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Plasticity and variable heredity

E. KREMPL (NEW YORK)

VARIABLE heredity is defined as a characteristic of advanced systems prevalently found in the
living worlds that can permanently change their internal make-up due to the action of inputs
and/or environment. Materials are special examples of such systems; *‘plasticity” results if
mechanical inputs alone change the material properties. For the operational definition of these
characteristics a real system is idealized as a black box that receives inputs and emits outputs.
Based on a comparison of suitable input-output pairs, a definition of variable and invariable
heredity is given. We distinguish between environment-induced variable heredity (example:
aging) and that induced by inputs (example: *“plasticity™). The operational definition of variable
heredity is compared with that of rate-dependence and they are shown to be unrelated. The
problems of characterizing materials with “plasticity” effects are discussed. Finally, the opera-
tional definition for “‘plasticity” obtained herein is applied as a necessary condition to various
constitutive equations previously proposed for ““plasticity”. Some of these are shown to be un-
suited for “‘plasticity”. Owing to the special nature of “*plasticity”, a functional constitutive
equation showing history dependence in a mathematical sense may fail to reproduce “‘plasticity”.

Zmienna dziedziczno$¢ definiuje si¢ jako charakterystyke rozwinigtych ukladéw spotykanych
przewaznie w $wiecie ozywionym, ktére moga stale zmienia¢ swa struktur¢ wewnetrzna pod

wymuszefi zewnetrznych oraz/lub wplywéw srodowiska. Materialy s3 szczegblnymi
przypadkami takich ukladéw, a ““plastyczno$¢” pojawia si¢ wtedy, gdy same wymuszenia me-
chaniczne prowadza do zmian wlasnodci tych materialobw. Dla skonstruowania operacyjnej
definicji tych charakterystyk uklad rzeczywisty idealizuje si¢ jako ,,czarng skrzynke”, ktora
otrzymuje sygnaly wejéciowe i emituje sygnaly wyjsciowe. Opierajgc si¢ na poréwnaniu odpo-
wiednich par ,,wejécia-wyjscia” podano definicj¢ zmiennej i niezmiennej dziedzicznosci. Roz-
rbznia sie zmienng dziedziczno§¢ wprowadzong przez $rodowisko (np. starzenie) oraz przez wymu-
szenia (np. ,,plastyczno$é™). Definicje zmiennej dziedzicznosci poréwnano z definicja wrazliwosci
na predkos¢ i wykazano, ze s3 one niezwiazane ze sobg. Omoéwiono problemy charakterystyki
materialow za pomocg efektéw ,,plastycznoécei”. Operacyjng definicje ,,plastycznosci” wykorzy-
stano jako warunek konieczny do réznych réwnan konstytutywnych zaproponowanych uprzednio
dla,,plastycznoéci”. Niektére z nich okazuja si¢ niestosowne dla ,,plastycznoéci”. Wobec szczegdl-
nej natury ,,plastycznoéci”, robwnanie konstytutywne wykazujace zalezno$¢ od historii w sensie
matematycznym moze zawodmé przy probie reprodukcji ,,plastycznodci”.

TlepemenHan HacHeACTBEHHOCTh ONMpeAe/AeTcA KAK XapaKTePHCTHKA PasBUTBIX CHCTEM, BCTpe-
YAIOUMXCA NMPEXIe BCEro B YKHBOM MHDE, KOTOpble CNOCOGHBI IOCTOAHHO MEHATE CBOKO
BHYTPEHHYIO CTPYKTYPY MOJ BIHAHHEM BHEI[HMX CTHMYJIOB HJIH OKpY»aiomied cpemni. Ma-
TEPHAIbI ABJIAIOTCA YAacTHBIMH CIIy4YasiMM TaKHX CHCTEM M ,,IUTACTHUHOCT:'® NOABIAETCA
TOrAa, KOrja ONHHM JIHMIIs MEXaHHYECKHE CTHMYJIbI BEISLIBAIOT H3MEHCHHE MATEpPHALHBIX
cBoifcTB. s NOnMy4eHWs ONEPALMOHHOTO ONMPENENeHHA 3THX XapPAKTEPHCTHK peaybHAA
CHCTEMA MBICIIHTCA B BHJE ,,4€PHOIO ALMKA'® MPHHHMAIOUIEr0 CHTHAJIBLI HA BXOJAE M 3IMM-
TUPYIOLLEr0 CHrHANBLI Ha BhIxofe. [laeTcst ompe/je/leHHe NEPEMEHHON M MOCTOAHHON Hacien-
CTBEHHOCTH HA OCHOBE CPaBHEHMA COOTBETCTBYIOIIMX CHTHAJIOB Ha BXoAe M BhXoje. Pas-
JIMY3EM TIEPEMEHHYI0 HACJeJCTBEHHOCTh, BBISBAHHYIO OKPYIKalOeH cpenoii — npumep:
CTapeHHe — M BBLI3BAHHYIO CHIHAJIAMHM HA BXOfe (BHELHMMM CTHMYJIAMH) — NPHMEP: ,,IUIa-
ctuuHoCTh’’. OnepaumoHHOe ONpefieNieHHe MNEPEMEHHONH HACNe[ICTBEHHOCTH CPaBHMBAETCA
C onpefeNeHHeM HAa OCHOBE 3aBHCMMOCTH OT CKOPOCTH AedopMaliuy; MOKA3bIBAETCA, YTO OHH
He3zaBUcHMBI. OOCY)KIOalOTCA BOMPOCHI XAPAKTEPHCTHK MATEPHAIOB C ,,JUIACTHYCCKHME’
abdexramu. B 3akimoucHME MONYUYSHHOE ONEPALMOHHOE ONpEAENCHHE ,,[UIaCTHUHOCTH
MPHMEHAETCA KaK HeoOXOQMMOe YC/IOBHE PasIMUYHBIX PaHee NPeNnoaraeMbiX Onpene/IAIHX
YPaBHEHHI [UIA CITyYas ,,IutacTHYHOCTH . OKasbIBAETCHA, YTO HEKOTOPBIE H3 HHX HE COOTBET-
CTBYIOT ,,iunacTHuHocTH’’ Bnaromaps cnemuduueckolt npupone ,,miacTudHocTi’’ (yHKIHO-
HaJbHOE OMpeleNsiolllee YDaBHEHHE, OMHCHLIBAIOIIEE 3aBHCHMOCTH OT HCTOPHH MpoIecca
B MaTeMaTH4YECKOM CMBICJIE MOKET OKAa3aThCA HECOCTOATENIBHBIM JJIA OMHCAHHA ,,IUIACTHY-
HOCTH.
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1. Introduction

