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Source flow betweene two non-parallel rotating disks ( *) 

P.A. JANSSON (GOTEBORG) 

LA.MINAR source flow of an incompressible viscous fluid between two non-parallel disks has 
been analyzed. The disks are rotating with arbitrary angular velocities about axes perpendic
ular to the disks. The equations of motion are solved by a perturbation expansion about the 
creeping-flow solution for source flow between parallel rotating disks. A solution which is valid 
in an annular region is obtained. The combination of inclination and rotation is found to in
fluence the pressure distribution and the flow pattern remarkably in some cases. The corres
ponding effects on the disks are discussed. 

Rozwaiono laminarny przeplyw fr6dlowy mi~dzy dwiema nier6wnoleglymi tarczami wiru
j~cymi. Tarcze wiruj~ z dowolnymi p~dkoSciami qtowymi wok61 osi prostopadlych do ich 
plaszczyzn. R6wnania ruchu rozwi~no metode} rozwini~ perturbacyjnych wzg]~em rozwi~
zania dla przeplywu pelzaj~cego dla wiruj~cych tarcz r6wnoleglych. Otrzymano rozwi~ie 
zachowuj~ce sw~ wa.inosc w obszarze pier8cieniowym. Stwierdzonot 7.e w pewnych przypad
kach kombinacja wzajemnego nachylenia tarcz i ich p~koki obrotowych wplywa w istotny 
spos6b na rozklad cisniefl i charakter przeplywu. Przedyskutowano tald.e wplyw tych czynnik6w 
na tarcze. 

PaccM&TpHBaeTCH JiaMHH&pHoe HCTOliiDU<OBoe TetleHHe Me>l<)zy .nBYMH Bp8Ili81011UlMHCH He
napanneJlhHbiMH AHCJ<aMH. ~CKH Bp~BJOTCH C DpOHSBOJlhHhiMH yrJIOBhiMH CI<OJ>OCT'IMB 
BOJ<pyr oceit nepneAHJ<YJmPHhiX K HX nnoCJ<oCTHM. YpasHeBHH .nsH>KeBHH pemeHbi MeTO,AOM 
nepTYJ>6~oHHLIX p83Jiomemm no oTHomeHHIO K pemeHHIO .AJm noJI38JO~ero Te'lleBHH .AJm 
Bp~&lOIIUIXCH napaJIJieJlhHI>IX AHCKOB. fiOJIY'ICHO pemeHHe COXpawno~ee CBOIO np&BHJ'Ih
HOCTI> B KOJILI.\eBOH o6JI&CTH. KoHCTaTHpoB&HO, liTO B HeKOTOpbiX cnytlaHX KOM6HHanwt 
B3aHMHOro H8KJIOHa ,AHCJ<OB H HX Bp~aTeJILHbiX CJ<OpoCTei BJDVIeT ~eCTBeHHbiM o6pa-
30M Ha pacnpe,AeJieHHe ,Aasnemm H xapaKTep Te'lleHHH. 06cy>f<.AeHo TaK>f<e BJDUUIHe 3TU 
cj)aJ<TOpoB Ha ,AHCKH. 

Nomenclature 

d distance between the disks at the centre, 
F:~~, F., radial force components, 

F. functions defined by Eq. (2.9), 
G. functions defined by Eq. (2.8), 
H. functions defined by Eq. (2.7), 

k ratio of inlet and outlet radii, 
Mlf, M., bending couple components, 

P. functions defined by Eq. (2.10), 
p pressure, 
Q volumetric flow through an arbitrary surface r = constant, 
q dimensionless volumetric flow rate (Qfdr~w), 
R distance defined by Fig. 1, -

(•) This paper was presented at the Euromech Colloquium on Low Reynolds Number Flow, Poland, 
Jablonna, September 1978. 
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1. Introduction 

Rp R+rcosp. 
Re Reynolds number (d2ro/v). 

r radial coordinate. 
r0 radius of the disks, 
s ratio of angular velocities, 

P. A. JANSSON 

u, v, w velocity components in axial, circumferential and radial directions, respec
tively, 

X, Y, Z coordinates defined by Fig. 1, 
x. y coordinates defined by Fig. s. 

<X axial coordinate defined by Fig. 1, 
<Xo angle between the disks, 
p circumferential coordinate. 
v kinematic viscosity, 
~ <X/<Xo, 
(} density, 
ro angular velocity of the disk at <X = o. 

