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Selfgravitational instability analysis of a gas core liquid jet
by using energy principle

A.E. RADWAN (CAIRO)

THE STABILITY of a self-gravitating gas jet surrounded by a self-gravitating liquid is discussed
analytically, and the results are confirmed numerically. A general eigenvalue problem describing
the characteristics of the gas-core liquid jet, based on the linear perturbation techniques, is
derived by employing the energy principle. It is found that the fluids densities ratio 5 plays an
important role in (de-)stabilizing of the present model. If 0 < § < 1 (S = s,/s,, where s,
is the liquid density and s, is the gas density), the model is unstable for certain values of the
longitudinal wavenumber x (mainly 0 < x < 1.0668), and stable for other values of x. However
with increasing values of S (provided 0 < § < 1), the instability domain decreases but never
vanishes. As § > 1, unexpected results have been obtained: the model is gravitationally unstable
not only for long wavelengths but also for very short wavelengths. These analytical results are
interpreted physically and confirmed numerically, and the disturbance wave-numbers at which

stability as well as instability occurs are tabulated. For .S = 0 the results known from literature
are obtained.

Problem stateczno$ci grawitacyjnej strumienia gazu otoczonego ciecza przedyskutowano meto-
dami analitycznymi, a uzyskane wyniki potwierdzono obliczeniami numerycznymi. Problem
wartosci wlasnych opisujacy zachowanie si¢ strumienia cieczy z rdzeniem gazowym sformulo-
wano postugujac si¢ metodami perturbacji liniowych z wykorzystaniem zasad energetycznych.
Stwierdzono, ze stosunek gestosci plynow S spetnia istotng role w (de-) stabilizacji omawianego
modelu. Jesli 0 < § < 1 (S = s,/s,, gdzie s, jest gestoécia cieczy, a s; — gazu), model staje si¢
niestateczny dla pewnych wartosci liczby falowej x (przewaznie dla 0 < x < 1.0668). Jednak
przy wzrastajacych wartosciach S (jesli tylko 0 < § < 1) obszar niestateczno$ci szybko maleje,
cho¢ nigdy nie znika. Przy § > 1 otrzymano niespodziewany wniosek, ze model staje si¢ grawi-
tacyjnie niestateczny nawet dla fal bardzo krétkich. Wyniki analityczne poparto analiza fizyczng
i numeryczng zjawiska i stabelaryzowano wartosci parametrow fal w chwili utraty statecznosci.
W przypadku S = 0 uzyskano potwierdzenie wynikéw znanych z literatury.

IlpoGnema rpaBHTAIIHOHHONH YCTOHUNBOCTH IIOTOKA 433, OKPY)KEHHOTO YKHIKOCTBIO, 00CYH-
OeHa aHATHTHYCCKHMHM METONAMHM, a IOJYYEHHbIE Pe3yNbTaThl MOATBEPMKIEHBI UMCICHHBIMK
pacyeramu. 3afaya Ha COGCTBEHHBIE 3HAUEHHS, OMUCHIBAIONIAA TIOBEIEHHE MOTOKA YKMIKOCTH
C rasoBbIM CEepHACYHHKOM, ChOPMYyIHpOBaHA, NMOCIY)KHBasCh METOAAMH JIMHEHHBIX IIEPTYpP-
Oaruii, ONMpasch Ha 3HEPreTHYECKHE TPHHIMITBI. KOHCTaTHPOBAaHO, YTO OTHOLUEHHE ILIOT-
HOCTH >XMIKOCTEH § HMIpaeT CYIIECTBEHHYIO poib B (He-)cTabuiamsanuun oOCy»aaeMoH Mo-
menut. Ecmn 0 < S < 1(S = 52/5,, rlie S — IUIOTHOCTh YKHAKOCTH, §; — IUIOTHOCTB I'a3a),
MOJIeNb CTAHOBHTCS HEYCTOWYHMBON JUIA HEKOTOPOro 3HAUEHMA BOJIHOBOTo uHcia x (B Goib-
mMHCTBE cotydyaeB JiuA 0 < x < 1,0668). Oanako npy BO3PACTAIOLIMX 3HAYeHHAX S (ecam
Tonbko 0 < § < 1) 0bnacTh HeyCTOIHUMBOCTH OBICTPO YOBIBAeT, XOTSA HMKOPJA HEHMCUe3aeT.
IIpu S > 1 nonydeHo HeOKMAAHHOE CIEACTBHE, UTO MOJENb CTAHOBHICS TIPAaBHTALMOHHO
HeyCToHUMBOM Jayke JyIa OYeHb KOPOTKHMX BOJH. AHAIHMTHYECKHE DPE3YJBTAThI MOAKPEIIEHEI
(H3NUECKUM M YHCIIEHHBIM aHAJH30M ABJICHHMA M TabyIMpoBaHbLI 3HAUYEHMSI IAPAaMETPOB BOJIH
B MOMEHT IOTEPH YCTOHUYMBOCTH. B ciyuae § = 0 mosyueHO MOATBEPHK/EHHE De3yILbTaToB,
M3BECTHBIX M3 JIHTEPATYphbI.

