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Propagation of generalized thermoelastic waves in cubic crystals

J. N. SHARMA (HAMIRPUR) and H. SINGH (CHANDIGARH)

THE PROPAGATION of plane harmonic waves in a thermally conducting cubic crystal has been
studied. Four waves are found to exist. It is found that in case of one-dimensional waves, the
transverse waves remain unaffected by thermal variations and vice-versa. Only longitudinal
waves and thermal waves are coupled. In the two-dimensional case, the only unaffected wave
due to thermal variation is the purely transverse (SH) wave and all other waves are dependent
on each other. The approximations for the phase velocities and attenuation coefficients are
obtained. The results obtained theoretically have been verified numerically for a single crystal
of NaF.

Zbadano propagacje ptaskiej fali harmonicznej w krysztale kubicznym przewodzacym cieplo.
Stwierdzono, ze w przypadku fal jedmowymiarowych fale poprzeczne sa niezakiocone przez
efekty cieplne; sprzgzone ze soba sa jedvnie fale podiuzne i termiczne. W przypadku dwuwy-
miarowym jedyna fala niezakldécong przez efekty cieplne jest czysto poprzeczna fala (SH),
a wszystkie pozostale fale sa ze soba sprzgzone. Wyznaczono przyblizone wartosci predkosci
fazowych i wspolczynnikow ttumienia. Wyniki teoretyczne zweryfikowano obliczeniami nume-
rycznymi dla monokrysztalu NaF.

HcenemoBano pacrnpocTpaHeHHe IJIOCKOH TapMOHHYECKOH BOJIHBI B TEILIONPOBOASALLEM Ky-
OMyecKoM KpHCTase. KoHCTaTHPOBaHO, YTO B CJIy4ae OJHOMEPHBIX BOJIH IIONEPEYHBIC BOJIHbI
HEBO3MYILEHbI TEPMHYECKUMH 3¢ deKTammn; conpsyKeHbl ¢ coDOi TOJIPKO IIPOJOJBHBIE H Tep-
MHYECKHe BOJIHbI. B JByMepHOM cilyuae eIMHCTBEHHOW HEBO3MYILEHHON TePMHUECKHMH d¢-
(pexTamMK BOJIHOM SIBJISIETCSI UMCTO IonepeuHast BoiHa SH, a Bce ocraibHbIE BOJIHBI CONpPs-
seHbl ¢ coboit. Onpeenens! npuOIMOKeHHbIe 3HaUeHHsT (Pa3oBbIX CKopocTei H Koadduumen-
TOB 3aTyXaHWsi. TeopeTHUecKHe pesybTaThl IPOBEPEHbI YHCIIEHHBIMH pacyeTaMy [UIA Ciydast
monokpuctana NaF.

1. Introduction

THE THEORY of elastic wave propagation in anisotropic solids is well known [1], CHADWICK
and SeeT [2], and CHADWICK [3] discussed propagation of plane harmonic waves in
transversely isotropic and homogeneous anisotropic heat conducting solids, respectively,
in the coupled theory of thermoelasticity. BANERJEE and PAO [4] and PAo and BANERIEE [5]
investigated the propagation of plane harmonic waves in homogeneous anisotropic solids
and dielectric crystals, respectively, by taking thermal relaxation times into consideration.

Recently, the generalized theory of thermoelasticity developed by LOorRD and SHULMAN [6]
has been extended to homogeneous anisotropic media by DHALIWAL and SHERIEF [7].
SINGH and SHARMA [8] discussed the propagation of generalized thermoelastic waves in
transversely isotropic media. SHARMA and SipHU [9), and SHARMA and SINGH [10] studied
the propagation of plane harmonic waves in homogeneous anisotropic solids in gener-
alized theory of thermoelasticity [7]. SHARMA and SINGH [11] discussed propagation of one-
dimensional generalized thermoelastic waves in crystals. The present article deals with
the propagation of generalized thermoelastic waves in cubic crystals. The theory of al-
gebraic functions is used to investigate the present problem.
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2. The problem and derivation of frequency equations

We consider an unbounded, homogeneous cubic crystal undergoing small temperature
variations. The displacement components u;, i = 1, 2, 3 and the small temperature de-
viation T from an equilibrium temperature T, are connected by the following differential
equations [7]