LAMIN'AR source flow between two closely spaced parallel disks, stationary or rotating, 
is a problem of great interest because of its fundamental character and because of its 
applications in a number of practical cases, e.g. centrifugal pumps, face seals, air bearings, 
radial diffusers and rotating heat exchangers. 

During the last twenty years several workers have investigated this problem theoret
ically and experimentally. In the case of stationary disks the works of MoLLER [1], PEUBB 
[2] and SAVAGE [3] may be mentioned. Flow between disks rotating with the same velo
city has been studied by BREITER and POHLHAUSEN [4] and by PEUBE and KREITH [5], 
while KREITH and VIVIAN'D [6] treated the case of disks rotating with different speeds. 
PELECH and SHAPIRO [7] obtained a solution of the flow in the narrow gap between 
a flexible disk and a rigid wall while examining the mechanics of the disk. PECHEUX [8] 
discussed source flow between a fixed porous disk and a rotating impermeable one. More 
recently Gosw AMI and NAND A [9] investigated the problem of oscillating radial flow 
between rotating disks. 

The influence of geometric deviations from the ideal case of flat, aligned surfaces has 
been studied- by SNECK [10]-[12] using the "short bearing" approximation of the lubri
cation theory, modified to include inertial effects. The radial velocity is assumed to be 

. small in this solution. An important example of geometric deviations is misalignment, 
i.e. the case when the disks are not strictly parallel. This problem was first studied by TAY
LOR and SAFFMAN' [13] in a attempt to explain the experimentally observed excess pres
sure at the centre of the airspace between two closely spaced parallel disks, one of them 
rotating. In their paper TAYLOR and SAFFMAN considered compressible as well as incom
pressible flow. The analysis, however, is restricted to zero radial volumetric flow rate and, 
furthermore, the tangential and radial velocity components are replaced by their mean 
values over the thickness of the fluid layer. Recently ETSION' [14]-[16] has studied this 
problem using the "short bearing" approximation and creeping-flow conditions. 
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In the present paper the problem is solved by a perturbation expansion about the known 
creeping-flow solution for source flow between closely spaced parallel disks rotating 
with different velocities. A solution which is valid in an annular region is obtained. 

2. Analysis 

The coordinates (ex, {J, r) shown as in Fig. 1 and the corresponding velocity components 
(u, v, w) are used. The surfaces of the two disks are placed at ex = 0 and ex = cx0 • The 
disks are rotating about axes perpendicular to the disks at r = 0 with the angular veloc-

z 

Fro. 1. Coordinate system. 

ities sw( -1 ~ s ~ 1) and lO, respectively. The spacing between the disks at the centre 
of the disks is d = Rcx0 • We consider an annular region with inlet radius kr0 (k < 1) and 
outlet radius r 0 • 

The continuity equation and the Navier-Stokes equations for the incompressible 
steady flow of constant viscosity can easily be derived from the general equations in cur
vilinear orthogonal coordinates, see e.g. RousE [17]. In the present case 

X= (R+rcos{J)coscx, 

Y = (R+rcos{J)sincx, 

Z = rsin{J. 

The corresponding scale factors are 

h1 = R+rcos{J, 

h2 = r, 

h3 = 1. 

The resulting equations are as follows: 

(2.1) r ou ov . ow 
~ af + Rp ap -rsm{Jv+rRpy, +(R+2rcos{J)w = 0, 

(2.2) 1 ou 1 ou ou sin{J cos{J 
cxoRp "al + rv o{J +wy,-~uv+ ~uw 

1 op [ 1 o2u sin{J ou 1 o2u 
= - CXoRoe a~ +v cx~Rp oE2 - rRp ap + T2 o{J2 
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R+2rcos{J ou o2u 2sin{J iJv 2cosp ow 1. ] 

+ rRp or + or2 - CXoR~ a[+ CXoRJ a{- RJ u , 

(2.3) 
1 iJv 1 , iJv iJv · 1 sin P 2 --u-. +-v-+w-+-vw+--u 

CXoRp oE r ap or r Rp 

= - _1 op +v[-1- o
2
v- sinP !!!_ + _!_ o

2
v + R+2rcos{J ~ 

rn o{J cx~R2 o'2 rR o{J r2 o{J2 rR or I;" p . p p . 

o2v 2 ow 2sinP ou R2+2Rrcos{J+r2 RsinP ] 
+ 'T2 + 2!lp + R2 ~- 2R2 v- R2 w ' ur r u cx0 p us- r p r p 