1. Introduction

THE STABILITY of a full liquid jet has been studied since a long time ago, owing to its im-
portant applications in several domains of physics. It was PLATEAU [1] who for the first
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time obtained the critical capillary wavelength, both experimentally and theoretically.
RAYLEIGH [2] derived the dispersion relation and developed the important concept of
maximum mode of instability based on the linear theory. By extending Rayleigh’s theory,
WEBER [3] studied the capillary instability of a viscous liquid jet. These and other exten-
sions were summarized by RAYLEIGH [4]; see also CHANDRASEKHAR [5].

The effect of nonlinearities on the capillary instability of a full liquid jet was considered
by YUEN [6], WANG [7], NAYFEH [8], NAYFEH and HassaN [9] and a complete analysis
was given by KAKUTANI et al. [10].

The response of a self-gravitating incompressible cylinder to small axisymmetric
disturbance was investigated by CHANDRASEKHAR and FErMI [11] by means of the energy
principle. Soon afterwards, OGANESIAN [12] was the first to perform a detailed normal
mode analysis for both axisymmetric and non-axisymmetric perturbations; see also
CHANDRASEKHAR [5] (p. 516). Their pioneering analysis demonstrated that for dimension-
less wavenumbers x which are less than the cut-off wavenumber x, = 1.0668, the rota-
tionally axisymmetric perturbations render the configuration gravitationally unstable,
thus leading to the break-up of the fluid jet. This problem is of considerable interest in
describing the appearance of condensation within celestial bodies. The effect of finite
amplitude disturbances in a self-gravitating medium (fluid column) was first examined by
TassouL and AUBIN [13], see also MALIK and SINGH [14]. The latter authors, moreover,
investigated the modulation instability in a self-gravitating fluid column [15], and later on
its nonlinear break-up [16].

The problem of stability of an annular liquid jet is also attractive owing to its impor-
tant applications in physics. The capillary instability of an annular liquid jet (a liquid
jet having a gas-core jet) has recently been investigated experimentally by KeNDALL [17].
The last author explained clearly the importance and possible applications of the annular
jetin astronomy. Moreover, he [17] drew the attention to the problem of stability and stud-
ied of that model analytically. The capillary instability of a gas jet surrounded by liquid
(such that the liquid inertia force is greater than that of the gas) subject to different forces has
recently been investigated [18, 19]. Indeed, the principle and basic physics of the new
type of liquid-in-air jet are described by HERTZ and HERMANRUD [20]. The capillary insta-
bility of a liquid jet with a thin shell is studied by PETRYANov and SHUTOV [21], see also
SHuTOV [22]. More recently MAYER and WEIHS [23] developed an analytical investigation
of the stability of an annular jet moving in an inviscid medium.

