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On a constitutive relation for heterogeneous thermoelastic media

M. BUISSON, A. MOLINARI and M. BERVEILLER (METZ)

OUR AIM is to work out a general formulation of a constitutive relation for heterogeneous ther-
moelastic media. In the first part, we consider a material with a given homogeneous temperature
field: we are interested in the calculation of the local thermal stresses and the global behaviour
of the homogeneous equivalent medium. In the second part, the transient temperature field
is nonhomogeneous. Particular attention is devoted to thermoelastic damping. The global
behaviour of the body appears to be viscoelastic due to thermoelastic coupling. In both cases,
the material consists of grains with uniform mechanical properties in each grain. The field equa-
tions of the problem are transformed into integral equations which are solved through a discre-
tization scheme.

Celem pracy jest ogolne sformulowanie zwiazku konstytutywnego dla niejednorodnych o$rod-
kow termosprezystych. Na wstepie rozpatruje si¢ materiat w znanym, jednorodnym polu tem-
peratury: chodzi tu o wyznaczenie lokalnych naprezen termicznych oraz globalnego zachowania
sie rownowaznego ofrodka jednorodnego. W dalszej czesci pracy nieustalone pole temperatury
Jjest niejednorodne. Szczegblng uwage zwrocono na tlumienie termosprezyste. Globalne zacho-
wanie si¢ ciala ma charakter lepkosprezysty w wyniku sprzezenia termosprezystego. W obu
przypadkach material skiada sie z ziaren o stalych wilasnosciach mechanicznych w obrebie po-
szczegllnych ziaren. Réwnania polowe zagadnienia przeksztalcono w réwnania catkowe roz-
wiazywane metoda dyskretyzacji.

Iemero paboTel ABIAETCA 06INaA GopMyIHPOBKa ONPEEISIOIIErO COCTHOLLIEHHA JJIsT HEOJHO-
POJHBIX TePMOYNPYTHX cpel. BHauane paccMaTpHBAETCH MaTeDHaJl B H3BECTHOM, OJTHOPOJHOM
1oJIe TEMIIEPATyp: 3[eCh HMEETCA B BHAY ONDEACIICHHE JIOKAJBHBIX TEPMHYCCKMX Hanps-
YKeHMH M 1J100aIBHOTO MOBEACHUA SKBHBAJICHTHON OMHOPOOHOH cpenpl. B nanbheiiine#t uactu
paboTel HeyCTaHOBMBLUEECS IIOJIe TEMIEPATYp sBiAeTcA HeomHopomHbM. Ocobenrmoe BHu-
maHue ofpalleHo Ha TepMOYNpyrHe 3aTyXaEuA. ['nobajibHoe MOBeJCHNE Tejla HMeeT BA3KOYI-
pyruii XapakTep B pe3yJbTaTeé TEPMOYNPYTOro CONPSKEHHA. B ofomx ciyuasx marepHai
COCTOHMT M3 3¢pPeH O IIOCTOSHHBIX MEXaHHYECKHX CBOHCTBAaX B 00acTH oT/ebHBIX 3epeH. ITo-
JIeBble YPABHEHHA 33/1aYH NpeoOpa3soBaHbl B MHTErPAJIPHBIE YPABHEHHMHA, PelllaeMble METOJOM
JMCKPETH3aINH,

1. Introduction

WE CONSIDER a heterogeneous polycrystalline medium consisting of disordered grains.
Each grain has a linear thermoelastic behaviour. We are mostly interested in the mech-
anical behaviour of the aggregate.

Thermoelastic damping has been discussed by ZENER [26] who pointed out that a homo-
geneous thermoelastic solid (e.g., a vibrating beam) dissipates mechanical energy via
thermomechanical coupling and irreversibility due to heat conduction between the heated
compressed and cooled extended region of the beam. The global behaviour appears to
be a linear viscoelastic response. Zener also discussed the viscoelastic response of a poly-
crystal with disoriented thermoelastic grains having identical mechanical properties. In
both cases, the viscoelastic macroscopic behaviour is due to heat fluxes associated with
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a nonhomogeneous temperature field:

in the case of a vibrating beam, the nonhomogeneity of the temperature generated
by a boundary condition is at a macroscopic scale;

on the other hand, in the polycrystalline material, nonhomogeneity of the temperature
field appears also at the microscopic grain scale.

Our objective is a general formulation of a constitutive relation for a granular material
with thermomechanical properties varying from grain to grain. For the assumed homo-
geneous strain and temperature boundary conditions, we derive, under certain simplifying
assumptions, relations which estimate the local strain and temperature. Effective proper-
ties (particularly viscoelastic effects when the temperature field is nonuniform) result
from these relations.

Recent work has been devoted to the homogenization of thermoelastic heterogeneous
media (FRANCFORT [10]; SUQUET [23]), where a multiple scale technique is used and is found
to be specially useful for a material with space periodicity in the mechanical properties.
Another general theory, proposed by BioT [4] and investigated by BRUN [5], uses a vari-
ational principle to derive quite general results. Our approach relies upon an integral
formulation of the problem. Such a method has been used in other works dealing with
homogenization (see WiLLIS [25] and Mura [18]):

1. Research of the effective elasticity tensor of polycrystals by ZELLER and DEDERICHS
[27]; determination of the equivalent homogeneous medium of an elastoplastic material
(KrONER [14]. HiLL [12]). For perfectly disordered polycrystals, BERVEILLER and ZAOUI
[3] use a self-consistent scheme. Results are obtained when the Eshelby’s solution is used
for an inclusion embedded in a homogeneous matrix or when using integral formulations.
In this latter case, BERVEILLER [2] requires the knowledge of the Green’s tensor of elasticity
for a homogeneous isotropic infinitely extended medium. In a formal way, our calculations
will require the use of Green’s tensor of elasticity and of the elementary solution of the
heat equation for a homogeneous, anisotropic, infinitely extended medium.

2. In the case of a composite with periodic microstructures, effective properties may
be deduced from characteristic field quantities which are periodic functions of space. This
fact is made of by T. IWaAKUMA and S. NEMAT-NASSER [19] to obtain an accurate estima-
tion of overall mechanical properties of the material. Assuming the displacement field
in the form of Fourier series, their quantitative results are similar to the results obtained
with the use of Eshelby’s tensor.

