5.10) 

(5.11) 

(5.12) 

1 e . 
P,E1 ,+ - [vx(P,B ,)]1+ - (DxB)1+.A,B, 1+/1 = M,B, 1+/1 . c . c . . 

= M,H,, 1 -4nM,M,, 1+/1 = M,H1,,-4nM,M,, 1+/1 

= M,H1,,+(t1,-2nM2 b;,),, 

t,, = (1>t,,+(2>tirs,s' 

<
1)t1,(x,t) =+ J dzz'h(x,x-z,t), 

00 

<2>t,,s(x, t) = + J zz'z5 h(x, x-z, t), 
Q · d 

pq pq 

i a v aJ ac 
(5.13) h(x,y, t) = n2(x,y, t) -

0 
+(e2p.,p.q)(x,y, t) -

0 
+(elp.,p.q)s(x,y, t)-

0 
. 

x 1 x 1 Xt 

The study of Eq. (5.2) is much more complicated. Equation (3.4) can be easily simplified 
to the following form: 

(5.14) EiikP.iHk+effBk) = (y)-lpi' 
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where 

(5.15) 1 f kq errBk(x,t)=:- ( ) dy(e2(x,y,t)J(x-y)p,q(y,t) 
ex, t 

00 kq 

+e2(x,y, t)C(x-y)p,q{x, t)) . 

In view ofEqs. (4.6) and (4.7) in the previous paper [1], Eq. (5.15) can be written in a more 
useful form: 

(5.16) 

where 

(5.17) . LHk(x, t) =- ( 1 
) Jaye2(x, y, t)(yk-xk)(yq-xq) [i(lx-yl)p,q(y, t) 

ex, t 
00 

+~(lx-yl)p,q(x, t)]. 

It must be remarked that the second term on the right of Eq. (5.16) is parallel to the mag
netic moment per unit mass fL; this means that we are interested only in the first term 
on the right hand side of Eq. (5.16). Using the simple rules of differentiation, we obtain 

(5.18) 
. 1 f -
- ( ) elJk dye2(x,y,t)J(Ix-yl)p,ix,t)p,k(y,t) 

ex, t 
00 

= e(:, I) e,,J O~, {p,(x,l) [ + J dzz'J<izl)ez(X, x-z, I) (.uix -z ,I} -pix ,I) )]l· 
00 

It is convenient to introduce the following abbreviation: 

00 

It follows directly from Eqs. (5.14), (5.16)-(5.17), (5.18) and (5.19) that we can write 

(5.20) elJkftiHk+errBk) = ElJkftJ(Hk+LHk+(e)-lLJffkr,r) = ElJkftJHj/r = (y)- 1ftl, 

where 
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The condition (5.8) is satisfied automatically as a consequence of the definition (5.I9) 
of the magnetic exchange tensor. To continue our discussion it must be noticed that in 
the local phenomenological approaches the magnetic moment per unit mass lL measured 
at the point x defines the magnetic anisotropy field evaluated at the same point x. The 
expression (5.17) can be easily simplified with the help of the above remark; hence LHk re
duces to 

(5.21) ( I ) Jdye2(x, y, t)(yk-xk)(yq -xq) [i(lx- yl) 
ex, t 

et) 

+C(Ix-yl}]flq{x, t). 

We assume, in accordance with the local phenomenological theories, that if the anisotropic 
interactions are under consideration, the spatial distribution of magnetization is, in con
trast to the isotropic exchange interactions, to be unimportant. In consistence with the 
above statement, we must write (see Eq. (5.13)) 

(5.22) 

a A 

+e2(x, y, t)flp(x, t)flq(x, t)-
0 

[(yP-xP)(yq-xq)C(Iy-xl)]. 
x, 

If the relations (5.22) are accepted, the decomposition (5.4) follows immediately. The 
first-order intrinsic stress tensor aii and the second-order intrinsic stress tensor 1-liik can be 
expressed entirely in terms of the generalized density, intermolecular potentials and the 
magnetic moment per unit mass. We obtain without special conceptual difficulties the 
following formulae: 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

au(x, t) = <l>au(x, t)+< 2>au(x, t), 

<'><111(x, 1) = ~- J dz zl:( {IJl'(/zl)+<l>'(/zi)z'z'p.(x, l)p.(x, 1) 
et) 

