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Hydromagnetic flow of a viscoelastic fluid
through a porous medium bounded by a vertical porous plate

M. K. ABDEL-HADY and K. A. KAMEL (CAIRO)

A STUDY IS CARRIED out for a hydromagnetic flow with heat transfer of an electrically-conducting
incompressible viscoelastic fluid through a porous medium bounded by a vertical porous plate.
Analytical expressions for the velocity and temperature fields are obtained. The effect of the
magnetic field, Prandtl number, Grashof number, viscoelastic parameter and suction parameter
on the flow characteristics have been studied.

Przeanalizowano przeplyw hydromagnetyczny z wymiang ciepla dla ptynu niescisliwego lepko-
sprezystego i przewodzacego prad w osrodku porowatym ograniczonym plytka porowaty.
Otrzymano analityczna posta¢ rozwiazania dla pol predkosci i temperatury. Rozwazono wplyw
pola magnetycznego, liczby Prandtla i Grashofa i charakterystyk lepkosprezystosci i ssania na
przebieg przepltywu.

IIpoaHanu3upoBaHO THAPOMATHUTHOE TEUEHHE C TeIUIOOOMEHOM IJIA HEC)KUMAEMOM, BASKO-
YIpYroii, NpoBoJsllleH YMAKOCTH B INOPHUCTOH cCpejie, OrPaHMYEHHOH IOPHCTOM IUIMTKOI.
TlonyyeH aHaMMTHYeCKUN BUI PeLUeHHs JUIA rojiell CKOPOCTH H Temmepatypbl. Paccmorpeno
BJIMSIHME MArHnTHOrO moiisi, yncna ITpanarna u Ipamoda, XapaKTepHCTHK BSASKOYIPYToCTH
H OTcacklBaHHsI HA XoJ TEUCHHSA.

1. Introduction

FLows ARISING from differences in material constitution with temperature differences
have a great significance not only for their own interest but also for the application to
geophysics and engineering. There are many interesting aspects of such flows, this is why
in recent years analytical solutions to such problems of flow have been presented by many
authors.

Flow through a porous medium has been studied by a number of workers employing
Darcy’s law [1]. YAMaMoTO and YosHIDA [2], YAMAMOTO and IwAMURA [3], CHAWLA and
SINGH [4], VARSHNEY [5] and RAPTIS er al. [6-8], have solved problems of the flow of
a viscous fluid through a porous medium bounded by a vertical surface. There has been
an increasing interest in the flow properties of viscoelastic fluids, especially in technological
fields. The introduction of the fluid elastic property will play an important role in modi-
fying the flow fields. Por and SOUNDALGEKAR [9] have studied the thermal boundary
layer of a viscoelastic flow past an infinite plate when there is no heat transfer between
them. RapTis and Tzivanipis [10] discussed the flow of a viscoelastic fluid, when there
is a constant heat flux between the fluid and the plate. KAMEL and EL-ADAwI [11] studied
the flow of a viscoelastic fluid through a porous plate with heat and mass transfer.
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The object of this paper is a study of the steady flow of a viscoelastic incompressible
fluid through a porous medium bounded by an infinite vertical surface subjected to a con-
stant suction velocity taking into account the influence of the viscoelastic fluid and magnetic
field on the energy equation. The effect of the magnetic field, Prandtl number, Grashof
number, viscoelastic parameter and the suction parameter on the flow characteristics
have been studied.

2. Mathematical analysis

A two-dimensional flow of an incompressible, viscoleastic conducting fluid through
a porous medium occupying a semi-infinite region of the space bounded by a vertical
porous surface in the presence of a magnetic field is considered. The X"-axis is taken along
the surface in the upward direction and the y’-axis is taken normal to it. A uniform con-
stant magnetic field B, is imposed along the y’-axis. Following YAmMaMOTO and IwAMURA
[3], RaPTIs et al. [6, 7, 8, 10] and KAMEL et al. [11], the equations which govern the steady
flow of an incompressible viscoelastic fluid through a porous medium in the presence of
a magnetic field are governed by the following equations:
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In these equations ' is the velocity along the X" direction, ' is the velocity normal to the

plate, g acceleration due to gravity, f the coefficient of volume expansion, »’ the kinematic

viscocity of the fluid, o is the electrical conductivity of the fluid, B, the magnetic induction,

o' the density of the fluid, K& the coefficient of the viscoelastic term, K’ the permeability

of the porous medium, A the thermal conductivity, C, the specific heat at constant pressure

and T, T. are the temperatures in the boundary layer and in the free stream, respectively.
The equation of continuity (1) gives

@ V' = constant = —V,,

where V,(>0) is the steady normal velocity of suction of the surface. The boundary con-
ditions are

(5) =0 T=7T,, a y =0,
-0, T ->T, as 3y - w,
where T, is the temperature of the surface. Introducing into Egs. (2) and (3) the following

nondimensional parameters:

’

"V, . .
(6) n= Ed v,i (distance), U= — ; (velocity),
(o]
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(temperature),

[ ’

P = gvTC‘i (Prandtl number),

*17 2.,/
K= I&é% (viscoelastic parameter),
o' B3 .
M= Q'V? (magnetic parameter) ...,
0
E= —lig———— (Eckert number)
- Cf—T5) ’
G = Eég-T—;:_Tﬁ (Grashof number),
0
2 pr
R = Vs ,12( (permeability parameter),
v
we get
@) KU"+U"+U+LU = —GO,
8) 0"+ PO’ = —EPU'*>—~ MEPU?— PKEU'U",
where
1
©) L=M+ R

and the prime denotes differentiation with respect to 7.
The corresponding boundary conditions (5) reduce to

U=0, 0=1, at n=0,
(10)
U-0, 0-0, as n-— .