After presentation of the general equations of the problem in Sect. 2, we successively
consider the case of a material with a given homogeneous temperature field (Sect. 3) and
with a nonhomogeneous transient temperature field (Sect. 4).

The case of homogeneous temperature field has been considered by HASHIN and ROSEN
[11], Laws [15], Sencar NoMURA and Tsu-WEer CHou [20]. A viscoelastic effect does not
appear in this case since temperature gradients are absent. Under the assumption of homo-
geneity of deformation in each grain, we use an integral formulation very similar to an
elastoplastic approach (thermal strains are similar to given plastic strains) by which we
determinate the localization tensors.

In Sect. 4 the temperature field may be nonhomogeneous and transient. Then irre-
versibility due to heat gradients leads to viscoelastic macroscopic effects. We obtain a for-
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mulation of these effects via an integral formulation of the heat equation. Under specific
simplifying assumptions, we derive localization tensors.

The methods employed here may be used in principle in other problems involving
diffusion processes and coupling.

2. Governing equations

Consider a thermoelastic medium whose constitutive equations are given by:
1. The Duhamel-Neumann local law

(2.1) 0i; = Ciaea—Pis9,
where Cjy, are the anisotropic elastic isothermal coefficients, f;; are the components of
the thermal expansion tensor, o;; is the Cauchy stress tensor, ¢;; is the infinitesimal strain
tensor and 6 measures temperature variation from some reference absolute uniform
value T,.

Equivalent forms of Eq. (2.1) are

0y = Ciga(— o0+ €x),
ey = S ot a;0,

where S;; are the elastic compliances and «;; the components of the free thermal expansion
tensor.
Identification of these equations requires

ﬁu = Ctjkl Xpls

2. The heat equation which governs the evolution of the temperature 6

2.2) C.0 = (kiy0.1),5— ToBusis

where j represents the partial derivative % , C. is the heat capacity at constant deforma-
i

tion and k;; is the heat conductivity tensor.
For a heterogeneous medium, the coefficients Ciji, fij, Ce, ki; are space-dependent.
We will only consider in this paper quasi-static problems. Then the equilibrium equa-
tions in the absence of body forces

23 01,0 =0

complete the set of equations for the unknowns oy;, &;, 0.

In the following, we will examine two types of problems:

thermoelasticity with a known stationary time-independent temperature field 0,

thermoelasticity with a transient temperature field governed by the heat equation.

In both cases, we transform the governing equations and the boundary conditions to
equivalent integral equations from which it is possible to derive, through and adequate
approximate scheme, concentration tensors and effective properties at the macroscopic
scale.
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3. Thermoelasticity with stationary temperature field

We assume in this section that the field 6 of temperature is known, homogeneous and
time-independent. This situation may occur in some stationary heat conduction problems.
One may be interested in the calculation of local thermal stresses (which play an important
role, for example, in crack initiation) as well as in the macroscopic behaviour of the ma-
terial.

3.1. Integral equation
The Duhamel law (2.1) may be written in the following form:

(3.1) 0 = Cim &k,

where the elastic strain &f, is the difference between the total strain &, and thermal strain &f;,
(3.2) & = &q— &k,

(3.3) "":j = otuﬂ.

An analogy appears between Egs. (3.1), (3.2) and (2.3) of the stationary problem and
the elastoplastic problem (KRONER [14]).

The thermal strain € plays a role similar to plastic strain in an elastoplastic problem.
This analogy does not work of course when we consider the evolution law of the thermal
deformation (heat equation for thermoelasticity, but flow law for plasticity). Nevertheless,
for the stationary thermoelastic problem considered in this section, the evolution law of
thermal strain &f; = «;;,0 plays no role and the analogy is complete. Then we can apply
methods used in the context of elastoplasticity (KRONER [14], BERVEILLER and Zaour [3]),
to derive some results specific to stationary thermoelasticity.

Combining the Duhamel law (2.1.) and the equilibrium equations (2.3), we obtain

34 [Cukl(")(ul.k(" )"E:I("))].t =0,
where r is the position vector with the components x,, x;, X3, and u, , is the gradient of
the total displacement.

Now we proceed to the transformation of Egs. (3.4) to equivalent integral equations
in a similar way as done by ZELLER and DEDERICHS [27] in the context of heterogeneous
elasticity. We emphasize, as boundary conditions, that the total deformation

1
(3.5) g = & (i, 1+ u1,8)

on the boundary dv is equal to a given uniform strain EJ.
Let us decompose the elastic tensor to a sum of an arbitrary uniform part and a space-
dependent part:

(3.6) Cipa(r) = Ciojk1+ éukt(")-

In the same way, from boundary conditions we decompose the gradient of total displace-
ment as follows:

3.7 U y(r) = UP;+u,4(r),
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where U°(r) defined modulo a rigid body displacement is a solution of
1
EJ?! = 5 (U,?_,-{- Uﬁk)'
Assuming the uniformity of EJ in the body, it appears that

4(r)=0 on Jdu.
Substitution of Egs. (3.6) and (3.7) in Eq. (3.4) leads to the following equation:

(3.8) Ciojklal.ki(r) +£i(r) =0,
where f; may be regarded as the j-th component of a fictitious body force given by
(3.9) fj = [éijkl Uy, x— Cijr €01), ¢

The Navier equation of elasticity (3.8) can be solved by the Green function method.
We define, for the homogeneous elastic reference medium (with uniform elastic constant
CPj in the volume v), Green functions Gy, solutions of the following equations:

(3.10) Ciiut Gom, 157, F) + 0y (r— 1) = 0
with the boundary condition
(3.11) Gin = 0 on dv.

Let us observe that our presentation of integral equation relies upon a pure mathema-
tical treatment. In the first place, we assume for a finite anisotropic body the existence of
the Green tensor (which is generally not known; WiLLis [25)]. In the second place, we will
give some simplifying arguments leading us to the use of the Green tensor for an infinitely
extended anisotropic medium (whose computation is possible by using, for example, the
Fourier transform; FAIVRE [9]).