Crithy 11+ Caa(ty, 22+ 111 ,33) + (Cag + C12) (2,12 +U3,13)— BT, = oily,
Ci1ts, 22+ Caa(tiz,11+Us,33) + (Cas+ Cy2) (uy,12+ U3 ,23)— BT, = iz,
Cr1t3,33+ Caalttz 11 +13,22) + (Caa + Cro) (g 13+ 12.23)— BT .5 = oils,
KT ;= oClT+ 70 ) = ToBlin, i+ 7oiir.),  ij=1,2,3,

@.1)

where f = (C;,+2C,,)a, C;; are the isothermal elasticities (see [12]), o, C. and 7, are
the density, specific heat at constant strain, and thermal relaxation time, respectively,
K is the thermal conductivity, « — the linear thermal expansion coefficient of the crystal.
Comma notation is used for spatial derivatives and superposed dot represents differentia-
tion with respect to time. It can be proved [13] thermodynamically that K = 0, 7, = 0
and, of course, p > 0, T, > 0. We assume in addition that C, > 0 and that the isothermal
linear elasticities are components of a positive definite fourth-order tensor. The necessary
and sufficient conditions for the satisfaction of the latter requirement are

22 Ci1>0, C;>C;, C3>Ci, Ciu>0.
As we are considering plane harmonic waves, therefore we may take
2.3 u, = Ueexp{iw(v~'x,n,—1)}, T = Oexp{iv(@ 'x,n,—1)},

where w is the angular frequency (assumed to be real), » is the phase velocity (in general —
complex) of the waves, and the unit vector n = (n,, n,, n;) is the wave normal specifying
the direction of propagation of waves. Substituting from Egs. (2.3) in (2.1) and simplyfying.
we obtain the frequency equation

(I-CYni+C,—¢ Cynyn; Cynyny no |
@.4) Cynyn, (1=-CYn3+C, ¢ Cynyng n l
’ Cynyng Cynyng (1-Cn3+C, ¢ ) ’
etn, & e, ¢ etny & e k14
where

£ =0v3Cy, € = CufChs, Cy = (Caa+C12)/Ciys = wiw¥,
w* = C.Cy1/K, &= Tof*oC.Cyy, z=1iy, T=1—T1w*z

The determination Eq. (2.4) is of fourth degree in ¢ and hence has four roots. Thus, in general,
there are four waves, namely: a quasi-longitudinal, two quasi-transverse, and a quasi-
thermal wave (T-mode), which can propagate in these crystals. All the waves are coupled
with each other.
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3. Discussion of frequency equation

Case 1. Plane waves propagation along x,-axis

In this case the wave normal n = (1,0, 0). The secular equation (2.4) reduces to

(3.1 (Ci=0*=0
and

tl?—al—z=0,
where

a=(1+¢) t—z

The Eq. (3.1) corresponds to two purely transverse waves, which get decoupled from the rest
of the motion and vice-versa. These waves are not affected by thermal relaxation and prop-
agate without dispersion or damping with velocity (C,./0)!'?, independently of the ther-
modynamic conditions. The roots of equation (3.1), are given by

3.2) {1, 8o = [at (a®—4z7)') 2.

When w — 0, i.e. |z| = 0, the roots {;, — 1+¢ and {, — 0. Because at lowfrequency, the
conditions are isentropic, therefore {; corresponds to the longitudinal wave and £, cor-
responds to the thermal wave (T-mode). Thus the longitudinal waves in this limiting case

travel with isentropic velocity (Cy,/0)"/*. C;; = C;(1+¢) and the thermal wave does not
exist at all.
Again when w — o i.e., |z] = o0 the roots {, and £, reduce to
(3.3)  Ch tF = {1+ mow*+etow* £ [(1+ Tow*+ eTow*)2 —dTow*] 2} 275w
Now
(1 +7ow*+ eTow*)? —4row* = (1 —Tow*+e1ow*)? +4erow* > 0,

hence (%, {% are real. Thus there are two waves called longitudinal and thermal, correspond-
ing to % and (%, respectively, which travel with real velocities given by (C,, ¥/0)'/?,
i =1,2 and depend upon the thermal relaxation time.

In general, roots £,, &, given by (3.2) may be approximated as in [9].