For MANY years the theory of plasticity has occupied a special status in solid mechanics.
It was almost always assumed that rate-independence, the yield surface and hardening laws
are the only valid representation of plastic behavior. Indeed these notions were taken to
be the distinguishing features of metal deformation behavior itself. At the same time this
theory was not thought to be part of nonlinear continuum mechanics as it has evolved
during the last thirty years.

During the last ten years other approaches to plasticity have been proposed which
differ from the classical notions. Once one admits that the yield surface and other parts
of the classical plasticity theory are not the only mathematical expressions through which
the phenomenon plasticity can be modelled, one is immediately confronted with funda-
mental questions. First, it is necessary to define the unique features of the body of knowledge
known as plasticity. Once this is accomplished, the class of mathematical models must
be found which conform to this definition and which are suitable for the description of
plasticity phenomena. (For a related discussion see [1].)

To many, dislocations are essential to plasticity. In a continuum theory state variables
and separately postulated evolution laws are thought to be appropriate models. In other
approaches an intrinsic time scale appears important. For a long time the modelling of
a yield point appeared to be essential and hypoelasticity theories were proposed. These
are just a few of the possible approaches.

In this paper we propose to identify essential phenomena of “plasticity” by suitable
thought experiments which are also easily performed in the laboratory. The basis of our
identification rests with the well-established fact by which every experienced technician can
distinguish an annealed from a cold-worked metal. He compares the stress-strain diagrams
of the two samples. The one with the highest stress-strain diagram is the one pertaining
to the cold-worked metal.

Although our proposed identification has its origin in this simple observation in a tensile
test, it is not limited to this test. Rather we can use other mechanical input (stimuli)-output
(response) pairs for the identification of the system.

Our aim is to identify the evolution of our system in time as it is subjected to a given
constant environment and suitable mechanical inputs. After 'some technical preliminaries
we come to the main result of the paper. We can precisely identify two basic classes of
systems. The first class consists of systems with invariable heredity [2, 3], i.e. systems that
are always unchanged regardless of the environment and the stimuli. (Elasticity and visco-
elasticity are members of this class.) The second class of systems has variable heredity.
In these systems the environment and/or the mechanical inputs can change the system
properties permanently. If these changes are caused by the environment alone (mechanical
stimuli are absent), then we speak of aging. If the system properties are unaffected by the
environment but may be changed by suitable mechanical stimuli, we speak of stimulus-
induced variable heredity. The history dependence in the sense of plasticity [3] or simply
“plasticity” is an example of a special kind of stimulus-induced variable heredity. Aside
from these hereditary properties, rate-dependence and the aftereffect are identified for
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metrials by suitable input-output experiments distinct from those used to identify the
hereditary properties.

With these identifications we can establish necessary conditions which a mathematical
model must fulfill if it is to represent any one of these phenomena. These conditions are
very general but nevertheless permit the clear statement that some of the constitutive
equations proposed previously for plasticity do not exhibit variable heredity and are
therefore, in our opinion, not a suitable model for plasticity.

2. Preliminaries

Our system of interest is idealized as a black box that receives mechanical inputs or
stimuli or forcings ¢(7) on [0, t]. The inputs produce outputs or responses or response
functions p(¢) at the present time # which depend on ¢(7) on [0, 7]. For generality they are
introduced as vector (tensor) quantities. The comparison of input-output pairs on some time
interval is used to identify the phenomenon of interest. We must be able to compare out-
puts and to recognize differences between outputs. Therefore, we postulate the existence
of a “primitive observer” [4] who will be able to discern whether two outputs for a given
stimulus are identical or different. This assumes that our inputs and outputs have a de-
fined zero value and that excursions from zero can be determined. Because of these simple
requirements we can only identify very general properties.