In the formula (3.10), 4, is the Kronecker symbol and 8(r—r’) is the Dirac function.
For a fixed m, 8;,.6(r—r’) represents the i-th component of a unit concentrated force
at point 7 and parallel to the m axis. It is clear from Eq. (3.10) that G, is the k-th displace-

ment component at point » due to this force and that the solution # of the Navier equa-
tion (3.8) is in the form

(3.12) () = [ Gur, Y.
Let us adopt a practical symbolism with the following notation:

Uy (r) = (Guyrf))(r).
Using the expression (3.9) for fictitious forces in Eq. (3.12), then substituting Eq. (3.12)
in Eq. (3.7) we require, after differentiation,
(3.13) Un, m(r) = Ur?.m"" [Grj, im* (éijklux.k— Ciju (7).

Taking the symmetric part of G, ;, with respect to the couple (m,n), we define the
tensor I':

1

(3]4) FMHU = —é— [Grrrj. !n+GnJ‘. im]'

6 Arch. Mech. Stos. 2/90
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We get by symmetrization
@3.15) Emn(r) = Emyt [Lpnis* (éum &= Cria g5D](r).
In these integral equations, the total strains are the only unknowns since the thermal

strains are given as well as the uniform strain EJ, at the boundary.
Recalling that the thermal strain €® is written

& = awb
we point out that the integral equations (3.15) constitute a functional relation of the local
strain € and the uniform strain E° for a given homogeneous temperature field 6. Using

a self-consistent scheme for a granular material, we establish more precisely in the follow-
ing a similar relation which expresses local strains in terms of averaged strains.

3.2. Concentration tensor and effective properties

Let us recall briefly the notion of concentration tensors A and a which link the local
total strain € to the macroscopic total strain E and temperature 6 by (see Laws [15]):

(3.16) &;(r) = Ajyu(r) Equ—ay(r)0,

where r is the position vector. We can also get the concentration tensors B and b for the
local stress o

(3.17) 0y (1) = Biju(r)Zy+b,;(r)0,

where Z is the macroscopic stress.

We assume that our heterogeneous medium statisfies Hill’s hypothesis (no body forces,
material with macrohomogeneous properties undergoes small strains, grain size is small
compared to the size of the volume) under which the macroscopic stress Z and strain E
are the volume mean values of the local stresses ¢ and strains e,

(o) =&,
(3.18) o5 ='E,
We also have, under Hill’s hypothesis,
(3.19) oyey = (o &.
By taking the mean value of Egs. (3.16) and (3.17), we require
(3.20) A>=1 By=1, <Ka)=0, <by=0,

where 1 is unit tensor.
When the concentration tensor A is known, it is an easy task to obtain the effective
coefficients in the macroscopic Duhamel law,

(3-21) Eu = Cf}f\'lEkl_ﬁ?}IO:
where C*" and B¢'' are the effective elastic and thermal expansion tensors. Using the
relation (3.16) and the local constitutive law (2.1), Laws [15] has obtained the following
result:

C" = (CA),

3.22
(%) Bt = (BAY,
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where the tensor CA represents the contracted product of C and A. As we assume 0 is

known, the constitutive equation (3.21) is sufficient to describe the behaviour of the ma-
terial.

In a similar manner, we can write

(3.23) E; = St w+ k0
with

St = (SB),
(3'24) aeﬂ =, <GB>-

Let us note the following relations (see NOMURA et al. [20]):
peﬂ o Ceﬂaett = <5A> = <(Cﬂ)A>

The preceding functional relation (3.16) of the total local strain € and the macroscopic
strain E for a given homogeneous temperature field 0 is often of greater value (see S. NEMAT—
NASSER et al. [19]) than the functionnal relation of € and the boundary uniform strain

E° given by the integral equations (3.15). Such a relation may be formally derived from
the integral equations in that way:

we define the tensors A° and a° such that Egs. (3.15) may be formally written as
Emn(r) = Apni; () Ef}— al(r) 6.
After averaging and using Eqgs. (3.18), we deduce the relation between the total strain €,
the uniform temperature 0 and the macroscopic deformation E
€ = A’ A% 1E— [a°— A%CA°>~1(a%]0
which is of the conventional form
€ = AE—af
with
A = A%A%!
and
a = —A%A%"1(a% +a%
This scheme has been indicated by Beradai and Berveiller (to be published in Cahiers
du Groupe Frangais de Rhéologie) in the context of elastoplasticity.

For a macrohomogeneous granular material, we will present an equivalent result
where some simplifications are first introduced in the integral equations.

3.3. Equivalent form of integral equation

Recalling from Hill’s hypothesis that the volume of the body is large enough to be
regarded as an infinitely extended medium, Green’s tensor G becomes the Green-tensor
for an infinitely extended homogeneous body with elastic coefficients Cour:

(325) Glu(rs r) = Gj"(r.._‘,-’)
with G;, = 0 and G}, ,, = 0 at infinity.

oF
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We will describe the field of deformations in terms of the elastic- and the thermal-
components, respectively €° and €, of the total strain €

&y = 81’["' ng.

The same decomposition is formally taken for the uniform strain E°, this will be justified
by using the self-consistent scheme

(3.26) E = E{5+E.
Taking account of Eq. (3.25), the integral equations appear as convolutions. For example,
we note Eq. (3.12) in the form

(3.27) in(r) = [ Gus(r=r)()dr = (Gays ).

Substituting the modified Green tensor I'y,;; from Eq. (3.14) into Eq. (3.15), the integral
equations may be written as

1 ~
(3.28) Emn(r) = Epu+ 3 [Gry.m+ Gyl * [Ciji ga— Cijr i), o(r).