1) Low-frequency approximations (y < 1)

& = l+e+ez/(1+e)+ez?(1—Tow*(1+6)?)/(1+ )3+ ...,

@4 L2 = 2/(1+ &)= (e + Tow) (1 +£2)22/(1+ )+ ..

and ii) High-frequency approximations (y > 1)

by =1+ez—e(l+6)2*+ ...,

3 b= —2"'4e—ez+ ...,
where

Z =f5—tow*, %=2z1
If we write

3.6) v~ =V 14+iwlg,
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where V and g are real, the exponents in the plane wave in Eq. (2.3) become
—gxn,+iw(V~x,n,—1t).
This shows that V is the speed of propagation and g is the attenuation coefficient of the
wave. Using Eq. (3.6), in Eq. (3.4) we obtain
G Vi=V*/Rifcos(d:/2), q = wsin(@/DV*V R, i=1,2,
where
R, = (A} +B)'/?, ¢, = tan~1(+|Bi/Ai]),
Ay = 1+e—e{l—zow*(1+)?} 2 /(1+¢)?, By = ex/(1+¢),
As = y2(e+1ow*(1+8)?)/(1+€)3, By = y/(1+¢), V* = (Cy/e)'>.
The signs+or—in ¢; may be taken according to whether x,n, > 0 or < 0. Now using
Eq. (3.6); in Eq. (3.5) we get
(3.7, Vi = ciynjcos(p/2),  q = wsin(w/D/cyr, i=1,2,
where
rp = (@+b)Y?, y, = tan~!(4 |bi/ai|),
a, = 1—ercosy—e(1+ &) r? cos(2y),
by, = —resiny—e(1+¢) risin(2y),
a, = —cosy/r+ ercosy—r?gcosy,
b, = siny/r+ ersiny—r?esin2y,
r= (24w 2,y =tan~(l/7ow), ¢ = (CiilF/0)'.

Clearly, as w — o0, i.e. |z] = 0, the roots {,, {, in (3.5) reduce to
ly = 1—erow*—e(l+6) Tgw*— ...

’

£ = (tow*) 1+ eterow*+ ...
Case II
We consider plane waves propagating in a principal plane perpendicular to the prin-

cipal direction (0, 1,0), i.e. the wave normal n = (n,,0, n;) with ni+n3 = 1. The
frequency equation (2.4) reduces to

(3.8), (¢,-0=0

and

(3.8); (I1=7ow*2) - (- A +2z(C— 1) (E-22) = 0,
where

(39 A, 2 = (ay2(ai—4ax)'1?))2, 2%, 23 = [4, + (4] -44,)'7))2,
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a = 1+C1, a, = C1(1+2Cl)+(l+C%—C%'"2C1) Sinzﬂcosz B,

(3.10) Ay = (148 (14C), . 4; = (1+6)*{Ci(1+2C) +(1+C,—C3-2Cy)
x sin?fcos?6,
C,=Ci/(1+8), C,= (C:+8)/(1+%)

and 0 is the inclination of the wave normal to the x;-axis. Equation (3.8); corresponds to
the purely transverse (SH) wave, which is not affected by thermal variations, and vice-
versa. This wave propagates without dispersion or damping, with speed (C,,/0)"/* and gets
decoupled — from the rest of the motion. Equation (3.8), being cubic in { give three
roots and, hence, yields three dispersive waves which are affected by thermal variations
and relaxation time. In case of w — 0 i.e. |z| - 0, Eq. (3.8), reduces to

@3.11) {C=-aD (-4 =0
whose roots are
(3.12) GL=A4Y, (=143 (3=0.

The first two roots correspond to the usual elastic waves at isentropic conditions, and the
third one — to the thermal mode. Thus at low frequency the elastic waves propagate with
real isentropic speeds (C,, Af/p)'/?, i = 1, 2 without dispersion, and the thermal wave
does not exist at all. Again, when w — oo i.e. |z| = o, Eq. (3.8), becomes

(3.13) M=) (C=A) = mow*({ = AN (L= 4;) = 0.

Its roots may be obtained as a special case from the high-frequency approximations given
in the following analysis. However, if 7, — 0, then (3.13) reduces to

(3.19) -2 (E-4)=0
whose roots are
(3.15 bi=4, =4, (3=

Velocities of the first two modes associated with have real values (C,, 4;/0)!/?. The third
mode (T) has infinite velocity of propagation and is thus diffusive in nature. Following the
approach presented by SHARMA and SIDHU [9], we obtain the following approximation
of the roots of equation (3.8), combined with Egs. (3.12) and (3.15) at low and high-fre-
quencies, respectively:

1) Low-frequency approximations (y < 1)

ma=wh+§fw&@¢
1

L@ = Y di(—2),
1

(3.16)

where the first coefficients in these series are given by
) = g(ANAf AN, di = g0)/f(0),

(3.17) c§? = {2 [8'(AF) — Tow*f" (A7) — O A (AN 21/f (2D,
dy = di[g'(0)—7ow*f"(0)—d, f"(0)/2]/f"(0),
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(3.13) fO =LC-(C-29), 80 =(C-1)(C-12y).