We assume that there is a time v = 0 at which our process starts(?). At this time we
have as many identical samples of our system as we need. All the samples are in the same
condition at T = 0, i.e. they have had the same method of preparation [5] and are subjected
to a constant environment for v > 0. The only variables are time and the inputs which
we select. The method is not limited to the identification of material properties, it can be
applied to living systems as well (%) provided we have conditions which permit the identi-
fication of true system properties from the responses.

In the application of our methods to materials we must restrict ourselves to accelera-
tionless, homogeneous motions and mechanical inputs since we want to identify properties
of constitutive equations [6]. In [2] we have shown that constant rate tensile testing, creep,
relaxation and low-cycle fatigue loading constitute the best experimentally obtainable
homogeneous motions in solids and therefore we should use inputs from this set of tests.
They can be based on the stress traction or displacement vector. The output is then the
displacement or the stress traction vector. By using ¢ and p we want to emphasize that
kinematics (finite or infinitesimal motions) and the role of stress and strain are immaterial
for our identification.

(') By stipulating this condition we deviate from treatments in continuum mechanics where it is gen-
erally assumed that we know the entire history from the distant past to the present time.

(?) An example would be a stem of bacteria in an incubator to which a chemical agent is administered
and its effect on the bacteria is observed. Our black box would be identified with the stem of bacteria, the
application of the chemical agent starting at T = 0 would be the stimulus. The increase (decrease) of the
number of bacteria for = > 0 would be the response. We will return to this example later.
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3. Forcing function histories

For the identification of our phenomena we need at least three samples, a reference
stimulus designated as ¢® and a prior loading history ¢° which starts and ends at zero.

The sequence of histories is given in Fig. 1 and is described mathematically below.
We are following a simple sheme in which the same forcing ¢p® is applied after various
prior histories. The quantities ¢° ¢® and b are parameters of the test sequence. They are
constants for a given test but can be varied from test to test. They must be selected from
the Set of suitable test histories mentioned above and from the set of time intervals b that
are of interest.

Specimen I 4

forcing #®(r)
oo(t) -
|
L -
Ml T,time
! I
Response ol i pim
pl(t) |

sﬂﬁm;ﬂ o | Arbitrary history

Specimen I ¢ A

Farcing ¢ ¢b{sJ o
Exposure to environment |

L. .

P
Response P PTJ{'S}

Fig. 1.
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Specifically we use the following tests:
Specimen I (Reference)

Input

3.1 =0 ), 0<7t<t, %0)=0.
Output

(3.2) '=p'(1), O0<7<H,

where ¢ is the present time.
Specimen 11 (Stimulus-induced variable heredity)

:Pa(t): 0<7<a; ‘P“(O) =‘P'(T =a) =0,
(3.3) =10, a<rt<b,
‘(r—b), b<T<b+s,(®
[p‘(r) 0<st<bh,

(3.4) %0%(7) = p°(b)+p"(r—b), b < T < b+s.

Specimen III (Environment-induced variable heredity)

‘ P = \@(r-b), b<tT<bts,
0, 0<t<b,
16 -
36 e !p’"(t—b}, b< v< bts.

We note that for specimens II and IIT a new time origin is introduced at v = b with 5 =
= 7—b, see also Fig. 1. Also p"(s) is measured form a new origin, see Fig. 1. The present
time in this new system is designated as s. Setting s = ¢ ensures that all forcing functions
¢® have the same duration.

3.1. System representation

For the representation of our system we use a functional which is thought to represent
our system or material. We require that a zero input on [0, #] produces a zero output at
t. Formally we have

%) o(t) = K(cp(éo))(‘)
with
K@) =0,

(®) By writing “¢p® we want to make clear that this input is preceded by ¢*; except for the shift on the
time axis “¢p® is identical to ¢p®.

(*) We mean by this symbolism simply that the present value of p = p(z = ), ¢t = 0 is determined
by the function ¢p(z) defined on [0, r]). From the information given in some of the examples an observer
could also conclude p(f) = H(¢p(#)), i.e., the present response p is determined only by the present value
of ¢. The first conclusion is more general than the second and is therefore retained.

9 Arch. Mech. Stos. nr 2/81
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where 0 denotes the zero input or output. We do not assign any further properties to
K except it must be such that the conclusions valid for real systems can also be derwed
using its representation K.

4. Invariable heredity

DeriNiTiON. Intuitively invariable heredity implies that the system does not change
no matter what the stimulus or the environment. Formally we define in reference to Fig. 1

and Egs. (3.1)-(3.6).
A system is said to have invariable heredity if for allt = s
(4.1) p(1)' = p(9)" = p(s)™
for all ¢ ¢°(7) and b.
We spak of invariable hereditary response if Eq. (4.1) is true for all ¢p® and at least one
b and at least one (7).