I - } - 2J'(jzl)[{lp(x-z, t)-flp(x, t)] [,up(x-z, t)-fliX, t)] e2(x, x-z, t), 

<2>au(x, t) = -eL H(tflJ>, 

fluk(x, t) = <1>!-luk(x, t)+< 2>fltJk(x, t), 
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(5.29) LH1~r.(x, t) = 2e(~ : t) J dzziz"4>(1zl)zq,uq(x, t)e2 (x, x-z, t), 
00 

where 

I m - -
!P(jzl) = - 2 V(lzl) + (t-t2

) ( C(lzl) +J(jzl) ), 
m a 

4'>(1zl) = C(lzl) +i(lzl), 

(5.30) 'P'(I I) = d'P(IzD 4>'(l I) = d4'>(1zD 
z d(lzl) ' z d(lzl) ' 

J' (l I) = dl(lzl) 
z d(lzl) · 

L Hi" can be understood as a second-order magnetic an isotropy field. The energy per unit 
mass has the following form: 

(5.31) e(x. t) = 2e(~. 1) J dy {e,(x. y. 1) 'P(jx-yi) + e,(x. y. I)<P(Ix-yl)(x•- y') 
00 

If the range of interactions is small enough, we can write 

(5.32) 0 = 1 dy a~, {[ e,(x, y, I)'P(ix-yi)+e,(x, y, t)<P(ix-yi)(x' -y')(x• -y') 

X pp{x, t)pq(X, 1)- ~ e,(x, y, 1)./(lx-yi)[jt.(y, 1) -p,{x, l)][p.(y, 1) -p,{x, l)j]v.(y, I)}. 

In view of Eqs. (3.6) and (5.32), we obtain 

(5.33) e(x, t)e(x, t) = ~- [e(x, t)e(x, t)]+ ::.
0 

[e(x, t)e(x, t)vr(x, t)] = 
ut uXr 

-} J dye2 (x, y, 1) ~ ~:. + ~:. (x' -y')(x• -y')p,(x, l)p.(x, 1) -2<P(Ix -yl)(x'-y') 
00 

I aT J X t-tq{X, t),Ui(X, t)-l fJy, [,up{y, t)-,u,(x, t)][,u,(y, t)-t-tiX, t)] (v,(y, t)-v,(x, t)) 

+ J dye 2(x,y, t)4>(1x-yl)(x"-yP)(xq-yq),u,(x, t)P,q(x, t)+-} J dye2(x,y, t) 
00 00 
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+ + J dyr}2(x, y, t)i(lx-yi)[,U,(x, t)p,(y, t)+p,(x, t)}t,(y, t)] = aiiDu+PukKil" 
00 

-eLH,m,+ ~ J dye2(x,y, t)I(Ix-yi)[Up(x, t)pp(y, t)+p,(x, t)jtp(y, t)]. 
00 

Using the saturation condition (2.1), we obtain directly 

(5.34) jtp(x, t)pp(y, t)+pp(x, t)p,(y, t) = -[up(y, t)-pp(x, t)][U,(y, t)-P,,(x, t)]. 

It follows from Eq. (5.34) that 

(5.35) + J dye2(x, y, t)l(lx-yi)[P,,(x, t)p,(y, t)+p,(x, t)p,(y, t)] 
00 

It must be remarked that 

(5.36) 

5.2. Deformation measures 

It will be convenient to summarize our previous formulae: 

(5.37) 

(5.38) 

(5.39) 

(5.40) 

(5.41) 

< "rru(x, t) = + 1 dz ~~1 
{ 'l'' (izl) + </)' (lzl)z'z'p,(x, t) p,(x, t) 

1 - } - 2 J'(Izl)[u,(x+z, t)-p,(x, t)J[u,(x+z, t)-p,(x, t)] e2(x, x+z, t), 

<2>a,ix, t) = -eLH0 p1>, 

LH,(x, t) = - ( 1 
) Jdz(l)(lzl)ziz"p,(x, t)e2(x, x+z, t), 

ex, t 
00 

00 

(5.42) f-tuk(x, t) = <0 p 11k(x, t)+<2>p,1"(x, t), 

(5.43) ' 1'p,1, (x, t) = ! 1 dz z,~:~• {'l''(lzi)+<P'(Izl)z'z'p,(x, t)p,(x, t) 

1 - } - 2 J'(Izl)[u,(x+z, t)-p,(x, t)JLuix+z, t)-p,(x, t)J e2(x; x+z, t), 

(5.44) <
2

> Pu"(x, t) = -eLH1""'" 

(5.45) LH1"(x, t) = -
2
e(!, t) J ·dzziz"(l)(lzl)z"p,(x, t)e2(x, x+z, t), 

00 
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(5.46) e(x, I) = le(~, I) J dz { 'l'(lzl) + tl>(lzl)z'z'p,(x, 1) p,(x, I) 
CXl 