By uniformity of C° and E®, the term
[Ca B,

is zero.
Then, by introducing it in the last term of the preceding equation, we obtain
(3.29) Emn = Egu + Lt [d;kl &t~ Ciyu €1 + CtojkrEﬂ"]-

Consequently, using the decompositions of € (3.2) and E°® (3.26), we get an equivalent
form of Eq. (3.29) in terms of the pure local elastic strain €, the macroscopic one E°¢
and the thermal deviation €*—E°%°:

(3-30) Emn = E-?-: == (E:'m. =5 E-S:) +T; mnij* [Cijkl gh— C;‘}u(s:: = Eff)] .
Introducing tensor «® such that
E* = a),
we obtain an equivalent concentration relation in terms of macroscopic elastic strain and
the uniform temperature:
E:fm = Eg; - (“mn — aronu) 0+1, mnij ¥ [éukl 5;1 = C&ul (“H = “gl‘) 1.

An approximate solution of these linear integral equations can be sought by looking
at the piecewise constant solution €° on a subdivision of the infinitely extended volume.
We propose in the following a discretization based on a finite number of elements by
using a self-consistent scheme; the subdomains are grains constituting a representative
finite volume of the body.

3.4. Granular material, self-consistent scheme

We define the characteristic function of grain «:
A%(r) = 1 for r located in grain « of volume ¥,
4%(r) = 0 for r outside of grain «.
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The discretization is based on a simple approximation which is to replace for each
grain all characteristic properties by their volume averages over the grain. Such piecewise
uniformity has been previously used and given accurate results for low and moderate
concentration (see S. NEMAT-NASSER ef al. [19]; BERVEILLER [2]).

Taking account of this approximation, it appears that for an infinitely extended medium,
any parameter should be practically given in terms of a sum over an infinite number of
grains. Defining the average on the grain « of any space-dependent variable (say Q(r)) by

"
0 = ny 0G)ar,

the deviation of elastic properties from the reference homogeneous medium

C(r) = C(r)-C°
can be written as

- +}
Con®) = D [Chu—CHlA*().
a=1

However, using a N-sites self-consistent scheme, we propose an acceptable approximation
yielding a finite summation: recalling that the grain-sizes are small compared to the size
of the volume, we assimilate the body to an infinitely extended medium constituted of
a finite aggregate of N grains embedded in a matrix whose characteristics are those of the
homogeneous equivalent medium. This means that we neglect any contributions of grains
located at the boundaries and that we focus our attention on the N grains constituting
t_h_c.:" major volume part representative of the body.

The N-sites self-consistent scheme, In this case the uniform strain E° is equal to the macroscopic
deformation

E° =E

and we justify the notion adopted for the elastic and thermal components
EOe o EE,
E°® = E°.

Looking at integral equations, it is possible to proceed to a discretization over a finite
number of grains. Assuming a uniform temperature 0, the deviation of thermal strain
€’—FE° is constant in the grain o and may be first written in terms of an infinite serie:

e(N—E* = ) (€“—EV()+ D (€—ENA()
a=1 a=N+1

but the last summation is equal to zero due to the homogeneity of the surrounding matrix

(for @ > N, grain corresponds to the matrix). Consequently, the discretization of Egs.

(3.30) will be expressed in terms of finite summations by using the following equalities:
Deviation of thermal strain

N
(3:31) e()—E = D (€ —E)A().

a=1

Deviation of elastic properties
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The coefficients C,‘},, and a® of the surrounding matrix are those of the homogeneous.
equivalent medium. We note:

Cie }lld = Cigkl and atft = o

and the discretization is

&) = C(-C° = D) (C—C A7),
(3.32) ==t

N
a(r) = a(r)—a’ = Z(a“ —a*) A4%(r).
a=1
Elastic strain
We assume that the elastic strain is uniform in each grain. EsHELBY [8] has proved
this to be exact in the context of an elastoplastic inclusion problem when the plasticstrain
is supposed to be uniform in an ellipsoidal inclusion even if the elastic coefficient of the
matrix and the inclusion are different. Our assumption of uniform elastic deformation in
each grain, although not rigorously satisfied, may be considered as a reasonable approxi-
mation for ellipsoidal grains.
N

(3.33) () = D e a(r).

a=1

After substitution of the strains €°, €® given by Egs. (3.33) and (3.32) in the integral
equation (3.30), we get

(334)  efa() = Efu— D) (e~ Ea 4*()

a=1
N
+ ) [Couers — Cifa(ets — 2] [ Tty (r —r) A%
a=1 14

It turns out that the elastic deformation &£, given by Eq. (3.34) may be nonuniform over
a grain . For consistency with our hypothesis of uniformity (3.33), we define the volume
mean value on the grain § of the elastic deformation:

1
(3.35) o = 57 f e, dv®.
A
Consequently, the discretized equation becomes for g =1, ..., N

N
(3.36) 628 = Ef— (s —Ea)+ D T2, [ et — Cifia(ess — BRI,
a=1
where
1
(3.37 i = A f f D (r® — 1) do®

Va Vs
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Substituting the thermal strains, we obtain in terms of 0

(3.38) 6 = Egu—ba0+ Z T [Cty el — CEB LAY,

a=1
Recalling that the thermal strains (e** = a*f) are known since 6 is given, the N tensorial
equations (3.36) constitute a linear system describing the field of elastic deformation as
a function of the macroscopic elastic strain E¢ and the temperature field 6.

The N+1 tensorial unknowns are namely the N elastic deformations € (for § = 1 to
N) and the effective elastic tensor C**. It appears that the elastic deformation in grain g
is the superposition of the macroscopic clastic strain E¢ and complicated interactions
between grains characterized by the coupling terms I'**. The supplementary equation is
given by the self-consistency condition

N
(3.39) E=)fre
y=1

which means (cf. Hill’ results (3.18)) that the macroscopic strain E is the volumic mean
value of microscopic strain € and where f7 is the voluminal fraction of grain y:

VY
=

(3.40) and
€ = ePt+e®.

The scheme of calculation is the so-called N-site self-consistent scheme. We propose
in Appendix 3 a presentation of the linear system in a matrix form which may be resolved
with numerical computation. Such a resolution may be rather complicated for a great
number of grains: however, it enables us to obtain a concentration relation which gives
the interactions of a grain with its nearest neighbours.