The main purpose of the present work is to investigate the self-gravitating instability
of a gas-core liquid jet by employing the energy principle. The present results reduce to
those of refs. [11, 12], if the inertia force of the gas is assumed to be greater than that of the
liquid.

2. Formulation and eigenvalue relation

We shall consider an inviscid, incompressible self-gravitating gas-core liquid jet (with
a gas jet of radius R and density s, and the liquid jet density s,). The model is acted on by
the gas inertia force, liquid inertia force and the variable gravitating force corresponding
to each fluid.
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To carry out the present theoretical approach based on the energy principle, one has
to compute the change in the total kinetic energy E and that of the gravitational potential
0 in order to write down the Lagrangian function L. It may be noted that the Lagrangian
function L is constructed as

2.1 L=E-Q

and the equation of motion is

2.2 d ( aL ) oL

dt\9g | oe
where ¢ is the Lagrangian variable and the dot over ¢ means the derivative of ¢ with res-
pect to time. In a cylindrical coordinate (r, ¢, z) system (with the z-axis coinciding with

the axis of the annular liquid jet), the deformation of the (gas-liquid) interface can be describ-
ed by

2.3) r = R+ eRcos(kz+me).

The second term of the right-hand side of equation (2.3) is the distortion of the surface wave
normalized with respect to R and measured from the unperturbed level, where k (any real
number) is the longitudinal wavenumber, m (an integer) is the azimuthal wavenumber
and & is the deformation amplitude at time ¢

=0,

2.49) e = goexp(nt).

Here ¢, is the initial amplitude and » is the growth rate of the perturbation; if # is imag-
inary, n = iw, then @/2x is the oscillation frequency.
The basic equations which govern the gravitational potentials ¥, and ¥V, are

(2.5) ViV, = 4nGs;, j=1,2,

where G is the gravitational constant; from now on the quantities with subscript 1 mark
the variables of the gas-core jet and those with 2 characterize the variables of the liquid.
Solution of these equations referred to the deformed interface (2.3) is

(2.6) Vi = —nGs,r*+ e A, I,(kr)cos(kz+ me),
Q.7 Vy = —nGs,r* +2nGR?*(sy —s,)In % + e A, K, (kr)cos (kz+mg),

where I,, and K, are, respectively, the modified first and second kind Bessel functions of
order m; A, and A4, are arbitrary constants. 4, and 4, are determined from the condition
that the gravitational potential (under a suitably selected reference frame), and its deriv-
atives are continuous at the interface (2.3);

(2.8) A, = 4nG(s; —s,) R2K,,(kR)
and
2.9 A, = 4nG(s;—5;) R*1(kR).

It is worth noting that the solution obtained here for ¥, and ¥V, reduces to that of ref-
erence [11] if we put s, = 0 and m = 0.

3 Arch. Mech. Stos. 1/90
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Now suppose that the amplitude of deformation ¢ is increased by de¢; then, due to this
infinitesimal increment in the amplitude of deformation, the change 4£2 in the gravitational
potential energy can be determined by evaluating the work done during the displacement
of the matter required to produce the change in ¢. To evaluate this work it is necessary to
specify quantitatively the redistribution which does take place.

Arbitrary deformation of an incompressible fluid can be thought of as resulting from
the Lagrangian displacement §; (j = 1 and 2) applied to each point of the fluids. Follow-
ing Kendall, we assume that the perturbed motion is irrotational; this is the result of the
irrotational motion of an inviscid fluid, see DRAZIN and REID [24]. Therefore, the Lagrang-
ian displacements of the gas and liquid can be expressed as

(2.10) g, = gradg,, j=1,2.
From Eq. (2.10) and the incompressibility condition it follows that the displacement
potentials ¢; satisfy Laplace’s equation

(2.11) Vi, =0, j=1,2.

In view of equation (2.3), equation (2.11) takes the form of an ordinary differential equation,
its solution being given in terms of Bessel functions of purely imaginary arguments. There-
fore the non-singular solutions of ¢; under the present circumstances must be

(2.12) ¢y = By L(kr)cos(kz+mp),
(2.13) ¢, = B, K, (kr)cos(kz+mep).