1 ow 1 ow ow 1 2 cos{J 2 1 op [ 1 o2w 
(2.4) CXoRp u a~ + rv ap +war-- -,v -lf;u = - e or +v cx~R~ o~2 

sinp ow 1 o2w · R+2rcos{J ow o2 w 2 ov . sin{Jcosp 
- rRp ap + r2 o{J2 + rRg ar + or2 - J:2 8/i + RJ - V 

2cosp ou R2 + 2Rrcos{J + 2r2cos2{3 ] 
cx0 RJ ~- r2R~ w ' 

where 

ex '= -, Rp = R+rcos{J. CXo 

H the flow rate, i.e. the strength of the source, is Q, the boundary conditions are 

u = w = o atE= o, E = 1, 

v = srw 

v = rw 

1 n 

at E = 0, 

at E = 1, 

· J J w(R+rcos{J)cx0 rd{JdE = Q. 
0 _,. 

It is further assumed that the pressure is independent of the tangential coordinate P · at 
the boundaries r = kr0 and r = r0 • 

The gap width d.is assumed to be small compared with the disk radius ro, which in 
its turn is small compared with R: 

d ~ r0 ~ R 
or 

(2.5) 

The creeping-flow solution is approached when the Reynolds number 

(2.6) 
J2w 

Re=--~ 1. 
V 
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These assumptions mean that the problem contains three mutually independent dimension
less parameters that are small compared with unity, namely Re, r0 /R and d/r0 • Thus the 
solution is expressed as a perturbation expansion in powers of these parameters: 

{ 
r0 d } (2.7) u = dco H0 (E,r)+ReHt(E,r)+lfH2(E,p,r)+-,:;H3 (E,r)+ ... , 

(2.8) v = r0 w{G3(E, r)+ReG,(E, r)+ ~ G2 (E, p, r)+ :. G3(E, r)+ .. .), . 

(2.9) w = r0 w {Fo(E, r)+ReF1(E, r)+ ~ F2 (e, p, r)+ :. F,(,, r)+ ... }, 

evcorg { · r o d } 
(2.10) p = ~ Po(E,r)+ReP1(E,r)+J[P2(E,p,r)+r;;P3(E,r)+ .... 

It has been assumed that the solution is axisymmetrical when the limit r0 /R-+ 0 is taken, 
i.e. when the disks are parallel. However, no fundamental difficulty is avoided by this 
restriction. Nonaxisymmetrical boundary conditions can easily be treated, if the unknown 
functions are dependent on p. Substituting Eqs. (2.7)-(2.10) into Eqs. (2.1)--(2.4) and 
collecting terms of equal powers of_ the perturbation parameters yields the following 
equations: 
System 1 (terms of order unity; the solution of this system describes the behaviour in 
the limit when Re = r0 /R = d/r0 = 0) 

r oH0 oF0 ---+r--+F0 = 0 
ro ae iJr ' 

oP0 _ O 
ae - ' 

o2Go 
oE2 = o, 

o2F0 oPo 
aE2 = ro ---gr 

with the boundary_ conditions 

F0 (0, r) = F0 (1, r) = 0, 

1 " 

, 
G0 (0, r) = s -, 

'o 
, 

Go(l, r) = -, 
ro 

J J r0 wF0 R«0 rd{JdE = Q. 
0 -n 

The solution is simply the creeping-ft.ow solution for the case of parallel disks: 

(2.11) H0 = 0, 
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(2.12) 

(2.13) 

(2.14) 

where 

r . 
G0 =- [(1-s)E+s], 

ro 

6 r 
P0 = - --:-qln- +const, 

n r0 

Q 
q = drijw · 

P. A. JANSSON 

System 2 (terms of order Re; the solution of this system describes the corrections to system 1 
due to inertial effects) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

with 

(2.19) 

r oH1 oF1 
ro ar +r--a,:- +F1 = 0, 

oP1 
--ar-=0, 

o2G1 oGo oGo ro 
~ = Ho---gr- +r0 F0 -a,-+ -;FoGo, 

o2F1 oP1 oF0 oFo ro 2 
oE2 = ro-a,- +Hoar+roFoa,--;Go 

H1(0, r) = H1 (1, r) = 0, 

G1(0, r) = G1(1, r) = 0, 

F1 (0, r) = F1 (1, r) = 0,. 
1 

jF1 d~=0. 
0 

Substituting Eqs. (2.11 )-(2.13) and (2.16) into Eqs. (2.17)-(2.18) yields 

o2Gt =- ~qro [(1-s)E3+(2s-1)~2-s~] 
oE2 n r ' 