The one-site self-consistent scheme. It is well known that accurate results are obtained when
using a one-site self-consistent scheme in case of a matrix having perfectly disordered
grains. Looking at Eqgs. (3.36) and assuming that only one grain (f) is embedded in the
matrix, we obtain

= Ef,— (e —Ea)+ T8, ,[ P eet — Cof(esf — EQ)).
Introducing the following tensor I3},

(3.41) I = 0,1,

where d,4 is the Kronecker symbol and 1 the fourth order unit tensor
1
Ly = 5 (O Sp+ 60 90,

we get the approximate strain localization law (no summation for repeated Greek indices):

(342) e [Ilgnkl n é?jkl]_ 1Enim
[ mnkl — nij Cffkl] . [1 E;flrs +F£|£pq C;qn](sgsﬁ . E:v)
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which may be written for each grain (8 = 1, ..., N) representative of the material. We
add to these N tensorial equations with N+ 1 unknowns (namely, € for # = 1 to N and
C**") the self-consistency condition (3.39)

N
E= Zfﬁeﬂ.
=1

Then one possible computation involves the substitution of €*” from Egs. (3.42) and
(3.40) into the self-consistency condition. The resulting tensorial equation contains the
tensorial unknown C** which appears implicit due to the expression of the tensor I'??
((3.37), (3.14), (3.10) with C*" = C°). This method is also applicable but more complex
for the N-site self-consistent scheme (see BERVEILLER, ZAouUl [3] in the context of elasto-
plasticity).

We proceed in the following to the treatment of thermoelasticity with a transient
temperature field. The formulae indicated above dealing with thermostatics (LAws [15]),
although formal, are rather classical. For consideration, quantitative results are given
by NOMURA et al., [20] for a binary glass-epoxy composite system; LAws [16] in the case
of a transversely isotropic composite (by using a self-consistent method) and BUDIANSKY
[6] for an isotropic material.

4. Thermoelasticity with transient temperature field

We consider now problems with nonhomogeneous and transient temperature fields.
To the Duhamel-Neumann law (2.1) and equilibrium equations (2.3) we must add the
heat equation (2.2): we will have temperature gradients and viscoelastic effects.

In the first part, we derive an integral formulation for the heat equation. Furthermore,
in the same manner as in Sect. 3 we obtain an integral equation in which the local and
macroscopic strains appear. Under certain simplifications we get, for a granular material,
concentration relations which give the local strain as a linear function of all the past
history of the macrostrain. Then the macroscopic constitutive law appears to be the same
as that for a linear viscoelastic medium.

4,1, Tntegral formulation of heat equation
The transformation of the heat equation (2.2)

@.1) Ce(r)O(r, 1) = [kiy(1)0,,(r, D1+ H(r, 1)
with the source term
4.2) H(r,t) = —Tof(r)e,(r, t)

into an integral equation starts with the following first step.
Let us consider a decomposition of heat capacity and conductivity tensor into an arbit-
rary uniform part and a fluctuating part:

C.() = G2+ G,

4.3 2
(&) ku(") = k?t"'ku(")-
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By v(r, t/r',t') we denote the elementary solution of the heat equation for a homo-
geneous material C?, k{; in a domain V initially at uniform temperature and subjected
at time ¢t = 0 to an instantaneous heat deposit located at point r’:

aZ

4.9 C°———(r tir'yt) = k? Y T ax,

(r, t/r' tY+8(r—r)d(—1)

with the boundary condition

4.5) p(a, tir',t) =0

for (a) located on the boundary oV.

In Appendix 2, we derive the integral equation governing the evolution of the solution
0 of the equation (4.1):

@ 0,0 = [ [ W, yae arar+ 2 [ e, i, 006, 0dr
0 v v

t

[ [t o, a3 =60, 1) 4, i, 01’

av

ff( C(rNYY(r, t/r', Y00, t")—0(r', t) [ku(r) — Y(r, tir', z’)]) drdt’,

The generalized heat flux g, is defined by
CY) qe(r, 1) = —n(r)[kgrad6](r, 1)

(same form for gy with @ replaced by ), where n is the external normal of the boundary
S of volume V.

The solution 6 appears in an implicit form in Eq. (4.6). The first three terms in the second
member of Eq. (4.6) take, respectively, account of heat deposit by the source term H,
initial conditions 6 (r, 6) and thermal boundary conditions involving the temperature 0
and the gradient g, on boundary S.

The last term where 0 appears as an implicit unknown, involves the heterogeneous
parts C, and k of heat capacity and conductivity tensor.
4.2. Recapitulation of the governing equations
Equation (3.15),
(4.8) Emn(r) = Byt Dypniy* [dﬂd e — Ciga em](r)
or its equivalent form (see p. 3.3)
et = En— (et —Ema)+ Donniy# [Cop 61— Clina(ei— Eit")]

which were derived from the equilibrium equations (2.3), in the case of an infinitely extended
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medium, with the Duhamel-Neumann law (2.1) still remains valid at each instant. Let
us recall that the thermal strain is related to the temperature field 8 by

(4'9) e:‘(ri t) = akl(r) 0("’ t)'

The tensor I, is related through the formula (3.14) to the Green tensor G of the boundary
problem for an infinitely extended homogeneous elastic medium whose elastic coefficients
Cu differ from Cyj by Ciu

Our aim is to show that the system of equations (4.8), (4.9), (4.6) (representative of the
constitutive law of the material) can be reduced to a form which exhibits the viscoelastic
behaviour. We simplify the integral equation (4.6) governing the evolution of temperature
by neglecting the three following terms:

a) We assume that the body consists of N grains embedded in an infinitely extended
matrix with uniform properties C°, k° a°, C? (see justification in paragraph (3.4) which
involves the use of a N-sites self-consistent scheme).

In the sequel the uniform quantities C°, k% a°, C?2, E correspond to the homogeneous
equivalent medium. In such a case it can be shown (Appendix 1) that the elementary solu-
tion y has the following form:

Yir, tlr',t) = ¥(r—r',t—t)
(4.10) and

Y(r, 1) = [Idet(Cgk},f);]‘} (4IT1)~*exp [_ Cokg XmX;. ]

4t
Let us note the boundary properties:

Y(r,t)=0 and qg(r,t) =0 forr located at infinity.