4.1. Conditions on constitutive equations
Using Eq. (3.7) the responses are computed to be

42) o' = K(@').
@3) o = K(q»'(E)+'q>‘(r"-;°b))—x(¢'(f)).
and
(44 o = K(@( ).
For Eq. (4.1) to be true we must have the following properties of K for all s = t:
@5) K (@) = K@),
and
“6) K(@" O+ (b)) = K@D ECP(-D),
as well as
@) K(@ (=) = K(@(p) = K@ (@):

If the condition (4.5) — usually referred to as time origin translation invariance — is
fulfilled, then p' = p™. The condition (4.6) has been called additivity under disjoint
support [7] and the principle of superposition. We also list the condition (4.7). It involves
first Eq. (4.5) and then requires that the response to ¢® following ¢* be identical to the
response to ¢® alone, Eq. (4.2). (Note that Eq. (4.7) is not identical to Eq. (4.5)).

A constitutive equation represents invariable heredity if Egs. (4.5), (4.6) and (4.7) are
true. In words these conditions represent: 1) invariance under time origin translation,
2) additivity under disjoint support, 3) no change in response due to prior forcings.
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A constitutive equation represents invariable hereditary response if the above hold
for all ¢® and at least one prior exposure interval b and at least one prior loading ¢°(z).

It should be noted that the response of specimen II is mesured relative to the new origin
introduced at n = 0. We have, therefore, eliminated the “permanent set” and not attach
any significance to this phenomenon(®) for purposes of identification.

5. Variable heredity. Environment and stimulus induced

Following the definition of invariable heredity we not proceed to identify two kinds
of variable heredity. For the first kind we observe that only the exposure to the environment
changes the response. We then speak of environment-induced variable heredity or simply
aging. The other kind of variable heredity can be found in the absence of aging and is
solely due to prior inputs. In this case we speak of stimulus-induced variable heredity,
In the present context the interaction of these two effects is not considered.

5.1. Environment-induced variable heredity (aging)

DEeriNiTION, Qur system is said to exhibit aging if for some s = ¢

(5.1 e'(1) # p™M(s)

for all b and at least one ¢?.
It exhibits aging response if Eq. (5.1) is true for at least one b and at least one ®(6).

5.2. Stimulus-induced variable beredity

DeriNTion, In the absence of aging we speak of stimulus-induced variable heredity
if for some s =t i

(5.2) p'(t) # @"(®

for all @* and at least for one “¢".
Our system exhibits a stimulus-induced variable hereditary response if Eq. (5.2) is true
for at least one ¢ and at least one “¢p®(”).

(*) Our opinion deviates therefore from the notions of classical plasticity.

(°) Definition of aging for the example of footnote 2). Following Fig. 1, specimen I, we add a chemical
at a certain rate (the stimulus ¢) to the bacteria and observe the change in the number of bacteria with time
(the response p).

On an identical sample of bacteria we repeat the above experiment after b units of time have elapsed,
specimen IIT of Fig. 1. If the change in the number of bacteria is identical to that of the first experiment,
then we can conclude that aging does not occur in our sample. If the outcome is different, aging has occur-
red during b units of time. (To have a valid experiment, the size of the populationsat r =0 and t = b
should be identical.) -

(") Stimulus-induced variable heredity in the example of footnote 2). To simulate the conditions of the
experiment with specimen II in Fig. 1, we administer a chemical ¢*(7) during [0, ], then we wait until
changes in the population have ceased before we administer the test chemical (“¢®) in the usual way. There
are two possible outcomes: 1) The change in population is identical to that of the test with specimen I;
2) the change in population is different from that of the test with specimen II. If outcome 2) is observed,

gs
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5.3. Conditions on constitutive equations

Environment-induced variable heredity (aging). Comparison of Egs. (4.2), (4.4) and (5.1)
shows that the constitutive equation must be time origin translation variant for all b and
that at least one ¢p® represents aging so that for some s = ¢:

63 K(9%(-5) # K(#(0)

To represent aging response we require time origin translation variance and therefore
Eq. (5.3) to be true for at least one b and at least one ¢p®.

5.4. Stimunlus-induced variable heredity

Assuming time origin translation invariance, i.e. that Eq. (4.5) holds always, the con-
stitutive equation must be able to represent nonadditivity under disjoint support or change
in response due to prior forcings. Therefore to represent stimulus-induced variable heredity
we must have for some s = ¢

a s+b a t
(54 K(cp"(:)+"¢"(r :b))—K(tp‘ (:)) # K(tp’(:))

which implies that either Eq. (4.6) or Eq. (4.7) or both are not true for all ¢ and at least
one %’

To represent variable hereditary response the above conditions must hold for at least
one ¢° and at least one “¢p®.

The identifications and conditions were given very formally without regard to their
physical implications. As an example, the definition of stimulus-induced variable heredity
(test with specimens I and II in Fig. 1) says that a form change of the response to the same
stimulus is observed. A short reflection will show that this can only be possible physically
if the prior stimulus ¢° has chaged the internal make-up of our system. The systems
ordinarily considered in mechanics (gases modelled by elastic balls, solids and fluids
represented by springs and dashpots and combinations of them)(®) do not normally exhibit
variable heredity. Indeed only Ref. [8] mentions variable heredity in connection with
aging.

