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Time and space-dependent development of dislocation densities 
during uniaxial deformation 

M. JAIN (WINNIPEG) 

THE EVOLUTION of internal variables, mobile and immobile dislocation densities during plastic 
deformation is studied within the framework of continuum mechanics utilizing the assumption 
of minimization of potential of the two types of dislocations. A pair of partial differential equa­
tions are derived and various simplified forms are solved for dislocation densities in space with 
increasing time. These equations yield a periodic spatial oscillation of the dislocation densities 
in agreement with the dislocation patterning in uniaxial deformation. 

W ramach mechaniki osrodka ci~glego przeanalizowano problem ewolucji zmiennych wewn~trz­
nych, ruchomych i nieruchomych dyslokacji, posluguj~c si~ zaloi:eniem o minimalizacji poten­
cjal6w obu typ6w dyslokacji. Zagadnienie sprowadzono do ukladu dw6ch r6wnan r6i:niczko­
wych c~stkowych, kt6re rozwi~zac mozna w pewnych szczeg6lnych przypadkach rozwoju 
dyslokacji w czasie i przestrzeni. R6wnania te prowad~ do okresowych drgan przestrzennych 
g~stosci dyslokacji, zgodnych z ich rozkladem obserwowanym podczas deformacji jedno-osiowej. 

B paMI<ax MexaHHI<H CWIOIIIHhiX cpe~ npoamlJIH3HpoaaHa npo6JieMa :momm .. um BHYTpeHHHX 

nepeMeHHbiX, llO~BH>KHbiX H Heno~BH>KHbiX ~HCJIOI<aiUI'H, llOCJIY>KHBaHCb npe~OJIO>KeHHeM 
0 MHHHMH3ai..\HH llOTeHI..\HaJIOB o6oHX THllOB ~HCJIOI<ai..\HH. 3a~aqa CBe~eHa I< CHCTeMe ~yx 
~H<l><l>epeHI..\HaJibHbiX ypaBHeHHH B l.JaCTHbiX llpOH3BOAHbiX, I<OTOpbie MO>KHO peiiiHTb B He­

I<OTOpbiX l.JaCTHbiX CJiyl.laHX pa3BHTHH AHCJIOI<ai..\HH BO BpeMeHH H B npoCTpaHCTBe. 3TH ypaB· 

HeHHH npHBO~T I< nepHO~Hl.JeCI<HM npOCTpaHCTBeHHbiM I<OJie6aHHHM WIOTHOCTH ~CJIO­
I<ai..\HH, cornacHo c ux pacnpe~eJieHHeM, Ha6mo~aeMbiM Bo apeMH o~ooceBbiX Ae<l>opMauHii. 

1. Introduction 

THE PLASTIC DEFORMATION of most metals for a range of strains, strain rates and temperatures 
is accompanied by the formation of heterogeneous dislocation structures such as coils, tangles, 
forests, persistent slip bands, and dislocation cells. This means that the plastic deformation 
due to the independent motion of dislocations uniformly distributed throughout the volume 
is an unstable process [I, 2]. During plastic deformation, the dislocations interact with 
each other and such interactions follow the general principle of minimization of free energy 
to yield mechanically stable equilibrium configurations [2,3]. Recently, a number of 
attempts have been made to study the evolution of dislocation patterns during plastic 
deformation by writing the usual rate equations for internal microsturctural variables 
[4-7]. WALGRAEF and EIFANTIS [8], EIFANTIS [8, 9] and a number of other workers [10-13} 
have studied the evolution and stability of dislocation patterns through balance laws of 
continuum mechanics containing rate and flux terms. 

In this paper the continuum mechanical approach to dislocation dynamics is extended 
to include the assumption of minimization of potential of two types of dislocations by 
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diffusive rearrangement of dislocations during uniaxial deformation. Various closed form 
solutions of the system of POE's of mobile and immobile dislocation densities are obtained 
under various simplifying assumptions. 