Since the range of interactions is assumed to be small enough, the undeformed distance 
IZI = I Y- XI between two particles is of the same order as the deformed distance izl = 
= lx- yl between them. In this case we have with a sufficient approximation [7] 

(5.47) lzl' = (y' -x')(y,-x,):;;;; (x~KzK + +x~KLzKzL) (x,,NzN + ~ x,,NMzNzM) 

~ IZI 2 +2EKLzKZL+FKLNzKzLzN, 

where 

(5.48) 
F KLN =xt,KLx:N· 

EKL' FKLN denote the deformation measures introduced by CoLLET [6]. 
It follows from Eq. (5.47) that to the first order in EKL and FKLN we obtain 

1 

(5.49) 
zKzLzN)2 zKzL 

+FKLN IZI2 ~ IZI+EKL IZI 

1 zKzLzN 
+TFKLN IZI = IZI+LI, 

where 

(5.50) 

Consider now the Taylor series of the potential function 'P to the second order in EKL 
and FKLN' and the Taylor series of the potential functions (/J and J to the first order in 
EKLand FKLN 

(5.51) 'P(Izl) = 'P(IZI) + 'P'(IZI)LI + ~- 'P"(IZI)LI L1 = 'P(IZI) + ~~~L 'P'(IZI)EKL 

1 zKzLzPzQzs 1 zKzLzNzPzQzs 
+ 2 IZI2 'P"(IZI)EKLFPos+ 8 -· IZI 2 'P"(IZI)FKLNFPQs, 

(5.52) (]J(jzl) = (]J(jZI)+(]J'(IZI)L1 = (]J(IZI) 
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(5.53) .i(lzl) = .i(IZI) +i'(IZI)L1 
- zKzL- 1 zKzLzN -

= J(IZI)+ IZIJ'(IZI)EKL + T IZI J'(IZI)F KLN· 

Since 'h(x, y, t)dyfe(x, t) = e~(X, Y)dY/e0 (X), the following relation can be accepted: 

(5.54) e(X, I) = 2~0 J dz{'l'(/zl)+<l>(/zi)ZKZLmKmd<li(/zi)ZKzLzNmKmLN 
00 

where 
mK = mK(X, t) = flt(X, t)x: K, 

(5.55) mKL := mKL(X, t) := flt(X, t)x: KL' 

GKL = GKL(x, t) = flt. K(x, t)fl:Lcx, t) 

are consistent with the axiom of objectivity. For the sake of simplicity we confine ourselves 
to homogeneous centrosymmetric materials 

(5.56) n~(X- Y) = n~ (-(X- Y) ). 

With the hypotheses (5.51)-(5.53) and {5.56), Eq (5.54) takes the form 

(5.57) e(X, 1) = eo+eO'aKLEKL +eO' { ~ bKLPREKLEPR+ ~ CKLPRSQFKLPFRsQ} 

where 

(5.58) 

+eo { ~ dKLmKmL + ~ j KLPRmKLmPR} + ~ eo!KL G KL +eo { KKLPR EKLmPmR 

+ iKLPRSQ k KLPmR m sa+ + EKLmPRmSQ n +eo hKLPR EKL GPR' 

eo= 2~0 J dZeg(Z)P(IZI), 
00 

dKL := ((!:) 2 f dZ(!~(Z) ZKZL<J>(IZI), 
00 

jKLPR := 4(:o)2 J dZe~(Z)ZKZLZPZR<J>(IZI), 
00 
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(5.58) 
(cont.) 

00 

If in the natural state the initial stress vanishes, then 

(5.59) 

The material coefficients (bKLPR' cKLPR:sQ), (d"L' iKLPR), (gKLPR' iKLPRsQ), f"L' hKLPR 

are called, according to accepted physical terminology, the elastic constants, magnetic 
anisotropy constants, magnetostrictive constants, exchange constant, exchangestrictive 
constant, respectively. The material coefficients have the symmetries in all indices. That 
property of our material coefficients is a consequence of the two-point interaction model 
and can be partly modified by introducing the model based on the three-point interactions 
J20]. Following the same line of arguments as given, we obtain immediately 

(5.60) (I >au(X' t) = e~ x,. K Xj. L {a KL + bKLPll E ... + (eo)2 
KKLPRmrma 

+ ~ (eo)2 
iKLPRasmramas + (eo)2 

hKLra G ••} 

+ ~ XI,ICMXJ, L {cKMLPRQF PRQ+ (eo)
2

iKMLPRQmpmRQ}' 
eo 

{5.61) LH,(X, t) = -eox:K{dKLmL +2gKLPRmLEPR+iKLMPRQmLMFPRQ} 

-eoX~KL {jiCLPRmPR+iKLMPRQ[F MPRmQ+EMPmRQ]}' 

.(5.62) LJffiJ(X, t) = eeoxJ,K/li,L{fKL+2hKLPREPR}, 

(5.63) (1)/ll)l(X, t) = _g_Xt,KXj,LXl,M{cKLMPRQFPRQ+(eo)2 iKLMPRQmPmRQ}, 
eo 

(5.64) LHJ~r.(X, t) = -eox!Kx~LUKLPRmPR+iKLMPRQ[FMPRmQ+EMPmRQ]}. 