It appears that variable heredity is a property of advanced systems that can be encoun-
tered in materials and in the living world. Examples from the latter area are the immune
reaction cited in the footnotes, the improving effects of exercise in athletics (the muscles
strengthen due to prior stimuli), and relations between persons or groups of persons
(attitude changes due to prior experience).

then we must necessarily conclude that the dose ¢ given on [0, a] has changed the constitution of the bac-
teria, e.g. they may have developed an immune reaction (aging is assumed to be absent); we can now speak
_of stimulus-induced variable heredity. [A valid test requires the same population size at T = 0 and
T=bl]

(*) A mere rearrangement of the constituents from one to another random orientation is not suffi-
cient to cause variable heredity.
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Before returning to the subject of plasticity it is important to mention that history
dependence in a mathematical sense does not automatically represent variable heredity.
The former is given by Eq. (3.7). Variable heredity, however, requires that either Eq. (5.3)
or Eq. (5.4) or both hold. Not every functional can satisfy these conditions.

6. Deformation phenomena in materials

6.1. Variable heredity

The previous definitions of course apply to the deformation behavior of materials
which can show only variable hereditary response as we may always find a ¢® small enough
(interpreted componentwise) such that p' is indistinguishable from p". Also the environ-
ment may or may not change the material.

Specifically we consider the definition of variable hereditary response (5.2) as appro-
priate for the plasticity phenomenon, provided that the response are only different in degree
and not in kind as described in [3], p. 64 (°). This type of variable hereditary response has
been called history dependence in the sense of plasticity in [2, 3]. We have given numerous
examples which show that metals exhibit this phenomenon [2, 3].

“Plasticity is a special type of variable hereditary response. A constitutive equation suitable
for “plasticity” must as a minimum satisfy (5.4) for at least one ° and one °@®. Equation
(5.4) represents a necessary condition for the modelling of “plasticity”.

A constitutive equation showing history dependence in a mathematical sense does not
necessarily represent history dependence in the sense of plasticity or simply “plasticity”.
Also we note that rate-dependence or rate independence dees not enter into this defini-
tion.

The above definition excludes the model of an elastic perfectly plastic material from
“plasticity” [9). This fact is not disturbing since the special nature of this model has long
been recognized (no growth law for the yield surface is necessary in this case).

It is impossible to infer “plasticity” from one test alone. Only the comparison of two
tests (specimens I and II) permits the identification. A given constitutive equation may
very well match a stress-strain diagram, or a set of creep curves perfectly without repro-
ducing “plasticity”. The critical test for a constitutive equation intended for “plasticity” is
therefore its behavior during loading, unloading and subsequent reloading.

We know that the physical reason for the observed history dependence in the sense of
plasticity rests with the possible permanent microstructural changes induced in materials
by deformation. (The material at = = a can be different from the material at 7 = 0,
specimen II in Fig. 1; in metals the dislocation density at the two points may be different
by several orders of magnitude.) These changes proceed during deformation. Macroscop-
ically we can only note the difference between p' and p" and we can only use this difference
as a criterion for “plasticity”. Consequently, we must accept a constitutive equation for
“plasticity” as long as it can represent such a difference.

(®) Living systems may exhibit responses which are different in kind.
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The definition of “plasticity” represents a necessary condition. We are presently not
able to give necessary and sufficient conditions for the representation of “plasticity”.

6.2. Rate-dependence, rate-independence

It is easiest to consider a forcing ¢(7) and an accelerated (retarded) forcing ¢(x7)
with o > 0. The forcing ¢(7) and the accelerated forcing ¢(«7) reach the same value
at T = tand 7 = t/a, respectively. We speak of rate-independence if

©1) K(@() = x(q:({%')) (%)

is true for all ¢ and all « (see also the definition in [10]). If Eq. (6.1) is not true for some
t or some «, we speak of rate-dependence.

It can be shown that rate-dependence implies the existence of an aftereffect and that
the modelling of the aftereffect imposes a fading memory on the constitutive functionals.
These restrictions are applicable for viscoplastic materials and are shown to be related
[11] to the “fading memory hypothesis” imposed in the theory [6] of constitutive func-
tionals,

7. Representation and characterization of materials

The rate-dependence, the aftereffect and fading memory are related to each other.
They affect those properties of materials which were called viscous or rheological in [5,
12, 17]. Physically the details of the deformation mechanisms at the present time, i.e.
dislocation bowing, are responsible for thé presence or absence of viscosity. Mathemati-
cally, viscosity involves Eq. (6.1).

Variable heredity, on the other hand, involves the conditions (5.3) and (5.4) which
are mathematically separate from Eq. (6.1). Physically variable heredity is caused by the
accumulated effects of past exposure to environment or to inputs. They lead to a given
microstructure at the present time through internal structural mechanisms [5, 12, 17].

For illustration we have listed physical phenomena and the corresponding necessary
mathematical conditions in Table 1 to illustrate our point. The phenomena variable hered-
ity and rate-dependence (aftereffect) are unrelated. The continuum mechanics theory
has mostly concentrated on the fading memory aspects and has therefore almost exclu-
sively dealt with the viscosity of deformation behavior. Variable heredity has not yet been
generally recognized as an important phenomenon in the evolution in time of material
systems. This may be the reason why “plasticity” is not yet included in these theories.