2. Basic equations 

2.1. Internal variable formulation 

Let us consider, for simplicity, a purely reactive type of transformation of mobile and 
immobile dislocations under applied stress. The general set of equations in terms of internal 
variables can be expressed as: 

(2.1) 

(2.2) 

Equations (2.1) and (2.2) represent mobile and immobile dislocation densities in slip 
systems sm and Si, respectively. The superscripts m and i correspond to mobile and immo­
bile dislocations and subscripts (1 , ... , sm) and (1 , ... , S1

) correspond to the individual 
slip systems. e'l' and e~ represent the mobile and immobile dislocation density in the i-th 
andj-th slip system, respectively. 

The average dislocation densities, e'l' and e}, in the present case, are only time-dependent 
and thus the dynamic change is given by the following equations: 

(2.3) 

(2.4) 

er =/'{'(em, e'), 

e} =!}(em, e'). 

2.2. Specific forms for dislocation interactions 

Various specific forms for Eqs. (2.3) and (2.4) based on different types of physically 
observed dislocation interactions have been suggested in the past [4-7]. For simplicity, 
we consider only the multiplication and annihilation of mobile and immobile dislocations. 
The dislocation densities of mobile and immobile dislocations are governed by the rates 
at which such multiplication and annihilation events take place. Here we propose that 
these processes be continuous and have the following simplest forms: 

(2.5) 

(2.6) 

where em em and e 1 ei denote the rate of multiplication of mobile dislocations and immobile 
dislocation groups, respectively. Annihilation events take place when two mobile, immobile 
or a mobile and immobile dislocation of opposite signs come in contact. Thus the rate of 
annihilation of mobile and immobile dislocations are (- ftmm emz- ftmi e' em) and ( -piie12

-

-p1meme1
), respectively. Other remobilization and immobilization terms are neglected. 

Clearly, if fttm = /l·mi = 0, there is no interaction between the mobile and immobile dislo­
cations and Eqs. (2.5) and (2.6) degenerate into two logistic equations. 
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2.3. Diffusion of dislocations 

Let us now consider the case of pure diffusion of dislocations under stress. A one­
dimensional balance law for mobile dislocations, assuming no multiplication or annihi­
lation along the glide plane [8-9], can be written as 

(2.7) 
• ()J 
e+a,x = o, 

where J is the dislocation flux. The dot ( ·) above e denotes the time derivative of dislocation 
density. If we assume the dislocation flux J to be given by the Fick's first law, 

(2.8) 

then, from Eqs. (2. 7) and (2.8) one obtains 

(2.9) . ( o2e) e = D ox2 ' 

where e = e(x, t) and D is the diffusivity or the diffusion coefficient and is assumed to 
be constant. Equation (2.9) is also referred to as Fick's second law. If the diffusivity is 
not assumed to be independent of position x, then Eq. (2.9) can be written as 

(2.10) 
• o2 (De) 
e = ox2 . 

2.4. Ditrusive 8ux for dislocation and rearrangement during plastic deformation 

In this section we introduce a quantity - U(x) as the potential of the dislocations at 
the position x. U(x) can be thought of as a measure of the "favorableness" for the resi­
dency of dislocations since each dislocation tends to move toward lower potential area 
where the conditions are more favorable. Thus it may be plausible to assume that the mean 
velocity of the movement caused by the favorableness of the system is proportional to 
the force produced by the potential function U(x), that is V xU(x) . 

• 
X 

FIG. I. Uniaxial tensile deformation of a crystal with a slip plane oriented in the stress direction. 

Let a crystal of length, I with a slip plane along its length and slip direction parallel 
to x direction be deformed at a constant strain rate under tensile stress in the x direction. 
Let us consider the flux at the origin 0 (Fig. 1 ). The number of mobile dislocation to the 
left of the origin 0 at time T is denoted by e~ and the potential by U';. Similarly, the number 
of mobile dislocations to the right of the origin at time t is denoted by e'B and the potential 
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by U';. The number of dislocations moving from the left of the origin to the right of the 
origin during the time interval r and those moving in the opposite direction are given by 
the expressions 

(2.11) 

{ <Xm + /lm (.>~ + "t [ U::'- U:J} (.>::, 

{<X,+/Imi!H ~m [U.;'- u::]}(.>;, 

where the coefficients a.m, fJm, Ym are dependent on I and r. Therefore the net flux at the 
origin 0 is given by 

