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BRIEF NOTES 

Drag of a flat plate in a slip flow 
A bivariational approach 

L. M. DE SOCIO (TORINO) G. GUALTIERI and L. MISICI (CAMERINO) 

THE AERODYNAMIC drag coefficient of a finite flat plate, in a uniform flow at low 
Reynolds numbers, is evaluated in the presence of velocity jump conditions at the wall. 
Complementary bivariationaJ principles are applied and the results are in excellent 
agreement with the values obtained through more difficult analytic approaches. 

1. Introduction and basic eqaatioas 

THE FLOW field of a slightly rarefied gas past an aligned finite flat plate, at a low Reynolds 
number, can be adequately described by the Oseen equation with a velocity slip condition 
at the wall. In a recent paper [I] a mathematical model was introduced, where the plate 
is represented by a distribution of Oseenlets, so that the Oseen equation is given in an 
integral form as 

1 

(1.1) I+ ( ~) [ [lnlx-tl-ln: +y-1 ]!(t)dt = k· f(x), (0 < x < 1). 

In Eq. (1.1) y is Euler's constant, R = IU/v is the Reynolds number and f is the shear 
stress at the wall. Furthermore, xis the coordinate parallel to the wall and normaliZed with 
respect to the length of the plate /, while the uniform velocity of the free stream is U and v is 
the kinematic viscosity. 

If in the x-direction u is the velocity perturbation, normalized by U, the slip condition 
at the surface y = 0 is expressed by 

(1.2) kf(x) = klaufoyl,.o = I +u, 

where k is the slip coefficient. On the other hand, the drag coefficient C 0 is defined as 

(1.3) 

1 1 

Co =~J~I dx =~Jf(x)dx. 
· R oy ,.o R 

I 0 

Introducing the condition (1.2) eliminates nonphysical singularities of the shear stress 
on the plate (see for instance Ref. [2] for a valuable introduction of the question). 
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While in [1] a · solution of the problem was sought by approximately evaluating fGx) 
and then calculating the drag coefficient, in this paper the determination of CD is carrited 
out directly by means of a bivariational approach, following the theory in [3]. 

To this purpose, Eq. (1.1) is first re-written in the form 
1 

(1.4) f} 0 (x) = fJ(x)+h J K(x, ~)f}(~)d~ 
0 

with f}o(X) = 1; h = 1f2nk > 0; 

4 
(1.5) K(x, ~) = ln1f "'"'"i'+1-lnlx-~l. 

Let < , > indicate the inner product 
1 

(u, v) = J u(x)v(x)dx, u, v e Jff 
' 0 ' . 

in the Hilbert space Jlf and let T: ·Jif _:_; Jlf ~ the integral operator defined by 
1 

(1.6) Tu = u(x)+h J K(x, ~)u(E)d~. 
0 

The problem expressed by Eqs. (1.3) can then be given the form 

f}o = 'f"q,. 
(1.7) 4 ' . 

CD = kR (1], fJo)· 

2. Complementary variational principles for CD 

CoLE and PACK [3] furnished some complementary (or dual variational) principples 
for < fJ, fJo >, where f}o = TfJ, which can be applied to the problem under investigatition 
provided that some properties of the operator Tare verified. In particular, 

f. T is self-adjoint in 8; i.e. 

(2.1) (u, Tv) =(Tu, v). 
) 

This follows from the symmetry of the kernel (1.5) with respect to the variables {x, :, ~). 
2. The relation 

(2.2) 0 < (u, u) ~ (u, Tu)~ (u, r(x)u) < m(u, u), Vue Jff 

holds, where the function r(x) and the quantity m are defined by 
1 

(2.3) r(x) = Tl = 1 +h J K(x, ~)d~, 
0 

(2.4) . m = sup r(x). 
xe [0,1] 

The expression (2.2) can be deduced from the relation 

(u, Ku) ~ (u 2 , Kl)-

for K(x, ~) ~ 0, x, ~ e [0, 1]. 
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Note that K(x, E) ~ 0 corresponds to the following limitation on the Reynolds number: 
R < 4 · exp{l-y) ~ 6.10, which is fully acceptable as the basic equation holds for small 
R. After verifying the two properties indicated above, the following four functionals are 
considered for the operator T, namely: 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