iJ2F dP 9 r 3 r 
_ __ 1 = ro--1 --q2~(E2-E)2 __ [(1- ·s)2~2+2s(1-s)~+s2] 

o;2 dr n 2 r 3 ro 

which may be integrated to give 

(2.20) 
1 r 0 

Gt = -IOn qr [3(1-s)E5 +5(2s-1)~4 -10s~3 +(3s+2)~], 

(2.21) Ft = _!_,o dPt (E2-~)- ·_3_q2 r~ (2~6-6Es+SE4-E) 
2 dr 20n2 r 3 

- _!_
2 

_!_ [(1-s)2~4 +4s[(l-s)E3 +6s2E2 - (3s2 +2s+ 1)E]. 
1 ~ . 
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Substituting Eq. (2.21) into Eq.· (2.15) yields 

()~1 = - _!__ r5 (r2 d2P1 +r dP1) (E2-~)- _3_q2 r~ (2~6-6~s+5~4-~) 
iJE 2 r2 dr2 dr 1 On2 r 4 

As there are two boundary conditions (2.19)1. to this first order equation, not only an 
expression for H 1 but also a differential equation for P 1 are obtained: 

(2.22) Hl = __ 3_q2 r~ (2;'-7E6+7~s-3~3+~2)+ _1 [{l-s)2Es 
~2 ~ . ~ 

+ 5s(1-s)E4+ (7s2 -4s-3)E3- (3s2 -s-2)~2], 

(2.23) 2 d 2P1 dP1 27 2 r5 1 2 r2 

r -d z +r-d- = - -35 2 q -2 + -5 (3s +4s+3)-z. r r n r r0 

The solution of Eq. (2.23) is 

( 24) 1 r 27 2 r5 1 ( 2 ) r2 

2. pl = A+B n ro - 140n2 q J:2 + 20 3s +4s+3 r5 . 

The constant B is determined by substituting Eq. (2.24) into Eq. (2.21) and using the con
I 

dition J F1d~ = 0 (2.19)4. The result is simply B = 0. 
0 

Hence 

(2.25) 

(2.26) 

System 3 (terms proportional to r0 /R; the solution of this system describes the correc
tions to system 1 due to inclination of the disks) 

(2.27) 
r oH2 oG2 r . oF2 r2 . oF0 r 
~~ + ~- -sm{JG0 +r-!l- + -cos{J-!l-+F2 +2-cos{JF0 = 0, 
r0 u~ up r0 ur r0 ur r0 

oP2 = 0 ae ' 

(2.28) o2G2 r0 oP2 ---w:- = --,: ap, 

(2.29) iJ2p2 iJPz r iJ2Fo ---w:- = r 0 ar + 2 r 0 cos f3 ---w:-' 
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with 

H2(0',p,r) = H2(1,p,r) = G2(0,p,r) = G2(1,p,r) = F2(0,p,r) 

(2.30) 
= F 2 (1, p, r) = 0, 

l n I n 

J J (F, +F.;. cosP) dm = o "'> J J F,dpd~ = o. 
0 -n 0 -n 

Substituting Eqs. (2.12) and (2.13) into Eqs. (2.27) and (2.29) yields 

(2.31) 
r oH2 oG2 r2 - . oF2 3 2 ro-ar+ -ap- r~ [(1-s)~+~]smP+r--a;:--- n q(~ _,)cosP+F2 = o, 

(2.32) 
o2F2 oP2 12 -w= ro-ar-1tqcosp. 

The functions H2 , G2 , F2 and P2 are expanded as follows: 

00 00 

(2.33) H2 (E, p, r) = 2 He,.(~, r)cosnP+ 2 H5,.(~, r)sinnp, 
n=O n~l 

00 00 

(2.34) G2 (E, p, r) = 2 Gc,.(~, r)cosnP+ 2 G5,.(E, r)sinnp, 
n=O n=l 

00 00 

(2.35) F2(E, p, r) = 2 Fc,.<E, r)cosnP+ 2 Fm(E, r)sinnp, 
n=O k=l 

00 00 

(2.36) P2{P, r) = 2 Pc,.(r)cosnP+ 2 P.,.(r)sinnp. 
,..o .... . -

Substituting the expressions (2.34}-(2.36) into Eqs. (2.28) and (2.32) and collecting terms 
yields 
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which- may be integrated to give 

G __ _!!_~p (E2_ I:) 
m - 2 r en "' "' , 

(2.31) 

F = __!_ dPcn (1:2_ I:) 
en 2 ro dr "' "' (n :1- 1), 

F _ 1 dP,n (t:2 sn- 2ro ~ "' -~). 