Dashes denote derivatives with respect to the argument. Using Eq. (3.6) in Egs. (3.16),
we obtain the values for ¥ and g for different modes

(.19) Vi=VIVRIcos(:/2), @ = wsin(¢./2)/VEV Ry,
where
R, = (A}+BH'Y?, ¢ =tan"'(+/BJA)), i=1,2,3,
(3:20) A= 1=cx% By =y, VF = (Cudflo)'P?
for elastic waves,
Ay = —y*dy, By=dyy, V3= (Cu/0)"?

for thermal wave.
The sign+or—in the determination of ¢; is taken according to whether x,n, > 0

or <0 in Eq. (3.6).
(ii) High-frequency approximations (y > 1)
(@) = a1+ e(-2y),
1
(3.21) R
L@ =Dz, 7@ =D d(-2),
0
where Z = 5— Tow* and the first two coefficients in these series are given by

ef? = Mg (), e = cPP[f' (2)— Aicfg" (A)/2)/g'(Ay),
2
G2 dy= -1, =D G-, d =208 hi
1

+d {2(AF +A3)— 41— A, +2d, }],

S() and g({) are defined by Eq. (3.18).
Using Eq. (3.6), we obtain

(3.23) Vi = al/rfcos(p/2), q = wsin(y,/Dfeyr, i=1,2,3,

where

(3.24) ro= (al +b})'2,  y, = tan~(+ |b/ay)),

(3.25) a; = 1—rcosyc®+r2cos2ycy’, by = —rsinpci”+r?sin2ypcy’,
cr = (Cyy 4if)'?

for elastic waves,

as = —cos(y)/r+rdycosy+r2d,cos2y,
(3.26) by = sin(y)/r+rd; siny+ r2d,sin 2y,

C3 = (Cu/Q)”z

It
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for thermal waves,
(3.27) r= (g 2+ w2, = tan"1(1/1ow).
The + or —signs in the determination of v; are to be taken according to whether x,n, > 0

or < 0. The approximate values of the roots of Eq. (3.13) can be obtained from Eq. (3.21)
on letting ¥ — co. We obtain

o= L1+ rowrce+dw*eP+ ], i=1,2,
(3 = (vow¥) 1+d, —dy tow* + ...
The real values of propagation speeds follow from the above expansions directly. We get
Vi = e, {l+tow*c?+ tdw*3cP+ ...} for elastic waves,
Vi = c3{(row*) ' +d;— tow*d,+ ....} for thermal wave.
This last result shows that the 7-mode has now a finite velocity of propagation, whereas
in the coupled thermoelasticity (7, — 0) this mode is evidently diffusive.

4. Numerical results and discussions

Numerical calculations have been done for the assigned frequency waves in a single
crystal of NaF, the basic physical data for which are T, = 17.3°K, C;; = 10.85x 10!
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FIG. 1a. Variation of the phase velecity of the QL-wave in NaF-crystal with frequency and direction of
propagation.
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FiG. 1b. Variation of the attenuation coefficient of QL-wave in NaF-crystal with frequency and direction
of propagation.
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F1G, 2a. Variation of the phase velocity of the QT-wave in NaF crystal with frequency and direction of
propagation.
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FIG. 2b. Variation of the attenuation coefficient of QT-wave in NaF crystal with frequency and direction
of propagation.
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FiG. 3a. Variation of the phase velocity of the T-mode in NaF crystal with frequency and direction of
propagation.
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FIG. 3b. Variation of the attenuation coefficient of T-mode in NaF-crystal with frequency and direction
of propagation.