Lo(c/>) = (c/>, 2'Y]o- Tc/>), 

L1 (c/>) = Lo+m-1('Y}o-Tc/>,'Y]o-TcJ>), 

Lie/>)= Lo+('Y}o-Tt/>, T-1('Y}o-Tc/>)), 

U(c/>) = Lo+('Y}o- Tt/>, 'YJo- Tt/>) 

which satisfy the fundamental unequality(1) 

(2.9) 

for some trial functions 4> e ;f. 
A proper choice of the trial functions appears to be 

N 

(2.10) tPN = 2; «1P2ix), 
)=0 

where the P21 are Legendre polynomials which, apart from their orthogonality .property, 
show necurrence relations which are pfirticularly suitable for the actual computations. 

In Eq. (2.10) the constants oc1 are obtained by substituting the trial functions in the 
functional and, subsequently, by determining th~ maximum (or the minimum) of the 
functional with respect to ock. 

The functionals (2.5) and (2.6) can be obtained from the single functional · 

(2.11) W(cp, tp) = ('f}0 , 'P'YJo)-(2'fJ0 , Vc/>)+(Tt/>, VcJ>), 

where .V is the self-adjoint operator defined as 

V= VJT-1 

and I is the identity operator. In fact 

(2.12) 
(2.13) 

(2.14) 

(2.15) 

L0 (t/>) = W(c/>, 0): V= -1, 

L1(t/>) = W(t/>, m-1): V= m-1 T-/, 

L2(t/>) = W(c/>, T-1): V= T-1T-/, 

U(t/>) = W(t/>, 1): V= T-1. 

The operator V is negative definite in Eqs. (2.12)-(2.14) and is positive definite in Eq; 
(2.15). Whe~ t/>0 = oc0 is subs~ituted into Eq. (2.11) ~me has 

W(tf>o, tp} = ('Y)o, 'I"YJo) -«o(2'Y]o, VI)+ cx0 ( Tl, VI). 

Substituting c/> 1 = oc0 +oc1 P2 into Eq. (2.11) yields 

W(t/>1,'1') = W(t/>o,fi')-«1 [(2-Tt/>0 , VP2)-(TP~, V(t/>o+«1P2))) 

(1) 'This corresponds to seeking the functionals L(t/>) and U(t/>) of an approximatingfooction·Qj such 
fu~ . 

,· . 
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while l/J2 = cxo + cx1 P 2 + cx2 P 4 gives 

W(ljJ 2 ,1p) = W(l/J1,1p)-cx2[(2-Tl/Jl, VP4)-(TP4, V(ljJ1+cx2P4))]. 

Optimizing 

A) W( l/J0 , 1p) with respect to cx0 , 

B) W(l/J1, 1p) with respect to cx0 , cx1, 

C) W(l/J2, 1p) with respect to cx0 , cx1, cx2 

leads to 

(fJ0 , VI) 
A) cxo = ( TI , Vl) ' 

B) (TI, VI)cx0 +(TI, VP2)cx1 =(I, VJ), 

(TI, VP2)ao+(TP2, VP2)cx1 =(I, VP2), 

C) (TI, VI)cx0 +(Tl, VP2)1X1 +(Tl, VP4)cx2 = (1, VI), 

(Tl, VP2)1Xo+(TP2, VP2)cx1 +(TP2, VP4)1X2 = (1, VP2), 

(TI, VP4)1Xo+(TP2, VP4)ct1 +(TP4, VP4)ct2 =(I, VP4). 

In order to evaluate the functionals appearing in Eqs. (2.12}-(2.15), P,.(x) is taken 
of the form 

Furthermore one has to take into account the following: 

,.. h [( 4 m+2) Tx"' = x + -- In- -y+ --
m+1 R m+l 

Moreover, the relation below holds: 

(TP,.(x), VP,..(x)) = (VP,.(x}, TP,.(x)). 