Substituting Eqs. (2.33)-(2.35) and (2.37) into Eq. (2.31) and collecting terms yields the 
differential equations: 

aHc1 - 1 r~ ( 2 d
2
Pct dPc1 p ) (1:2 1:) 9 ro (1:2 E) ------ r --+r--- 1 "'-"' +-q-"' -"' a~ 2 r 2 dr2 dr c n r ' 

oHcn = _ __!_ r~·(r2 d
2
Pcn +r dPcn -n2P ) (~2 -~) (n :/:-I), 

a~ 2 r 2 dr2 dr en 

oHs1 1 r~ ( 2 d
2
Ps1 dPs1 p ) (t-:2 t:) r [(I ) t:+ ] ----ar-= -2--rz r (kl+r~- 81 "'-"' +--ro- -s" s, 

oHs, = _ __!_ r~ (r2 d2P ... +r dP., -n2P ) (El-E) (n ~ 2). 
a~ 2 r 2 dr dr ., 

These equations may be integrated to give the axial velocity functions Hc0, Hcb .. • and 
a set of difFerential equations for the pressure functions: 

He,.= 0, 

Hst = _!_ [{l+s)~3 -(1+2s)E2 +sE], 
ro 

Hsn = 0 (n ~ 2) 
and 

2 d2Pc~ dPc,. - lp - 0 r drl +r-r, n c,- (n :/:- 1), 

2 d
2Pc1 dPc1 p 18 r r --+r--- 1 = -q-dr2 dr c n r 0 ' 

(n ~ 2). 
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The solution is 

r r 0 9 r r 
Pcl = Cct-+Dct-+-q-ln-, 

r 0 r n r 0 r 0 

P •• =c •• (;. r +D •• (;.r (n ~ 2), 

r r 0 3 r3 

P1 = Cst-+Dt---(l+s)-
s ro s r 4 r~ ' 

The condition that the pressure is independent of {J at the boundaries r = kr 0 and r = r 0 

yields 

Cc,. = De,. = 0 (n ~ 2), 

Csl = ! (l+s)(l+k2
), 

Ds1 = - ! (1 +s)k2
, 

1 n 

Substituting the expression for Pco into Eq. (2.37)4 and using the condition f f F2 d{J3E = 0 
0 -n 

(2.30h determines Dco = 0. 
Hence 

(2.38) 
r , 

H2 =- [(l+s)E3 -(1+2s)E2 +sE]sin{J, 
To 

(2.39) 

