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Effect of acoustic wave incident upon a moving plane 
in three-dimensional subsonic flow 

E. ,A. KRASIL'SHCHIKOV A (MOSCOW) 

AN ACOUSTIC wave falls upon a plane that moves with subsonic speed in an ideal 
compressible medium. The problem of gas dynamics is presented as an initial-bound­
ary value problem with a mobile boundary for a three-dimensional wave equa­
tion. The solution of the problem is obtained in a closed form, in quadratures, in 
the general case of an arbitrary orientation of the front of the incident wave with 
respect to a moving plane. The velocity potential is presented in the form of a double 
integral that contains an arbitrarily given function which in turn determines the pro-

, file of the incident wave. In particular, the obtained solution contains the solution 
· of the problem when an acoustic wave falls upon an immobile plane. 

Introduction. Statement of the problem 

AN ACOUSTIC wave falls upon a plane that moves with constant subsonic sp~d u in 
an ideal compressible medium. The wave front represents a plane which moves in an 
immobile medium with the velocity of ·sound c. The velocity vector c forms an angle a 
with the moving plane, -n/2 < a~ n/2. On the moving plane the trail of the wave 
front forms an angle (n/2-P) with the vector ii, 0 ~ p ~ n. 

Three-dimensional eddy-free flow of a gas behind the front of an incident wave is 
considered in a system of coordinate axes Oxyz, which moves with the velocity u. The 
Ox axis is directed along the velocity vector ii. The plane (xy) is combined with the plane 
on which the wave falls (Fig. 1). 

The velocity potential f/>1 of the disturbed flow of a gas satisfies the three-dimensional 
wave equation and the condition of flow in the plane (xy):f/>1z = 0. 

We shall present the potential f/>1 in the form f/>1 = fl>+q;. The function f/> satisfies 
the wave equation. The function f/> is an arbitrarily given velocity potential in the incident 
wave in the moving coordinate system. In the general case the potential f/> depends upon 
four arguments, i.e. three coordinates an~ time. The parameters of a gas in an incident 
wave are given through the function f/>(x, y, z, t). The unknown function q; represents 
a velocity potential of acoustic field excited by the reflected wave [1]. 

1. The initial-boundary value problem 

The function q; satisfies the three-dimensional wave equation 

(1.1) 
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FIG. 1. 

and the following boundary conditions at the plane (xy): 

(1.2) 'Pz = 0 
before the front of the incident wave, 

(1.3) f/Jz = -C/>z(X, y, 0, t) = A(x, y, t) 

behind the wave front. 

2. The solution of the problem 

Starting from the elementary solutions rp* of Eq. (1.1) 

rp* = !(~, 1], -z')r-t, -r = t-u(c2 -u2)- 1 (x-~)-c(c2 -u2)- 1r, 

r = [ (x-E)2 + ( 1- ::) {y-tJ)2 + ( 1- ~:) z2]i 
we shall take the solution of Eq. (1.1) in the form of a double integral [2]. 
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(2.1) ( ) ff f(E,fJ,T)dEd 
tpx,y,z,t = r ~ 'YJ· 

It may be mentioned that the variables ~' 'YJ, -r: are related to each other by the rela­
tionship 

.... 
(2.2) (x-E)2 +{y-1J)2 +z2 +2u(x-~)(t--r:)-(c2 -u2)(t--r:)2 = 0. 

Let us now consider the space defined by the variables x, y, t [2, 3]. We shall consider 
as the initial moment of time, t = 0, that moment of time when any point of the trail 
of the incident wave on the plane (xy) coincides with the origin of the coordinates 0. The 
plane W, which is defined by the equation 

(2.3) (cosacosp)~+(cosasinP)rJ+(ucosacosP-c)-r' = 0, 

divides the space (x y t) into two parts, i.e. V0 and V with different values of the deriva­
tive fz (Fig. 2). According to the condition (1.2) in the semi-space V0 which conforms to 
small values of time, the derivative CfJz = 0. And according to the condition (1.3) in the 
semi-space V that conforms to large values of time, the derivative (/Jz = A(x y t). 

w 

w 
Fro. 2. 

In the solution (2.1) we shall specify the Integration range. With this aim we shall 
change over from the double integral (2.1) to the surface integral spread over the surface 
of the hyperboloid S which is defined, respecively, by the equation 

http://rcin.org.pl



160 E. A. KRASIL'SHCffiKOVA 

_(2.4) (x-E)2 +(y-tJ)2 +z2 +2u(x-E)(t-r')-(c2 -u2)(t-r')2 = 0 

and the inequality 

(2.5) r' < t, 

where ~, fJ, r' - current coordinates (Fig. 2). 
The element dS of the surfaceS is bounded to the element of the plane (xy) by dS = 

1 

= [EG-F2J2 d~ dfJ, where the values E, G, Fare the coefficient at the difi:erential elements 
in the first main quadratic form. · 

/ 
/ 

FIG. 3. 