3. Results 

As shown, the drag coefficient CD can be evaluated from the upper and lower bounds 
of the considered functionals. In order to apply the method in a significant situation, 
the case of a slightly rarefied flow of spherical molecules will be considered. In this circum­
stance the slip coefficient can be assumed to be equal to the K.nudsen number and this, 
in turn, can be expressed by the ratio )..SjR where ;., = 16/5n112 and S is the speed ratio, 
U/C,., of the unperturbed velocity to the most probable molecular speed C,.. 

Tables (1-2) show the calculated values of CD as obtained via the three approximations 
of L0 , L1 , and U, at different values of R and S. Only the first approximation of L2 was 
actually computed, due to the complexity of this particular functional. 
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Table 1. Drag coefficient for S = 0.01 

Co = W(lj>f) R 0.01 0.1 1.0 4.0 

Lo(l/>o) 130.51 37.256 7.34361 3.22045 
Lo(l/>.) 130.51 37.263 7.3491 3.2251 
Lo(l/>2) 130.52 37.356 7.3491 3.2251 
Lt (l/>o) 130.52 37.356 7.7311 4.4054 
Lt (lj>.) 130.52 37.364 7.7268 4.3874 
Lt (lj>2) 130.53 37.379 1.5404 3.5739 
L2(l/>o) 130.52 37.290 7.3699 3.2570 
U(l/>o) 130.53 37.428 8.0081 5.2603 
U(lj>.) 130.53 37.426 7.9977 5.2350 
U(</J2) 130.53 37.392 7_.6141 3.7902 
Co(Ref. [1)) 162.72 38.102 7.5090 3.3880 
Co(Ref. [4]) 130.53 37.384 7.5104 3.3990 

Table 2. Drag coeflldent for S = 0.16 

Co = W(lj>,f) R 0.01 0.1 1.0 4.0 

L'(lj>') 13.269 10.577 4.9050 2.6440 
L'(l/>t) 13.269 10.577 4.9057 2.6460 
L5 (l/>2) 13.269 10.578 4.9208 2.6983 
L.(l/>o) 13.269 10.578 4.9158 2.6939 
Lt (tj>.) 13.269 10.578 4.9161 2.6939 
Lt (c/>l) 13.269 10.578 4.9206 2.6915 
Ll(tPo) 13.269 10.578 4.9120 2.6623 
U(t/>o) 13.269 10.578 4.9235 2.7297 
U(lj>.) 13.269 10.578 4.9234 2.7288 
U(cj.l) 13.269 10.578 4.9208 2.6983 
C o(Ref. [1]) 1982.621 8.724 4.6860 2.6080 
Co(Ref. [4]) 13.269 10.578 4.9201 2.6918 

Table 3. Relative errors, r 

R s 0.01 0.02 0.04 0.08 0.16 

0.01 7.6x 10-6 1.2x 10-6 1.1 x 1o-' 10-7 10-7 

0.1 1.8 x to-• 5x 10-5 1.2x 10-5 10-7 10-7 

1.0 4.8x 10-3 1.09x to-3 3.1 X 10-4 8.3x 10-5 1.1 X 10-5 

4.0 2.9x 10-2 7.4x 10- 3 3.3 x 10-2 5.6x 10- 4 1.4 X 10-4 

Finally, Table 3 shows the relative error defined by 

U(c/>2) -L~ (c/>2) 
r= 

U(c/>2)+ L1 Cc/>2) 
for a number of values of the Reynolds number and of S. 

Inspection of the results shows the excellent convergence characteristics of the method, 
convergence improving at lower R and at increasing S for each functional. 

10* 
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In Tables (1-2) the drag coefficient evaluated according to the approximate theory of 
Tamada and Miura are reported together with the exact results obtained by solving Eq. 
(1.1) by an integral transform method [4]. 

As one can see, the agreement with the results of the much more difficult exact evalua­
tion is excellent. On the contrary, the data obtained through the approximate theory of 
[1] are very good only at relatively high values of R, the accuracy decreasing with S. 
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