Still supposing that the matrix is infinitely extended, we neglect the contribution of the

heat boundary-fluxes g, and g, at the location of the cluster. It appears that the third term
in Eq. (4.6) disappears.
b) The evolution of initial temperature is described by the term

[we—r, no¢ 0)ar.
| 4

This term becomes almost stationary for large time and does not create thermomechanical
irreversibility. So we can neglect it for our purposes.

c¢) The last term in Eq. (4.6) also disappears for a material whose thermal properties
C, and k are assumed to be homogeneous:

C. =0,
k = 0.
We only assume that the following properties are nonuniform:
C#0, a@#0 and P #0.

Let us note that the general problem, without these simplifications, can be solved for the
granular material, but the algebra is more complicated.
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From our simplifications Eq. (4.6) reads with H given by Eq. (4.2)

(4.11) 0, 1) = — [ [Er—r', t=1)To i) (0, t))dr'dr’
0 v
and it follows after substitution in the Duhamel law (2.1) that
4.12)  oylr, t) = Ciju(r) sulr, t)+B;(r) Jf f V(r—r',t—=t")ToPulr) eu(r’, t')dr'dt’
which is a nonlocal (') hereditary constitutive law.

4.3. Granular material

We adopt the same discretization scheme as in Sect. 3.4 for the cluster constituted of N
grains embedded in the homogeneous equivalent medium. In each grain, say «, the total
strain €(r, t) and temperature 0(r, ) may be approximated by their mean values:

(4.13) @) = Vl f e(r, )dV,,
[+ 4 yg
1

(4.14) 6*(t) =

- ,,f o(r, 1)dV.,.

The thermal strain €** and the elastic strain €** are also assumed uniform in grain «:
€(1) = «0°(2),
€(t) = e*(t)+€(2).

Under these assumptions, the discretized form of Eq. (3.38) in terms of €°* and (e*—E?)*
still remains valid at each instant

(@.15)

N
e(0) = Egn(t)— (e~ E8)(0)+ ) T82,[Coin e85 — Clualef — ERI(O).-
a=1
Recalling that the integral equation (3.15) (or (4.8)) is equivalent to Eq. (3.30), we would

rather work with the following discretized form of Eq. (4.8) which appears in terms of the
piecewise uniform functions €* and €**:

N
(4.16) = Ent ) T (Cot 85~ Clpul)

a=1

for(B=1,..,N)(®.

(') Stress at point r depends on values of strains in the entire volume V.

(%) Let us note that the equivalent integral equation (3.38) in terms of the deviation of the pure local
thermal and elastic strains was first necessary to justify finite summations over the N representative grains
embedded in the infinitely extended equivalent medium.
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Substituting the expression of € from

N

e(r) = Eeydy(r)

r=1

in the heat integral equation (4.11) gives
¢ N
4.17) 0, 1) = — [ To X Bt [ Wo—r', t=1) 7 (') ar' dt"
0 y=1 v

From thi swe deduce the mean value 6* of temperature on a grain «:

4.18)  6%(t) = _;u— f 0(r, 1) A*(r)dr = ﬁ[—roﬁgj f ég(r)?’“”(t—r)dr],
Va

y=1 0
where ¥* is a coupling term function characterizing the influence of grain y on grain «:

(4.19) Y =(t, 1) T:;— f ,,f Y(r—r',t—)dr'dr.

Vy

Then Eq. (4.16) takes the form
N N t
@200 &) = B+ D) This|Chasi + Cliachs D) ToBla [ 8Pt~ )ar].
a=]1 y=1 0

This is an integro-differential system where the €® are the N tensorial unknowns and
where the macroscopic deformation E(#) is known by assumption. As €’ depends linearly
upon E, it appears that

(4.21) (0 = [ FBu(t—1)Eu(n)dr,
0

where JJ,,;(?) are creep localization tensors.
Let us consider the following special case:

4.22) Epn(t) = 0(t—1") Oum Oy
we denote by d(¢z— 7) the Dirac function at 7. Then, putting Eq. (4.22) in the law (4.21) gives
ey(t) = Jjay (1=1").

It follows that Jf,,(t—1t') is the total strain in grain § at time ¢, resulting from a macro-
scopic Dirac input applied at time ¢’ having the form (4.22).
The localization law (4.21) has the same form as the elastic localization law:

(4.23) &y = A4 Ey

but in Eq. (4.21) we have an integral taking account of the past history of the applied
macro deformation E. It is easy to derive the stress in grain « as a function of E using
(4.18), (4.21) and the discretized form of the Duhamel-Neumann law (2.1):

[+ ] € &
ofj = ijklski—ﬁ?je .
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Substituting & from Eq. (4.21) and 0 from Eq. (4.18), we obtain

t

t N
@249) o0 = | of Teime(t =) Enn(D)dt| + 5[ D) ToBe [ 80y ¥ (= ).
ry=1 0

In the sense of the time derivation of distributions (SCHWARTZ [21]), the last term of this
expression reads (with the boundary condition (4.10)

t

‘BGJZTO'BMI eb(D P (1~ 1) dv

y=1

which becomes, by substituting again &},(7) from Eq. (4.21),

,B“,Z Tofl f Par(s— ) [ f Tam(T— ) Ena(7')d| .

y=1

Then, Eq. (4. 24) becomes

ij(t) = f Cukl l?lmn(t— t)Emn(t)dT

t

T N
+6f0f2[ ﬁal qu (t pqmn(r T) (T’)]d‘[ld‘t.

a=1

Adopting the following notation:

N
Bijmn(, 1) = CliaJeima(1) 9(") + 2 To B Bpa ¥ (8) Jpamn(t’)

y=1

the preceding complicated result may be written as
(4.25) of;(t) = ffB‘,,,.,, — 1, 1= 1) E, . (¥)d7'dr.