The constants B, and B, are determined by applying the condition that the radial compo-
nents of &; are equal and reduce to Rcos(kz+mg) at r = R;

(2.14) B, = R/(kI,(kR)) and B, = R/(k K.(kR)).
Hence '

(2.15) & = (eR/k (In(kR))) grad((Iu(kr)cos/(kz+mgp)),

(2.16) €, = (eR/(k(Kn(kR))) grad(Kn(kr) cos(kz+mgp))

and therefore the corresponding displacements d&;, which must be applied to each point
of the fluids in order to increase the amplitude of deformation by de, are given by

Q.17) 08, = (Rée/(kI(kR))) grad (I,.(kr)cos (kz+mgp)),
(2.18) 88, = (Roe/ (kKn(kR))) grad(K,(kr)cos (kz+mg)).

Now, due to that additional deformation de, the change in the total gravitational potential
energies 4£2; (per unit length) can be obtained by integrating the work done by the displace-
ments 6§; in the gravitational potentials V.

Thus for the gas-core jet we have

R(1 + ecos(kz + my))

(2.19) 82, = 2ms,({ 0} (8, - grad V,)rdr))
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where the angular brackets signify that the quantity enclosed should be averaged over ¢
and z. Combining equations (2.6), (2.8), (2.17) and (2.19), we find

(2.20) 002, = 2e8en>GR*sy [s, —2(sy — 53) (Kn(kR)/ (kRI,(KR)) (3],
where y = kr and
kR

I = [ 1@+ A +m2y=2 2 ydy.
0

Using the identity (which follows from Bessel’s equations)

@21) A (YOICH0)) = YN+ (1 +mPy DGO

where Q,, stands for the modified Bessel functions I,, and K,,; hence equation (2.20) yields
(2.22) 802, = 472Gs, R*[4s, — (5, —53) I,(kR) K,,(kR)].

By integrating equation (2.22) from zero to ¢ we get

(2.23) 02, = —272Gs, R*[(s; —82) I,(kR) K,,(kR)— 1 5,]¢2.

In a similar manner, the change in the total gravitational potentional energy £2, of the
liquid (per unmit length) is obtained,

2.29) 2, = 27%Gsy R*[(sy — 52) In(kR) K,,(kR) — } 5,]€2.

Henceforth the change in the total gravitational potential energy (per unit length) of the
gas-core liquid jet is given by

(2.25) 2=0,+82,
= —272Gsy (51— 82) R*[(51 = 52) Ln(KR)K, (K R) — % 5] €.

Now we have to evaluate the change in the total kinetic energy of the gas-core liquid jet.
Since the Lagrangian coordinate ¢ is a function of time, each element of the fluids will
move. This can be derived from the Lagrangian displacements

w = gg/or, j=1,2,

so that the velocity vectors of the gas-core and liquid jet, respectively, are

(2.26) = (R/(KI(kR) )) grad (Z,,(kr)cos(kz + mg))
and
(2.27) u, = (R/ (kK (kR) )) grad (K, (kr)cos(kz+m)).

The change in the total kinetic energy E, (per unit length) of the gas-core jet associated
with the motions specified by (2.26) is

27 kz=2n R

1 dk
Q2% E =3slf f fufrdr—zguzidcp

o 0 0

2
= ns1R2/(2k2I'2(kR))( ) In(y) = sy R* (I, (kR)/(2kI,’,,(kR))( )
where the identity (2.21) has been used.

3
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In a similar way the change in the total kinetic energy E, (per unit length) of the lig-
uid associated with the motions specified by (2.27) is obtained and given by

2
(2.29) E, = —as, RJ(K,,,(kR)/(2kK§,(kR))) (%) :
Therefore the change in the total kinetic energy E of the gas-core liquid jet is
ds \’ ,
(230) E=E+E, = (aR’/(Zk))(d—f) [(51 Ln(kR) /(K R)) — (51 KK R)/ K (K R))].