Equations (7) and (8) are nonlinear and in order to obtain a solution we expand U and
0 in powers of the Eckert number E, assuming that it is very small. This is justified in low
speed incompressible flows. Hence we can write

Um) = Us(m)+ EU, () + O(E?),
0(n) = 0o(n)+ EO,(n)+ O(E?).

On substituting Egs. (11) into Egs. (7) and (8) and equating the coefficients of the
same power of E and neglecting terms in £2 and higher order, we get

(11

(12) KU(S”+ U(;"" Ué_LUO = —Gg(),
(13) KU{"+U{+U{—LU, = =G0,,
(14) b0 + Pl = 0,

(15) 0y + PO; = — PUy*— MPUZ— KPULU"

’
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while the boundary conditions (10), in view of Egs. (11), become
Uy=0, U =0, 6,=1, 6,=0 at x=0,
(16) U,—»0, U -0, 06,50, 6,50 as n— oo.
Solving Eqgs. (12)-(15) under the boundary conditions (16) and substituting the solu-
tions obtained into Egs. (11), we obtain

an U = (C;+ECy;)CT+ (C2+ ECy)eP1+ E(Cg e+ Coe™ 2?74 Cyged=P)7),

18) 0 = (14+ECs)e "+ E(C3 €29+ Cpe 2214 C5e¥=D)
where
. G £ = G
1T T KPI_prypiL’ 2T KPP—P*yP+L°
C. — _c2 P8+ KPg*+(MP[g)
== . 4g+2P :
!
Ci = —sz(P-i-%—KPz)/ 2,
2P2g—2MP— KP3g+ KP%g?
C = C C )
s (g—P)*+P(g—p)
5
C5 —_ _ZCJ’
Jj=3
Co = GCs o o GC,
7T KP3—-P2+P+L’ & T 8KgP+dgii+2g—L’
GC,
C9 = s
8KP3—4P2 2P+ L
GC
ClO = s

~ Keg-p’+@E-pPt+@E-pn-L’

10
Ciy = —Z C;
i=1

and g is the solution of the equation
(19) Kg*+g*+g—L =0.

This equation has three roots. We choose the values of K which gives three real roots,
one positive and two negative roots. The positive root is, however, not admissible as U
and 6 must be finite at co. We consider only the negative root which agrees with the result
for nonelastic viscous fluid.

Equations (17) and (18) will be used for numerical calculations for the velocity U(z)
and the temperature 6(%) for E = 0.01. From the expression (18), we can calculate the
rate of heat transfer in terms of the Nusselt number N. This is given by

N== (86/877):7=0’

20
&0) N = P+E(PCs—2gCs +2PCy—(g—-p)C) ...
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3. Results and discussion

For the purpose of discussing the results, some numerical calculations are carried out
for the nondimensional velocity (U), the nondimensional temperature () and the rate of
heat transfer (N) taking into account the fact that the Eckert number for incompressible
fluids is very small (E = 0.01). The values of the magnetic number (M), viscoelastic par-
ameter (K), Prantdl number (P), Grashof number (G) and the permeability parameter (R)
take arbitrary positive values in order to investigate their effect on the flow field.

Figure 1 shows that the velocity at any point of the fluid decreases as the magnetic
number (M) increases for fixed values of G, P, K and R. A similar effect is observed for
the nondimensional velocity U as the permeability parameter (R) increases for fixed values
of G, P, K and M, as shown in Fig. 2, and as the Prandtl number (P) decreases for fixed
values of G, M, K and R, as shown in Fig. 3. Figure 3 also illustrates the effect of (G)
on (U) at constant values of K, M, R and P. The value of (U) increases as (G) increases.
A similar effect for the viscoelastic parameter (K) on (U) is observed as shown in Fig. 4.

4k
3._
]

Mz
2+

=1
1 M=3

M=5
s 1 n

0 1 2 3 4

.—_,'V‘L

F1G. 1. Velocity profiles for several values of M: G =10, P=1, K=0, R = 2.

FiG. 2. Velocity profiles for several values of R: G =10, P=1, K=0.1, M = 0.
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FIG. 5. Temperature profile for several values of P, G and the variation of the Nusselt number N with G:
K=005 M=0, R=2.

[180]
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Fi1G. 6. Temperature profile for several values of M and the variation of the Nusselt number N with M:
G=10, P=1,K=0, R=2.

Fi1G. 7. Temperature profile for several values of R and the variation of the Nusselt Number N with R:
G=10,P=1,K=01 M=0

Figure 5 shows that the nondimensional temperature 6 is highly affected by the
change of the Prandtl number P, while the change in 0 is very small as K, G, M and
R change as shown in Figs. 6-8. Figures 5-8 show the variation of heat treansfer with
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F1G. 8. Temperature profile for several values of K and the variation of the Nusselt number N with K:
G=10, P=1, M=0, R =2,

the Grashof number (G), magnetic number (M), viscoelastic parameter K and suction
parameter R. We conclude from these figures that an increase in (M) corresponds to an
increase in the Nusselt number (N), while (N) decreases as G, K and R increase.
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