Based on the evidence presented so far it would seem natural to use separate reposi-
tories for variable heredity and viscosity (rate-dependence). This approach was followed
in [3, 5, 12, 15, 17].

(*°) Unfortunately this notation is not completely clear. It is not meant to imply that an equality can

t
always be obtained by introducing a new time variable = & 7. A notation like l(((p(;), t— 1) is less ambig-

I
uous but is less frequently used than K(ep(7)).
[
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Table. 1. Various phenomena and necessary conditions on functionals intended for their representation

Name Stimulus | Environment
Invariable | induced induced Rate- Rate-

Necessary ™~ heredity'” |  variable variable | dependence | dependence
condition \ heredity® | heredity

a s+b a
K(tp(r) +'¢'(r—b))== K (v (f})
0 b [\]

- :+g true for | DOt true true for
+K|*p (r: ) all = ¢ for some il it unrelated unrelated

S=1

s+b t
K (‘qn’(r-—b)) =K (cp'(t))
b 0

s+b ! true for | true for not true for
b b .
K ('P (?':b)) =K (‘P (g)) all 2t | all 2t some § = ¢ | unrelated; | uarelated

t 1la t
K (qa (3-)) =K (q)(c:]t) unrelated | unrelated unrelated :::lealways always true
‘1) For simplicity no distinction is made t property and resp , Also int i b imuli and

nt induced effects are excluded,

Since we have defined two kinds of variable heredity it is natural to ask how these two
phenomena can be characterized (i.e. what kind of tests are necessary to obtain the material
properties) and how one might represent them in constitutive equations.

To characterize an aging system one could vary b for a fixed ¢® and then repeat the
process for a different ¢p® until one knows how b and @® modify the response. A different
specimen is necessary for each test.

For the representation of aging an explicit dependence on time of the constitutive
equation is frequently used, i.e.

(1.1) p(t) = x(cp(:'), t).

The response of specimen I for a material represented by Eq. (7.1) is
(1) PO =K@,

and of specimen III _

(73) o) = K(@*(n), s+b)

and we see that Eq. (5.1) is satisfied, for all s = ¢.

The representation (7.1) is said to violate the principle of material indifference [13,
footnote p. 45). There are at least two ways of reconciling this potential conflict. One way
is to adopt the derivation in [14], Egs. (2.11) or (2.12). Another way is to consider that the
present response is a functional of both the mechanical and the environmental input.
Since the latter is constant here, its functional dependence can be “integrated out” leaving
only a function of time and a functional of the mechanical input, i.e. Eq. (7.1), [15]. If we
therefore interpret Eq. (7.1) not as a fundamental form but rather a specific representation
valid for constant environment only, no conflict arises.
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For the characterization of stimulus-induced variable heredity we must vary the ¢* for
a given fixed “¢p® and then repeat the process for a different “¢® until we know how the
¢° change the response. However, there are difficulties.

Strictly speaking this is a formidable, if not impossible task as one may have to run all
conceivable combinations of ¢° and “¢p®. Elsewhere this difficulty has been recognized
for metals as evidenced by the statement: “In a strict sense it is not possible to predict
the strain components which will be found for a given stress history; the experiment
itself must be run to get the answer” [16].

However, the situation is not quite as complex as it appears when we deal with history
dependence in the sense of plasticity and with metals. Their responses retain certain char-
acteristics which are invariant with respect to prior deformation [3, pp. 63-66). Further
there are certain stimuli, notably the “elastic ones” which do not appear to cause “plasticity”
effects. It may therefore be possible to characterize the history dependence of metals
with a limited number of tests and suitable interpolations (see the discussion by E. H. Lee
and E. KrONER on p. 86 of [16]).

The above definition of history dependence was given for a continuum. Nothing in
that definition suggests that a theory of simple materials (in the sense of [6]) would not
be capable of reproducing history dependence in the sense of plasticity. Although metals
may be “nonsimple bodies” on a microscopic level [16, p. 47] it appears that they can be
represented macroscopically within the continuum theory of simple materials as defined
in [6].

Suppose two primitive observers are told that they will have to compare the outcome
of the tests on the same material with specimen I and II, respectively (see Fig. 1). Observer
I witnesses the tests with specimens I and II, Observer II sees only the second part (0 <
< 7 < s) of the test on specimen II. We stipulate that Eq. (5.2) holds, i.e. we have stimulus-
induced variable heredity.

Since they know that the same material is tested, both observers would use the same
functional for representing the data. However, because of Eq. (5.2) (we use ¢® instead
of “¢p® since Observer II does not know that ¢ was applied)

1.4) K (¢* (;})) " x(cp*(f))

for some s = t, a result which contradicts our initial stipulation that one functional can
describe a material.

Observer I must necessarily conclude that ¢® on 0 < 7 < @ must have changed the
material from K to say K. However, there must be a way to obtain K from K. Indeed
one can write

a s+b a - ]
(7.5 K (?'(:)4'"?' (v :b))—x(tP'(g)) = K(¢* (g)).
where we have again used ¢® instead of “¢® on the right-hand side to demonstrate that we

do not know the forcings for n < 0 if we use K as a representation.