(2.40) 
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(2.41} 

+~q[~ln~+ ~
2

~~~ (~-~)]cosp. n r0 r0 - r0 r 

System 4 (terms of order dfr0) 

The system is found to be identical to system 1 (with subscripts 3 instead of 0) but 
with homogeneous boundary conditions. 

Hence 

(2.42) - H3 = G3 = F 3 = P3 = 0. 

Substituti~g into Eqs. (2. 7)-(2.10) yields the final solution: 

(2.43) 

(2.44) v = rw[(l-s)~+s] 

(2.45) 

- 2~n r0 wReq : 0 [6(1-s)E5 + 10(2s-1)E4 -20sE3 +2(3s+2)E] 

9 r0 [ r k
2
ln k ( r~ )] . . --row-q In-+ 1-- (~2 -E)smp 

2n R r 0 1 - k2 r 2 

3 ro (E2 ) 3 2 r~ (141: w = --r0 wq- ~ -~- r0 wReq - ~ 
n r 140n2 . r 3 

-42E5 +35E4 -9E2 +2E)- ~O r0 wRe ;
0 

[5(1-s)2~4 

+ 20[(1-s)~3 + 3(7s2 -4s-3)~2 -2(3s2 -s-2)~] 

(2 46) p-p(ro) _ 6 In r 27 2 ( r5) 
. (!J'wrMd2 - - n q --,:;; + 140n2 Req 1- 15" 
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2 r0 r
3

] • 9 r0 [ r In r k
2
lnk

2 
(_!_ _ ~)]cos{3. -k ---- ----r stn/1 + --R q - - . + 1-k r

0 
r r ~ n ~ ~ 

3. Discussion 

The solution (2.43)-(2.46) can be compared with the results obtained by SNEcK [11]. 
The assumption r0 ~ R used in Sneck's pressure distribution yields after some manip
ulation 

(3.1) _p_-___,P(::-:-ro~) = - ~ q In _r + _I {3s2 + 4s + 3) Re (-'
2 

- 1) 
evwr5/d2 n r0 20 r~ 

2 r0 [k3 
-1 r r

3 
] • 18 r0 [ r 1-k r l +-(1+s)- --ln---+1 sm{3;_--q 1--- --In- cos{3. 

3 R Ink r0 r~ 1t R r0 Ink r0 

However, Sneck's solution is valid only for a small volumetric flow rate under the "short 
bearing" approximation. It can be shown that Eqs. (2.46) and (3.1) coincide if q ~ 1, 
r ~ ro and k ~ 1. In the same way the pressure distribution obtained by ETSION' [14], 
[16], which is valid under the same restrictions and creeping-flow conditions can be shown 
to agree with Eq. (2.46). 

The analytical solution by TA)'LOR and SAFFMAN' [13] is valid for compressible flow 
(with pooe). If the analysis is repeated for incompressible flow, the result is 

p-p(ro) 3 r0 ( r r 3
) • 

evwr5fd2 = 4lf r;- r~ sm{3 

which is identical to Eq. (2.46) when q = s = Re = k = 0. As was pointed out by Taylor 
and Saffman, it is obviously a good approximation to replace v and w by their mean val
ues through the thickness of the fluid layer. 

It shottld be noted that the validity of the solution is restricted not only by the assump
tions (2.5) and (2.6). Some terms in Eqs. (2.2)-(2.4) become very large for small values 
of r. As ro has been considered to be a typical value of r, this means that terms that have 
been assumed to be small during the analysis cannot be neglected generally. However, 
it is possible for any given combination of dfr0 , Re, r0 /R and q to determine a value of k 
that justifies these assumptions. According to PBLBCH and SHAPIRO [7] Re= 10-2 , 

q = 10-2 and d/r0 = 10-3 are typical values in a practical case. If r0 /R = 10-2, it can 
be shown that 0.1 is an acceptable value of k in this case. 

The pressure and the velocity components have been calculated for this case as func
tions of the tangential coordinate {3 for diff'erent values of s, rfr0 and ~- It can be seen 
that the combination of inclined disks and rotation has a remarkable infiuence on the 
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FIG. · 2. Pressure at a small volumetric flow rate 
as a function of {J for various values of rjr0 and 
s(-, s = -1; ---, s = 0; -·-, s = 1). 

q = 0.01, Re = 0.01, r0 /R = 0.01. 

FIG. 4. Perturbation of circumferential veloc. 
ity due to inclination at a small volumetric flow 
rate for various values of s (--, s = -1 ; 
_;.--,s = 0;-·-,s = 1).q = 0.01,Re = 0.01, 
r0 /R = 0.01, k = 0.1, ~ = 0.05, rjr0 = 0.4. 
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JT 

FIG. 3. Radial velocity at a small volumetric 
flow rate as a function of {J for various values 
of rjr0 and s (--, s = -1, ---, s = 0; 
-~-, s = 1). q = 0.01, Re= 0.01, r0 /R = 

..... 

= 0.01, k = 0.1, ~ = 0.5. 
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pressure and the radial velocity (Figs. 2-3) except in the case s = -1 ( counterrotating 
disks at the same angular velocity). This effect is analogous to that of a journal bearing. 
Ifs= 1 (corotating disks), the calculated values will even correspond to negative pressure 
and negative radial velocity, i.e. bacldlow, in some cases; It should also be noted that 