dyne/cm?, C,, = 2.29 x 19'! dyne/cm?, C,4 = 2.899x 10'* dyne/cm?, g = 2.851 g/cm?,
0C. = 1.195x 10° ergs/cm?, « = 8.5x 10~7/°K. B = 235 watt/cm°K, 7, = 5.6 x 10714 s.
The velocities of various waves corresponding to Egs. (3.12), (3.15), (3.19) and (3.24)
have been computed for various directions of propagations. The variations of velocity
ratios for elastic waves have been plotted on log-linear scales in Figs. 1 and 2 for various
directions of propagation with respect to reduced frequency y. The phase velocity ¥,
of thermal wave is represented in Fig. 3a. The attenuation coefficients ¢,, ¢, and g; of
elastic and thermal waves have also been computed and plotted in Figs. 1b, 2b and 3b,
respectively. It is observed that the velocity ratios and attenuation coefficients of clastic
waves increase from their isentropic values for 0 < y < 3, and then decrease to become
closer to the isothermal values for 0.3 < y < 1.0, and remain constant afterwards. The
phase velocity and attenuation coefficient of the thermal wave are found to be weakly
dependent upon the directional variations. The waves propagating in the neighbourhood
of the direction making an angle of 7z/6 with the x;-axis are less affected than those prop-
agating in other directions. The longitudinal elastic waves are subjected to strong modifi-
cations as compared to transverse elastic waves.
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5. Conclusions

In general, there are four waves: quasi-longitudinal, two quasi-transverse, and quasi-
thermal wave, which can propagate in a cubic crystal. When plane waves are propagating
along the axis of cubic crystal, then only longitudinal wave and thermal wave are coupled,
whereas the transverse waves get decoupled from the rest of the motion components and
hence, remain purely transverse waves. The coupled waves are dispersive in character and
their velocities depend upon the thermal relaxation time. For plane waves propagating
in one of the plane of the crystal, only SH-wave remains purely transverse and get de-
coupled from the rest of the motion, and vice-versa. The other three waves, namely:
quasi-longitudinal (QL), quasi-transverse (QT), and quasi-thermal (T-mode) are coupled
and, hence, depend upon thermal variations and relaxation time. These are dispersive in
character. Numerical results reveal that the thermal waves are weakly dependent on dir-
ectional variations, and the elastic waves travelling along the direction making an angle
of /6 with x,-axis are less affected than those propagating in other direction in a NaF
crystal.

Acknowledgement

The authors are thankful to the referee of the Arch. Mech. for his useful suggestions.

References

1. E. DIeULESAINT, D. ROYER, Elastic waves in solids, John Wiley and Sons, 1980, p. 195.

2. P. Caapwick, L. T. C. Seet, Wave propagation in transversely isotropic heat conducting elastic material,
Mathematica, 17, 255-274, 1970.

3. P. CHADWICK, Basic properties of plane harmonic waves in a prestressed heat-conducting elastic material,
J. Thermal Stresses, 2, 193-214, 1979,

4. D. K. Banerieeg, Y. H. Pao, Thermoelastic waves in anisotropic solids, J. Acoust. Soc. Am., 56,
14441453, 1974.

5. Y. H. Pao, D. K. BANERIEE, Thermal pulses in dielectric crystals, Lett. Appl. Engng. Sci., 1, 33-41, 1973.

6. H. W. Lorp, Y. SHULMAN, The generalised dynamical theory of thermoelasticity, J. Mech. Phys. Solids,
15, 299-309, 1967.

7. R.S. DHALIWAL, H. H. SHERIEF, Generalized thermoelasticity for anisotropic media, Quart. Appl. Math.,
38, 1-8, 1980.

8. H. SinGH, J. N. SHARMA, Generalized thermoelastic waves in transversely isotropic media, J. Acoust.
Soc. Am., 77, 1046-1053, 1985.

9. J. N. SHARMA, R.S. SIDHU, On the propagation of plane harmonic waves in anisotropic generalized
thermoelasticity, Int. J. Engng. Sci., 24, 1511-1516, 1986.

10. J. N. SHARMA, H. SINGH, Generalized thermoelastic waves in anisotropic media, J. Acoust. Soc. Am.,
85, 1407-1413, 1989.



30 J. N. SHARMA AND H. SINGH

11. J. N. SHARMA, H. SINGH, Generalized thermoelastic waves in crystals, Proc. Indian Natn. Sci. Acad.,
53, A. 84-90, 1987.

12. R. S. DHALIWAL, A. SINGH, Dynamic coupled thermoelasticity, Hindu Publ. Corpn., 1980, p. 523.

13. L. D. Lanpau, E. M. LirsHitz, Theory of elasticity, Pergamon Press V-7, 1984,

DEPARTMENT OF MATHEMATICS

REGIONAL ENGINEERING COLLEGE, HAMIRPUR
and

DEPARTMENT OF MATHEMATICS

PANJAB UNIVERSITY, CHANDIGARH, INDIA.

Received August 12, 1988; new version July 25, 1989.