The above can be related to commonly accepted notions in materials science. “We
regard it as self-evident, then, all current properties of a material are entirely determined
by its current state” [18].
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The “current state” at T = 0 and 7 = b are represented in Eq. (7.5) by the material
functions and constants in K and f(, respectively. The material functions and constants

in K and K must be different to represent the different states implied by the different
responses.

The task in materials science is to determine the current state knowing the state at
some previous time and what happened to the materials between now and the previous
time.

The task in continuum mechanics is similar. Equation (7.5) says that knowing K, i.e.
the material functions and constants, at = = 0 and the forcings on [0, ] should enable

us to determine K (the material functions and constants at t = b).

It is interesting to note that similar ideas were expressed in [5, p. 125]: “To determine
the actual thermomechanical state... it is insufficient to have the actual deformation
temperature configuration of a particle X but we additionally need the method of prepa-
ration of this configuration”.

Once the need for information on the current state or the method of preparation is
recognized one must immediately ask whether all states are equivalent or whether there
is a preferred state.

From experience it appears that the annealed state (all the effects of prior mechanical
loading have been removed by appropriate heat treatment) is a preferred state. A material
can stay in this state if the inputs are small. Sufficiently large inputs will change this state
and no mechanical input can return the material to this state.

If the annealed state is left behind by a suitable stimulus, then we can always define
a new state relative to which we can characterize the material. The part of the stimulus
leading from the annealed state to a new state that caused “plasticity” will together with
the old state be absorbed in the new method of preparation or in the new state of the
material. As such we can go from one state to the other as implied by Eq. (7.5) Then the
initial annealed state does not appear anymore in an explicit way.

8. Application of the necessary conditions developed earlier

Here we examine various constitutive equations which have been considered at one
time or another as representations of plasticity. We check whether Eq. (5.4) holds. Only
if the answer is affirmative do we consider it a valid representation for “plasticity”. (Of
course there may be other objections to models found to be valid by this procedure.)

8.1. Classical plasticity and classical viscoplasticity

Strains are split either additively, e.g. [19] and others or multiplicatively, e.g. [20]
and others, and a growth law for the yield surface must be given such that the elastic range
can change under the application of at least one ¢ in Fig. 1. The change in the elastic
range alone is sufficient so that Eq. (5.4) can hold and therefore most classical theories
can represent stimulus-induced variable heredity.
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8.2. Linear and nonlinear viscoelasticity

Integral representations of the form

8.1), (:)_fj(x_r) +ffc(: T t—=15)" d"’ j" dr,dv, +

or

8.1, e = fH(l—t,q)('r))- %1—’:17
0

or

I
BDs  p() = @)+ [ K(t—) f(@(n)dz
o
with f(0) = 0 have the property required in (3.1) and can be written in the form

4
8.1) p() = K(@(@), 1-7).
They all show invariable heredity and are unsuitable to model “plasticity”(*!).

8.3. Intrinsic time, endochronic theory, arc length parametrization

These theories postulate the existence of an internal time ([21}-[30] and earlier papers
quoted therein) which is mostly based on the second invariant of strain increments. The
theories can be formulated for infinitesimal and finite strains and a stress-based time scale
has also been proposed [29].

Most theories employ convolution integrals in the intrinsic time scale z and can be
written symbolically in a form similar to

(8.2) e(z()) = F(q:(:;")),z -z').

Equation (8.2) exhibits additivity under disjoint support so that Eq. (4.6) holds. The
modelling of variable heredity rests with violation of Eq. (4.5) or Eq. (4.7) depending
on the relation between the intrinsic and real time, see Appendix L

Appendix I clearly demonstrates that the introduction of convolution integrals in
intrinsic time z = Z with z defined as

t
(8.3) 5(t) = [ (dep- P dep)*/2dx
o
is not sufficient for the modelling of stimulus-induced variable heredity(*?). An additional

(*') If the matching of metal stress-strain or creep curves were to be a criterion for “plasticity”, then
each of these equations could be a valid model.

(*?) Again, if only the matching of tensile and shear stress-strain diagrams is considered to be im-
portant to represent ‘‘plasticity”, then an intrinsic time alone is sufficient.
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mapping between Z and the z must be employed in Eq. (8.2). This important ingredient is
normally not considered a part of intrinsic time theories. It is, except for the condition
dz/dz > 0, unrestricted from a theoretical point of view.

If this additional mapping is not used and the theory is formulated only as a convolu-
tion integral in the Z-parameter, then it fails to reproduce “plasticity”. An example is the
theory presented in [24].

If the convolution form in Eq. (8.2) is not used, e.g. if the z— 2z’ dependence is replaced
by a z, z dependence, then z = Z is sufficient to model plasticity. Then f(£) in (A.6) and
£(©) in (A. 11) must be constant and g in (A.5) and (A.11) has to be annulled to avoid
aging in real time.

Postscript: Initial thoughts on this subject were given in [31]. Since the completion
of the first draft of this paper (Spring 1976) the theory of material divagation on the basis of
continuum mechanics was formulated [32]. The ideal material defined in [32] has properties
similar to our material with invariable heredity.