This expression appears to be a linear functional with argument E,,.
We thus obtain a localization law through the formula (4.25) by which we have access
to the macroscopic law

t T
Z5@) = [ [ Bimlt =7, 1= 7 Epa(¢)d¥dx.
00

This relation has the form of a macroscopic viscoelastic law where X, is given by

N
Va
Eij = o) = 27 U?j

a=1

and

N
' V r
Bi,lmn(t_ T, T'—T) == 2 VG Umn(t_rs T—T).

a=1
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Noting that we have obtained, for an infinitely extended medium, integral equations
which involve convolution products in space and time, we point out that a more complex
mathematical treatment of these products (see SCHWARTZ [21], where a formalism for
finite domains is also investigated) would establish also this analogy with a macroscopic
viscoelastic behaviour and without assuming the restriction (4.2¢) on the fluctuations of
thermomechanical properties (e.g. uniformity of specific heat and of conductivity-tensor
but only space-dependence of the elasticity coefficients).]

In the same spirit, the hypothesis (4.2.b) (e.g., initial temperature is zero) is not of
crucial importance because the initial thermal gradients have, after a short time, a negli-
gible contribution to thermoelastic coupling.

To conclude, let us comment on the two parts of restriction (4.2a):

1. The hypothesis of a great size of the matrix is not in fact necessary to prove macro-
scopic viscoelasticity: it allows us to obtain the classical integral equations in terms of the
Green tensor of elasticity and of the elementary solution of heat equation for an infinitely
extended homogeneous medium; it also leads us to a natural resolution scheme based
on a self-consistent method with respect to the granular microstructure.

2. The second part (e.g., thermal insulated boundaries) which appears here as a con-
sequence of the assumed great size of the matrix is in fact essential and constitutes the key
argument of this work. The justification relies upon the classification of thermal gradients
given by ZENER [26]:

the first type of thermal fluctuation, at the scale of the body, is related to boundary
conditions: this is a macroscropic thermal difference;

the second one, at the grain scale, results from the material heterogeneity.

We have thus eliminated thermal gradients due to macroscopic causes in order to
focus our attention on thermal currents which result only from the material heterogeneity.
In that way, and using a discretization of integral equations adjusted to ellipsoidal grains,
we have shown that thermoelastic coupling combined with thermal conduction acting
from grain to grain confers to a heterogeneous granular material a macroscopic viscoelastic
behaviour.

Other techniques may also be investigated. For consideration, MOLINARI and ORrTIZ
[17] have used Fourier transformation of the set of linearized coupled partial differential
equations of thermoelasticity for the general heterogeneous material. The macroscopic
viscoelastic behaviour has been proved, keeping in mind the hypothesis of thermal insulated
boundaries.

Appendix 1. Form of the elementary solution 0,,;, (z, #) of the heat equation for an infinitely
extended homogeneous anisotropic body

We denote by z,, z,, z3 the components of the position vector z and we assume that
the elementary solution 6,,, of heat equation for an infinitely extended homogeneous
isotropic body is known. In fact, ScCHwWARTz [21] and SoBOLEv [22] have shown that

—z2/4t

1
m O1so(2, 1) = "@1—]})—3,7 e s
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where
961“ _ 62 az 62 ]
(2) _6}_" (Z, t) - [32% = azg + 82% elsu(za t)'
We can find 0., (z, t) which verifies
aBBI‘I 3
) "a—ti(z’ 1) = ku P 3 (Oanis(z, ‘))

by using Fourier’s transformation F. Let us note Bm, the transform of 0,,;, by F. We have

eanls(zs t) L annls(&i t)-
Equation (3) becomes in the transformed space

@ "”’““ DBus (&, 1)+ 41128, £,y Bunts (5, 1) = 0.
In the & space we define the vector X by the transformation

&) & = AX (equivalent to: &, = A4,,,X,),
where A is the matrix which verify

(6) Akl Apm = Oim

or in matrix notation,

M AkA = 1.

In most cases the conductivity matrix is a positive symmetric matrix and consequently
admits an inverse matrix k= of components k¥’.

®) k™' = AA.
Then, by substituting & from Eq. (5) into Eq. (4), we obtain
a S A
® ’at"eanis(é, 1) +4120,,X X 02015 (§, 1) = 0

Let us note (this will be later justified)
(10) elso(x; t) = Ganls(g, t)
so that Eq. (9) becomes
a ~ A
(11) Welso(X’ t)+4H2(X%+X§+X§)0150(X,t)= 0
By using the inverse Fourier transformation F~!

eho(x: t) F——J" 6isc(z’ t),
Eq. (11) becomes

00,4, o2 0? 0*
a: —( aZl 322 + a 2 )Glso(z t) = 0.

This is the heat equation (2) in an isotropic body. It justifies our previous notation (10)
which is equivalent to the composition of functions,

(]2) éisu o A™! = baniu-
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Let us recall the relation between the composition symbol o and Fourier’s transformation
(Vo Kuac Koan [24]:

(13) fro 0 A1 = |det A0y o 4
so that by substituting Eq. (12) and by linearity of F
(14) Aanls = |detA|6iso @ A

By inverting Eq. (14)
Bants = |detA|fy, o 4.
The functionnal equality leads, after substitution of 8,,, from Eq. (1), to
Baats(Y, £) = |detA|(41Te)= 2= 214,

where the relation between the vectors z and y is

(15) z = Ay.
Then the scalar product z2 of Eq. (15) becomes
(16) 22 =z"2= (jJ’)(A‘:V) = Almgmlylyt-

By using Eq. (8) in Eq. (16) we substitute the new expression of z? in Eq. (15) and we
observe as a consequence of Eq. (8) that

Vldetk™i| = |detA|
so that Eq. (15) becomes
(]7) eunil(Y: t) = V ldetkf)’f (4HI)~3/29[—kg"y;y,,,l4l]_

Then, by simple translation of the vector x and linearity with the coefficient C? in Eq. (3),
we can deduce that the expression yp as

’ ’ 0 Lijy1/2 -3/2 _Cloka'l ’ ’
P(x—x', t—t") = [|det(COk¥)]"/?(411t)~ *2exp W—1) (m — Xm) (X1 — x7)

is the solution of the equation
az
ki o, 10X,

which is equivalent in a generalized sense to Eq. (4.4).