By applying relations (2.30), (2.25) and (2.1), Eq. (2.2) is transformed into the equation
of motion for ¢ and, hence, the use of Eq. (2.4) yields the following relation:

(2.31) n* = 4nG[(sy —52)* In(x) Kn(x) =} 51 (51 —52)]N(x),
where
(2.31) Nu(%) = (XIn(%) Kn(%))/ [81 In(%) Kip(X) = 52 T () K (X)]

and where x(= kR) is the longitudinal dimensionless wavenumber.

3. Discussions of the results

Equation (2.31) is the eigenvalue relation of a gravitating liquid having a gravitating
gas-core jet. By means of this relation the characteristics of the present model can be de-
termined: one can identify the regions of instability (in particular their critical wavenum-
bers, maximum growth rate values and the corresponding wavenumbers) and those of
stability as well.

The eigenvalue relation (2.31) ralates the growth rate n (or rather the oscillation fre-

quency w) with the densities s; and s, of the two fluids, the value of (4:165,)‘}f as unit
of time, the characteristic length R, the azimuthal and dimensionless longitudinal wave-
numbers m, x, and the cylindrical functions appropriate to the problem at hand.

Since this problem is somewhat more general, one can recover other dispersion relations
as limiting cases from the present relation (2.31) with suitable assumptions.

If we assume s, = 0, Eq. (2.31) gives

(3.1 n? = 470G sy [XIn (%) In(¥)] (In(x) Kn(x)— ).
The dispersion relation (3.1) was established by OGANESIAN [12], see also reference [11]

as m=0.
If we set s, = 0 and at the same time m = 0; Eq. (2.31) reduces (since Iy = I,) to

3.2 n* = 4nGsy(xI;(x)/Io(x)) (To(x) Ko(x)—1).

Equation (3.2) is the dispersion relation of a gravitating full fluid cylinder in vacuum for
the rotationally axisymmetric perturbations m = 0 (nowadays this kind of perturbations
is called “sausage mode”). It was CHANDRASEKHAR and FErmI [11] who first derived that
relation by means of the energy principle. For the stability discussions of Egs. (3.1) and
(3.2) we may refer to OGANESIAN [12].
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If we impose s, = 0, Eq. (2.31) yields
(3.3) n? = 4nGs, (— xIy(x)Kn(x)).

This is the eigenvalue relation of a hollow jet (i.e. a liquid jet having a vacuum-core cylin-
der which is a mirror case of the full liquid jet) subjected to the gravitation force. One can
show (see the recurrence relation (3.6)) that the right-hand side of Eq. (3.3) is always posi-
tive for each non-zero real value of x. This means that the gravitating hollow jet model,
if it exists, is unstable for all (axisymmetric m = 0 and non-axisymmetric m > 1) modes
of perturbation.

Now, for investigating the (in-)stability of the present model, it is convenient to rewrite
the eigenvalue relation (2.31) in a dimensionless form,

(3.9), n*[4xGs; = (1= S)[(1—S)1,(x) Ku(x)— 1] Fu(x),
where S and F,,(x) are defined as

(3.4): Fu(x) = [x5,(x) K ()] (Fn(x) K (%) = S T (%) Kin() )~
and

(3.4); S = s,/8.

This eigenvalue relation is valid for all modes of perturbations: sausage mode m = 0 and
non-axisymmetric modes m = 1.
Consider now the recurrence relations (see ABRAMOWITZ and STEGUN [25])

(35) 2Ir:|(x) = m—l(x)+lm+1(x)’
(3.6) 2Ku(x) = — K1 (%) — Kpps1 (%)

It is known that 7,,(x) is always positive and monotonic increasing and that K,,(x) is monot-
onic decreasing but never negative for each non-zero real value of x; hence one can ob-
serve that /,(x) is positive while K,(x) is always negative. On the basis of these arguments,
one can show that

3.7 F,(x) >0
for each non-zero real value of x, all S values and all modes of perturbations m > 0;
and that F,,(x) never changes its sign. Now we have to distinguish between the two differ-

ent kinds of perturbations: the sausage mode m = 0 and the non-axisymmetric modes
m2> 1.