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FIG. 5. Perturbation of circumferential velocity due to inclination at a higher volumetric flow rate for 
variousvaluesofs(-,s = -1;---,s = 0,-·-,s = 1). q = 0.5,~ = 0.01,r0 /R = 0.01,k = 0.7, 

~ = 0.5, rfr0 = 0.85. 
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f3 

r/r0 = 1.0 

FIG. 6. Perturbation of radial velocity due to inclination at a higher volumetric flow rate for various values 
of rfr0 and s (-, s = -1; ---, s = 0; -·-, s = 1). q = 0.5, Re= 0.01, r0 /R = 0.01, k = 0.7, 

' ~ = 0.5. 
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the sign of the angle-dependent velocity term depends on the value of the radial coordin
ate. The effect of the flow rate (q) is a small pressure increase and a small radial velocity 
~crease at that part of the region where the disks are closer to each other (cos fJ ~< 0)> 
as would be expected. 

The combination of inclination and source flow will cause a tangential flow from 
regions of a smaller gap width towards regions of a higher one. If the angular velocity w 
is small or even zero (i.e. fixed disks), this contribution will be dominant. The effect of 

the rotation (ifs =1= -1) is a tangential flow from fJ = ~ towards fJ = - ; (Fig. 4). 

This angular dependence of the tangential velocity is in complete agreement with the pres
sure variation, as could be seen from Eqs. (2.44) and (2.46). 

-'JT \ \ 

. \ \ 
. \ 
\ \ 
\ \ /· 
\ ' / I \ ....... _ i 
\ i 
\ i -1 

\ .. _/ 

FIG. 7. Perturbation of pressure due to incli
nation at a higher volumetric flow rate for va
rious of s (-, s = -1; ---, s = 0; -·-, 
s = 1). q = 05, Re= 0.01, r0 /R = 0.01, k = 

= 0.7, rfr0 = 0.85. 

FIG. 8. The disk at rt = 0 viewed from the outside. 

At higher values of q the terms that are independent of fJ will dominate. The angle
dependent terms of the pressure and the velocity components have been calculated for 
the case of q = 0.5. Some results are presented in Figs. 5-7. 

It is now possible to calculate the bending couple exerted by the pressure forces on 
the disks. With notations according to Fig. 8 the components on the disk ex = 0 are 

5 
M = __!!__ (1 ) ~ evwro (1- k2)3 0 

x 16 +s R d2 ~ ' 
(3.2) 

(3.3) M = _2_ 2 evwr6 (kzl k 1-k4) 0 
>' 4 q R d2 n + 4 > · 

As the pressure is independent of ex, the couple on the disk ex = ex0 is the same but oppo
sitely directed. These results are. in agreement with ETSION'S results [14], [16] when k -+ 1 
and s = 0. 

A simple examination shows that if the disks are corotating (s > 0), the component 
Mx tends to change the ·angular m omenta in a way that corresponds to a decrease of the 
angle ex0 • The rotation thus has a stabilizing effect, although the analysis of course assumes 

4* 
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that the angle (%0 is fixed. If s ~ 0, it is not possible to deduce anything about stabilizing 
tendencies in general. However, if the moments of inertia about the axes of rotation are 
equal for both disks, it can be shown that the effect is destabilizing. If the disks are non
rotating, only the component M, exists, which obviously has a restoring effect. 

The inclination of the disks will also produce a radial force. The force acting on the 
disk (% = 0 has the components 

n ro 

Fx = J J (-rf'(l,cos{J--rpsin{J)rdrd{J, 
·-nkro 

n ro 

F, = J J ( -rf'(l,sin{J + Tpf%cos{J)rdrd{J, 
-n kro 

where -r,f% and Tpt% are the shear stress components at (% = 0. The result is 

(3.4) 

(3.5) F, = 0. 

These results differ from those obtained by ETSION [15] probably because E~ion in pa;rt 
has neglected the circumferential pressure gradient. Thus the value of Tpf% will be incorrect. 
Etsion's results (if r0 ~ "R) are 

F = 2. ~ evwr~ (1- k2) 
X 2 q R d ' 

3 
F = ~ ~ (!PWro (1 + k)3(1- k) 

' 8 R d ' 

These results are claimed to be valid if s = 0 and k ~ 1. 
The case of a precessing disk can be analyzed in the same way using a rotating coordi

nate system. 
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Corrigendam 

Source flow between non-parallel rotating disks 
P. A. IANSSON 

Arch. Mech., 33, 1, pp. 37-53, Warszawa 1981 

Eqs. (3.4)-(3.5) should read: 

(3.4) 
3 ro e•wr~ 2 

F:z = -q---. (1-k ), 
2 R d 

(3.5) 
n r0 ~wr~ 

F, = --(1-s) ---(1-~). 
4 R d 

The component F, still differs from the one obtained by EnioN. However, when the limit k-+ 1 
is taken, the results are in agreement. 
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