On the other hand, the following formulae must be accepted: 

(5.65) (1) ( oe oe ) 
(fl)k = e fj£KL X(I,K+2 oFKML X(f,KM XJ),L' 

(5.66) (1) oe 
f.ltJk = e ~F Xt,MX<J,LXk),K' 

<I KLM 

(5.67) 

http://rcin.org.pl



DIRECf CONTINUUM MODEL OF AN ELASTICALLY-DEFORMABLE .... PART 11 213 

(5.68) 

(5.69) 

The relations (5.65)-(5.67) are identical to those of CoLLET [6]. Equation (5.68) is more 

general on account of the additional term - a oe Xt, KL· The last equation (5.69) is 
mKL 

a consequence of our approach and will not be discussed here because of no reference 
to it. 

Acknowledgement 

I would like to thank Professor H. ZoRSKI for many helpful suggestions and dis
cussions. 

References 

1. Z. BANACH, Direct continuum model of an elastically-deformable polarizable and magnetizable body. 
Part I. Lagrangian function, Arch. Mech., 32, 1, 55, 1981. 

2. D. G. B. EDELEN, Nonlocalfie/d theories, in: Continuum Physics, IV, p. 75, (edited by A. C. ERINOEN), 
Academic Press, New York 1976. 

3. D. G. B. EDELEN, in: Nonlocal theories of material systems, (edited by D. RooULA), Ossolineum Press, 
Warsaw 1976. 

4. A. C. ERINGEN, Nonloca/ polar field theories, in: Continuum Physics, IV, p. 205, (edited by A. C. 
ERINOEN), Academic Press, New York 1976. 

s. H. F. TIERsTEN, 1. Math. Phys., s, 1298, 1964. 
6. B. CoLLET, Intern. J. Eng. Sci, 16, 349, 1978. 
7. W. F. BROWN, Magnetoelastic interactions, Springer Verlag, New York 1966. 
8. R. S. WADAS, Magnetism in spinels garnets and perovskites, PWN, Warsaw 1974. 
9. Y. CJIHKTEP, 0cH06bZ meopuu MamumHozo peJoHaHCa, MHp, MocKBa 1967. 

10. G. A. MAUOIN, J. Math. Phys., 17, 1727, 1976. 
11. H. F. TIERSTEN and C. F. TsAI, J. Math. Phys., 13, 361, 1972. 
12. G. A. MAUGIN, Arch. Mech., 28, 679, 1976. 
13. G. A. MAUGIN, Arch. Mech., 29, 143, 1977. 
14. G. A. MAUGIN, Arch. Mech., 29, 251, 1977. 
15. D. F. NELSON, M. Lax, Phys. Rev., B, 13, 1785, 1976. 
16. H. F. TIERSTEN, J. Math. Phys., 6, 779, 1965. 
17. G. A. MAUOIN, Micromagnetism, in: Continuum Physics, Ill, p. 221, (edited by A. C. ERINGEN), Aca

demic Press, New York 1976. 
18. R. A. GROT, Electromagnetic interactions, in: Continuum Physics, m, p. 129, (edited by A. c. ERIN-

GEN), Academic Press, New York 1976. 
19. H. ZoRSKI, Proc. Symp. Continuum Models of Discrete Systems, Waterloo, Canada 1977. 
20. H. ZoRSKI, Lett. Appl. Engng. Sci., 16, 315, 1978. 
21. D. RoouLA, Proc. Vibr. Probl., 7, 337, 1966. 

4 Arch. Me..:h . Stos. nr 2/81 

http://rcin.org.pl



214 Z. BANACH 

22. J. RzEWUSKI, Field theory, part 1, PWN, Warsaw 1964. 
23. S. KALISKI, Z. PU>CHOCKI, D. RooULA, Bull. Acad. Polon. Sci., Serie Sci. techn., 4, 135, 1962. 
24. M. LAX, Phys. Rev. B, 16, 4936, 1977. 

POLISH ACADEMY OF SCIENCES 
INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH. 

Received January 23, 1980. 

http://rcin.org.pl