3.1. Non-axisymmetric perturbations m > 1
It is worthwhile to mention here that, due the properties of the modified Bessel functions

(3.8) I(x) K,(x) < %, forall m21

and is never negative.

Now to find out whether the problem at hand is gravitationally stable or not we should
consider the different cases when S is greater than, equal to, and less than unity, the ine-
quality (3.7) being taken into account.
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If S > 1, Eq. (3.4); shows that the dimensionless growth rate n/(4nGs1)% is real. This
means that a liquid having a gas-core jet is gravitationally unstable in the non-axisymmetric
modes m > 1 if the liquid is more dense than the gas-core jet.

If § = 1, Eq. (3.4), shows that the growth rate is zero. This means that we have neutral
stability and there is no dispersion. This is intuitively clear since in such a case we have
a gravitational homogeneous medium of uniform density.

If 0 < S <1, Eq. (3.4), shows (taking into account Eq. (3.8)) that n/(4ast1)% is
purely imaginary. This means that the model is gravitationally stable in the non-axisymmet-
ric modes m > 1 as long as the gas-core jet is more dense than the liquid.

Let us mention here (as a special case) that if S = 0, Eq. (3.4), shows that the model
is stable for all purely-axisymmetric perturbations m > 1. This coincides with the pre-
viously reported results (see OGANESIAN [12] and also CHANDRASEKHAR and Ferwmr [11]).

3.2. Sausage perturbations m = 0

For such a case the inequality (3.8) does not hold for all x. Equations (3.4), and (3.4),
yield (since Iy(x) = I,(x) and Ky(x) = —K,(x))

(3.9, n*[4nGsy = (1-S8)[(1—8)Io(x) Ko(x) — 4] Fo(x)
and
(3.9); Fo(x) = [xL,(x) K ()] (To(x) Ky (%) + STy (x) Ko(x)) 7.

In a similar manner as for the non-axisymmetric modes m > 1, Eq. (3.9), has been
studied analytically and the obtained results are exactly the same as those of the non-
axisymmetric perturbations. In order to be sure about the correctness of these results
(since for m = 0, the inequality (3.8) does not hold for all x), the dispersion relation (3.9),
has been studied numerically by computer simulation and then the numerical results are
illustrated in Figs. (1-3). It is seen, what confirms the analytical results, that the values of

the dimensionless growth rate n/(4nGs1)% and those of the critical wavenumber x decrease
n
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with increasing density ratio 0 < S < 1. For § equal to 0, 0.2, 0.3, 0.5, 0.7, 0.8 and 0.9

we get 0.2455, 0.1650, 0.1289, 0.06614, 0.0196, 0.0056 and 0.0002 for n/(4nGs1)% at x =
= 0.580, 0.469, 0.411, 0.282, 0.133, 0.057 and 0.005, respectively; and the corresponding
values of the critical wavenumbers x are 1.066, 0.847, 0.732, 0.489, 0.223, 0.093 and 0.007,
respectively. Indeed, this indicates how fast the domain of instability shrinks with increasing
values of S (0 € S < 1). In the case when the model is subjected to the gas and liquid
inertia forces and acted upon by pressure, RADWAN [19] and experimentally KENDALL [17]
proved that the model is stable in the sausage mode m = 0 with wavelength longer than
the circumference of the gas-core jet and is also stable in the nonaxisymmetric modes
m > 1 for all wavelengths. It could be expected that the model is stable as S is greater than
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unity. But it is found that the model is absolutely unstable for S greater than unity (see
also the numerical results for § = 1.1, 1.3, 1.5, 2.0, and 3.0) not only for very long wave-
lengths but also for short wavelengths. This maybe is logical, since in such a case the liquid
is much more dense than the gas and the acting force is self-gravitational; and it is known
that the gravitational force is a long range force in contrast to the capillary force.