/ 
/ 

/ 
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Considering the variables~' fJ and Tin Eq. (2.2) as the function ~and fJ we get the coef-
ficients E, G, F in the form 

E = (c2 -u 2)- 2r- 2 [(c2 -u 2) 2r2 +u2c2r2 +c4 (x-E)2 +2uc3r(x-~}], 

G = 1 +r- 2(y-tJ}2
, 

F = (c2 -u2)- 2r- 2 [u 2c2r(y-1})+c4(x-~)(y-1})]. 

Using the boundary conditions (1.2) and (1.3) of the problem and the known relation­
ship 2nf(x, y, t) = -q>%(x, y, 0, t), we shall present the solution (2.1) in the form of the 
surface integral 

(2.6) ( ) - 1 If A ( ~' 17' T) dS q>x,y,z,t ---2 y' , 
n r EG-F2 

X 

where the integration range :E is a part of the surface S intercepted by the plane W, (£ c: V). 
Now we shall reverse the process, i.e. we shall change over from the surface integral 

(2.6) to a double integral with the integration range located in the plane (x y). The so­
lution of the problem will be obtained in the form of a double integral: 

(2.7) ( ) 1 If A(E, 1], T) dfd q>x,y,z,t = - 2n · r. s- fJ, 
a 

where the integration range CJ is bounded by the ellipse I given by Eqs. (2.3) and (2.4). 
Equations (2.3) and (2.4) are the equations of the ellipse which is given in the parametric 
form. In these equations the value r' is considered as a parameter. The ellipse I repre­
sents the projection of the line of intersection of the surface S with th~ plane W o·n the 
plane (x y). 
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3. The case when an acoustic field is instantaneously superimposed upon the plane 

In particular, assuming that the parameter. ex in the formula (2.7) is equal to n/2, we 
get the solution of the problem when an acoustic field, which is given by the potential 
tl>(x, y, z, t), is instantaneously superimposed upon the plane or an acoustic wave falls 
vertically upon the plane (for example, acoustic loads on the wing in subsonic flow). 
For ex = n /2 the integration range a is the circle with its center located at a point which 

is defined by the coordinates Xc = x+ut,yc = y and with the radius equal to y'c2 t2-z2. 

4. The case when an acoustic wave falls upon an immobile plane 

In particular, assuming that the parameter u in the formula (2. 7) is equal to 0, we get 
the solution of the problem if the plane is immobile (for example, sound stroke of super­
sonic aeroplane and its effect on ground). 

The solution of the problem will be obtained in the form 

(4.1) 
( ) 1 f f A*(~t' fJt' To) dt:. d q;x.,y.,zpt = -2n ro ~~ fJt, 

a 

1 

{To= t-c- 1r0 , r0 = [(x 1 -~ 1 ) 2 +(y1 -f} 1 )2 +z~]2}, 

where the integration range u is the ellipse given by the following equation: 

(sin2 ex)~I+f}~-2(x 1 +ctcosex)~1 -2y1 f} 1 +x~+yi+zi-c
2 t 2 = 0. 

The solution ( 4.1) is given in the fixed axes of coordinates 0 1 x 1 y 1 z 1 when the. plane 
(x1 y1 ) is combined with the plane upon which the acoustic wave falls; direct the axis 
0 1 x1 opposite to the direction of motion of the wave trail on the plane. We consider as 
the initial moment of time, t = 0, that moment of time when the trail of the incident wave 
on the plane (x~. y 1) coincides with the axis 0 1 y 1 • 

Jn the formula (4.1) the function A* = -t!>r:~(xt., y 1 , 0, t). The function <P*(x1 , 

y1 , zt, t) is an arbitrarily given velocity potential in the incident wave in the fixed axes 
of the coordinates 0 1 x1 y1 z~.. Using the Lagrange's integral for unsteady eddy-less 
flows of a gas and the solution ( 4.1 ), we shall find the pressure of an acoustic wave on the 
plane (x1. yt) in the form of the formula when z1 = 0 

(4.2) 
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(4.2) 
(C:ODt.) 

t.' 1-coscx ( ) 
~~ = . 2 x1 - et , 

SID « 
. I +cos ex 

E2 = . 2 (xt +et), 
SID « 
1 

'1~ = Yt- [(Ecoscx+et)2 -(x1 -~n2J2, 
1 

'12 = Yt + [(Ecoscx+et)2 -(x1 -E)2]2, 

where e density of the unperturbed gas. 
Assuming that the angle ex in the formula (4.2) is equal to n/2 we get the pressure of 

an acoustic field on the immobile plane (x1 y1) then the acoustic field is instantaneously 
superimposed upon the plane, in particular, when the wave falls vertically upon the plane. 

Considering the shock wave of a supersonic aeroplane as an acoustic wave, we can 
compute from the formula (4.2) the pressure on a ground and, therefore, we can obtain 
the intensity of sound stroke. 
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