Appendix I

We subject Eq. (8.2) to Eq. (3.1) and obtain, considering Eq. (3.3)
(A1) P(z4s) = F (tp"(%") 2=2' )+ F(’GP"(Z'E;.) y2—-2"),
where z,,, = z(v = s+b), z, = z(r = a) and z, = z(r = b). The second term can be
rewritten by introducing z" = z'—z, to yield

(el 1-2) = FCo T mmn—2)

so that .
(A2) #'(z) = F(9*(,2,-2"),
where we have the set z, = z,,,—2z,. On the other hand for specimen I of Fig. 1

(A.3) ol(z) = F(q,»(z:‘), 2,~2').

Since ¢ is identical to “¢p®, we see that the two responses will be equal if the intrinsic
times z, and z, are equal in both cases. Formally, an intrinsic time formulation represented
by Eq. (8.2) will exhibit invariable heredity if

(A.4) z, =z, for t=s.

Before we proceed further we want to remark that the use of convolution integrals in
intrinsic time immediately implies additivity under disjoint support, i.e. Eq. (4.6) holds.
The repository for history dependence in the sense of plasticity rests entirely in the violation
of Eq. (4.7) affected by the intrinsic time z [see Eq. (A4)].

In [29] the following intrinsic time z is postulated, see p.p. 859 and 860:

(A.5) dz = x[d(?+g%d<?)'/?
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with
d&
y dt = ——
B9 ‘=79
and . )
(A7) dé = (E- P-E)2dzr = (¢ P- ¢)V/2dr,

where E is the material derivative of the finite strain tensor and P is a positive definite
tensor which may depend on E. Since also as tress-based time scale is proposed in [29],
we have introduced our forcing function tensor ¢ to cover both cases. Integration of Eq.
(A. 5) together with Eqgs. (A. 6) and (A. 7) yields

© |(de) 1 F b
(A.8) Zi= ! xl( I f(-f(a)+§('r'))) +g.] dr'.
On the other hand we obtain for z in Eq. (A. 3)
~ < () 1\ i 1/2
B i of y [(*a}_ f(é(r))) = ] e
A comparison of Egs. (A. 8) and (A. 9) shows that z, = z, for t = s if
(A.10) FE@+E¢@) =f(4(), 0<7T<s.

The condition (A. 10) is certainly true if f'is a constant.
The same procedure can be repeated for the “old endochronic” time proposed in [22,
23] where

(A11) dz = ﬂ—lc)-g-i—dr
with
df = [de- P-dep+gdr?]'/?
to yield
(A.12) Z, = f——!“——,—* [ P %pb+g2]!/%dy’
] FC®+i))
and
(A.13) z, = f__lﬁ [@*: P- @b+g? 2dr.
N TEE))
Comparison of Egs. (A. 12) and (A. 13) yields, noting that ¢@°® = “¢®,
(A.14) z,=2, for t=s
if

fC@®) =fC®+L(r)), 0<T<s.

Again the condition (A. 14) is true if fis introduced as a constant.

We can conclude that the introduction of an intrinsic time (A. 7) alone does not guar-
antee a multiple convolution integral series in z—z’ to represent history dependence in
the sense of plasticity. The functions f introduced in Egs. (A. 6) and (A. 11) play a crucial
role. Only if fis not a constant can stimulus-induced variable heredity or history dependence
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in the sense of plasticity be reproduced. This observation coincides with the findings in
[23], p. 537 where it is shown that the choice of f = constant precludes the modelling of
cross hardening, a true plasticity effect, and which conforms to the definition of history
dependence in the sense of plasticity. The material tensor P in Eq. (A. 7) or Eq. (A. 11)
can be set to unity without affecting the outcome of our results.

Further, note that 1/f({) multiplies the expression in square brackets in Eq. (A. 12).
Consider now the rate-independent case in Eq. (A. 12), i.e. g = 0. To reproduce plasticity
f should not be a constant so that = f({) is required. Now consider P = 0 but g s 0,
i.e. rate-dependence without plasticity. Then the expressions (A. 12) and (A. 13) will
differ. As a consequence the convolution integral series will represent aging in real time.
This result may be unacceptable. The new intrinsic time (A. 5) does not suffer from this
difficulty, see the discussion on p. 860 of [29].

It is of interest further that /' = f(£) in Eq. (A. 8) or f = f({) in Eq. (A. 12) will make the
convolution integral series represent stimulus-induced variable heredity and not stimulus-
induced variable hereditary response as required by our necessary condition. Plasticity
effects are therefore introduced for every loading Elasticity is then excluded form such
representations.

Since the function f'is absent in [24], see Egs. (52)-(54) of [24], the functionals employed
there represent invariable hereditary. History dependence in the sense of plasticity cannot
be represented by this theory of “Thermo-Plastic Materials with Memory”.

The importance of the function f(£) in Eq. (A. 11) was also recognized in [33]. It is
stated on p. 169 of [33] that a linear function G[{] will preclude the modelling of “cross-
hardening”. (The derivative of the function G({) of [33] is equal to //f(¢) of this paper.)
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