4, Conclusions

The (in-)stability of a self-gravitating gas cylinder surrounded by a self-gravitating
liquid is investigated on the basis of the energy principle. It is found that the densities of
the liquid to the gas ratio S plays an essential role in identifying the (in-)stability features
or the gas-core liquid cylinder. That is true not only for the symmetric mode m = 0 but
also for asymmetric modes m # 0.

i) When the gas cylinder is more dense than the surrounding liquid, the model is
unstable if 257,(x)K,(x) is greater than unity (and vice versa).

ii) When the density of the gas cylinder is equal to the density of the surrounding
liquid, the model is stable. Note also that in the case if S < 1 and simultaneously
SIn(x)Kn(x) = 1/2 in all modes m > 0 of perturbations for all wavelengths,

iii) When the gas cylinder is less dense than surrounding liquid, it is found that the
gas-core liquid cylinder is unstable in all symmetric and asymmetric modes. This instability
is true not only for long wavelengths but also for short wavelengths, what is surprising.
However, it has a good interpretation in the process of destruction of interstellar clouds
and also in the break-up or spiral arms of galaxies (cf. reg. [11]). These analytical results
are confirmed numerically, see Figs. 1-3.

References

1. J. PLATEAU, Statique experimental et theorique des liquides soumis aux seules forces moleculaires,
Gauthier-Villars, vols. 1 and 2.

. J. W. RAYLEIGH, Proc. Lond. Math. Soc., 10, 4, 1878.

. C. WEBER, Z. Angew. Math. Mech., 11, 136, 1931.

J. W. RAYLEIGH, The theory of sound, Dover Publ.,, New York 1945,

. S. CHANDRASEKHAR, Hydrodynamic and hydromagnetic stability, Dover Publ., New York 1961.

M. YueN, J. Fluid Mech., 33, 151, 1968.

D. WaNG, J. Fluid Mech., 34, 299, 1968.

A. Navren, Phys. Fluids, 13, 841, 1970.

9. A. NavreH and S. Hassan, J. Fluid Mech., 48, 63, 1971.

10. T. KaxkuTtant, Y. Inoue and T. KaN, J. Phys. Soc. Japan, 37, 529, 1974,

11. S. CHANDRASEKHAR and E. Fermi, Astrophys. J., 118, 116, 1953.

12. R. OGANEsIAN, Z. Astronom., 33, 928, 1956.

13. J. TassouL and G. Ausin, J. Math. Anal. Appl., 45, 116, 1974.

14. S. MaLik and M. SINGH, Astrophys. and Space Sci., 66, 133, 1979.

15. S. MaLik and M. SINGH, Astrophys. J., 238, 326, 1980.

16. S. MaLik, M. SINGH and W. WEeLsH, J. Math Anal. Appl., 89, 370, 1982.

®NA AW



SELFGRAVITATIONAL INSTABILITY ANALYSIS OF A GAS CORE LIQUID JET 41

17. J. KenpaALr, Phys. Fluid, 29, 2086, 1986.

18. A. RapwaN and S. ELazas, Simon Stiven, 61, 293, 1987,

19. A. RADWAN, J. Magnetism and Magnetic Materials, 72, 219, 1988.

20. C. H. Hertz and HERMARUD, J. Fluid Mech., 131, 271, 1983.

21. V. PetrYANov and A. A. SHutov, Sov. Phys. Dokl. (USA), 29, 278, 1984.

22. A. A. SHurtov, Fluid Dynamic (USA), 20, 497, 1985.

23. J. Meyer and D. Weins, J. Fluid Mech., 179, 531, 1987.

24. P. DraziN and W. REID, Hydrodynamic stability, Cambridge Univ. Press, Cambridge, p. 16, 1981.

25. M. ABramMowitz and I. STEGUN, Handbook of mathematical functions, Dover Publ., New York, p. 376,
1965.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES
FACULTY OF SCIENCES
AIN-SHAMS UNIVERSITY, ABBASSIA, CAIRO, EGYPT.

Received April 22, 1989.