(18) C,OB—;:I—(x-x’,t—t’): —— ¥ (x—x', t—1t')

Appendix 2, Integral equation governing the evolution of the solution of heat equation

Let us recall the two following equations from which we derive the required integral
equation. The heat equation with the presence of a source term H is given by

1) C. (r) (r 1) = [k, (r) — (r t)]+H(r 1).
The elementary solution lIf of this equation is deﬁned by
, ' d
() ) = ki 5%, 0%, (r, tfr', 1)+ 6(r—r)6(t—1),
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where ¥ verifies the principle of causality:
3 Y, t)r',t'y=0 for t<t.

It means that the time at which we observe the temperature produced by the r’-located
heat source is always after the date ¢’ at which that source was instantaneously created.
Our process starts with searching two expressions of the following integral:

0 o0
e | P, f/"',f')ng[kaj(f')"g)?;(f'st')]
@ I(r,t)=0fyf L, N
—B(r , 1 )a—x; k;_,-(r) a—x}'!{,(r, t/l" , 1 )] I

dv'dt’.

In the first step we use Eq. (1) and the decomposition (4.3) of C, and k:

(r, tr', t)[ keyy(r ) B(r t’))] P, t)r, )C.() O, 1)
+C20(r, t')y = H(r', 1]
and by using the equivalent expression of Eq. (2) SoBoLEv [22], (CHANG [7])

i ? 2 ‘ ,
—C G ) = 5 [k?; AL t’)] +0(r—r)o(t~1).

We obtain from Eq. (2)

o, )| [ku(r) )| = o0, t')[ o[ L, r)]

+6(r',t") [ —0(r=r)o(—1t)— Cf W (r, 2r, I')]
so that Eq. (4) reads

() 1,0 = 0", t)d(r—r) 8(t—t')dr'dr’
I/
t ag ’ r ’ ’ 30 ’ ’ ’ r ’ ’
+C3J-J-[Tt,—(r,t/r,t)B(r,t)+W(f’,l)Y"(l’,l/fJ)drdt]

G [s"(r, - r')] —L#C, 1l Y HE, )]
+ f . 5 dr'de.
AN [?xT (kiy(r) ra H(r, t/r, z')] 6(r', t')
The first term of Eq. (5) may be written by definition of the Dirac function:

t

[ o0, tyo(r—r)8G—1)dr'd’ = 6, 1).

0oV

7 Arch. Mech. Stos. 2/90
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By time integration of the second term of Eq. (5), we obtain

t
Cuof f[aa—!t[,l‘ (r, t/r" t’)ﬂ(rl’ t')_l_ gﬁ (rl’ t')SU(r, t/r’, t,)dr,dt,
oV

t
[V
= C? f [(r, t/r', )00, t)—¥(r, t/r', 0)0(r', 0)]dr'.
14
Then, due to the principle of causality (3), we write for the second term
—c [¥@, 1r, 000, 0)ar.
14

The conclusion of this first step is that we can use the following expression of I(r, ):

6 I, 1) =6, 1)—C° f P, t/r',0)6(, 0)dr’
V

t E’.(r') [’F(r, tr'y t’) —%BT(r’, t’)] — [¥(r, t/r', tYH (', t')]

+f [ ) " dr'de.
o v _ 7 ’ 1o Y
__3x} (k,_,(r ) —Bx} Y(r,tir', ¢ )) 0(r', t")

In the second step we use the second Green’s formula together with Eq. (4) to obtain
r
’ ’ r ’ ! a ! ’
10,0 = | | |20t omikey () (7, )
§ 3 0x;

—0(r', t)nikyy- 87, Y(r, t)r, t')]dS'dt'.
ax;
We denote by g, and ¢, the following expressions of generalized heat flux:

0
qola, t) = _nik‘jgij_ 0(a, t),

’ ;g ' 0 -
q!’(r, t/a: ’) = _niklj_a;li— gl(r’ t/a’t)’

where n;(n;) is the component of the external normal at point a(a’) of the boundary S.
With this notation we have

Y 10,0 = [ [ 10, gy, t]a', 0) =¥, ), )i, £ da'dr’
0 s

By comparing the two expressions of I(r,?), Eq. (6) and (7), we obtain the required
integral equation (4.6):
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0(r, 1) = C?2 f&”(r, tir', 0)6(r, O)dr’+f f‘f’(r, t/r', tYH(r', t')dr'dt’
Vv 0 Vv

+ff[ (ku(r) W 1y, t))@(r )

1’ I)]dvldtl

t
+ J f [6(a’, 1) qu(r, t/a', t)=F(r, t/a', ') qs(a’, t")]da'dt’.
0 S

Appendix 3. Presentation of the linear system (3.36) in a matrix form

The N equations of the linear system (3.36) take on the following form for 8 = 1 to N:

N
(1) Srenﬁ;: = Emen_(sfnﬁ_Er:n)""Z mn:_r[cl]kl skl xjkl(ekl E:l)]a
a=1

where the N unknowns are the elastic strains €*® for 8 = 1 to N (we consider here that the

tensor C° is given for example from the computation of the implicit equation deduced
from the self-consistency condition).
Recalling the formula (3.41) of tensor 1%

2) I = 6,1,

where d,4 is the Kronecker symbol and 1 the fourth order unit tensor
1
lijke = 5 (Oux Bje+ 1 0),

we get from Eq. (1) and (2) the approximate strain localization law:

N

N
3) Z [luﬂ_rﬁac'r'a] € — Ff— Z [l”+I‘ﬂ°‘C°](e"°‘—E°).
=1

a=1
If we denote by [£°]* the transpose of the matrix
[Ce8D)s ()5 s (815 soes (8510

Eq. (3) becomes
) U-TC)[e] = [E) — [I+I'C°l[*— E°T',
where the matrices

[I-TC), [E?], I+ TC°), [¢°— E9)
are formed with blocks

(lukl Ff:ramncsr‘mk!) ( J) (l:?ﬁl—i'ljﬁﬁnnconkl) (eﬂl—EJfl)'

T*
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The solution of the system is written
®) [e°) = [[-TCI-[E) - [I-T'Cl-[I+1I'C°|[¢°— E)t
which describes the field of elastic deformation €® as a function of the elastic and thermal
components of the macroscopic strain and of the local thermal strains field. Total deforma-
tion is given by

€ = €°+¢€°
and local stresses

a = Ce®,
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