(2.12) Jm = _!_ [(tX.m+fJme~)e~-(am+fJme1:)e1:1 + Yml (U';- U;')(e~+e:). 
T T 

Here if both I and r tend to zero, we obtain the following expression for the flux in 
the continuously changing system as the limit 

(2.13) 

where we put 

. [2 
hm tX.m-- = tX.m, 

I, T-+0 T 

lim Yml [ U'B- U';] = dUm. 
/,T-+0 T I _ dx 

The first and second term on the right side of Eq. (2.13) represent the diffusivity flux 
and dislocation or potential flux, respectively. The above analysis can easily be extended 
to the case of immobile dislocations. For immobile dislocations one obtains, 

(2.14) 

3. Dislocation modelling 

So far we have considered the independent cases of dislocation transformation, diffu­
sive transport, and rearrangement of dislocations to minimize the strain energy of the 
system. This section presents equations of evolution of dislocation densities involving all 
the above processes. 
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3.1. Evolution equations of dislocation densities 

Equations (2.5)-(2.7), (2.13) and (2.14) lead to the following system of nonlinear 
partial differential equations governing the evolution of mobile and immobile dislocation 
densities: 

(3.1) 

(3.2) 

where 

{3.3) 

and 

(3.4) 

oe'"(x, t) 
at 

oe'(x, t) 
at 

OJm(X, t) ( m ') m = - OX + Em- f-tmm(! - f-tmt(! (! , 

oJ,(x, t) i . - ---=----+ [e,- P-tme'"- P,u(! )e', 
ox 

o . . dUi 
J,(x, t) = -ox [D,e'(x, t)]-Yte'(x, t) dx . 

Equations (3.3) and (3.4) can be written as 

(3.5) 

and 

(3.6) 

where the mean velocities are given by 

(3.7) (aum) 
'Jim = gm --ax- ' 

(3.8) . (au') y' = g, ---ax-
as discussed earlier in Subsect 2.4. Equations (3.1) and (3.2) can be rearranged employing 
Eqs. (3.5) and (3.6) as 

oe'"(x, t) ( oj'") o2(Dme'") m , m 
(3.9) ot +hm OX ------a,x2- = (Em-P,mm(! -P,mt(!)(!' 

(3.10) oe'(x, t) h ( o/)- ()2(D,e') - ( - m_ i) i 
Ot + i OX OX2 . - Et f-ttm(! P,u(! (! ' 

where j'" = e'"11'" and/ = e'"', respectively. Also, in Eqs. (3.9) and (3.10), hm = (y,.fgm) 
and h, = (ydg1) are constants for mobile and immobile dislocations, respectively. 

Also the plastic strain rate e" can be written as 

(3.11) s" = cJ>b(e'",'" + ej11'), 

where b is the Burgers vector and cf> is an orientation factor relating single crystal to poly­
crystal deformation. 
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3.2. Stationary behavior of dislocations during plastic deformation 

If the mobile dislocation diffusivity is assumed to be density-dependent in the following 

manner 

(3.12) 

then the :flow of dislocations is given from Eq. (3.3) as, (assuming"'" = 1), 

(3.13) J.(x, t) = - :x {(a,+ P.e"')e•(x, t)}-e•(x, t) { d!•). 
The change of dislocation density is given by 

(3.14) f?'"(x, 1) = -JJm(X, t). 

Let us now consider a one-dimensional space with the boundaries at which lm = 0. 
A stationary distribution e'"*(x) can be obtained as a solution of the equation J'" = 0, i.e.,. 

(3.15) 
de'"* dU'" 

( <Xm + 2f3m e'") dx + dx e'"* = 0. 

The solution of Eq. (3.15) is given by 

(3.16) 2/1. {e•'(x)-e•(O)}+ a,ln {r ~~ (0)} = -{U•(x)- um(O)}, 

where e'"(O) and U'"(O) are arbitrary chosen points in the system where we can set the 
origin of the coordinates. Here we can show that the stationary solution given by Eq. 

(3.16) which satisfies Eq. (3.15) is really a globally stable stationary solution of Eq. (3.13) 

and if the solution e'"(x, t) of Eq. (3.13) starting from an initial condition e'"(x, 0) > 0 
(for all x) is a smooth function of x and t, it approaches this stationary solution e'"*(x). 
Let us consider a function defined by 

(3.17) H = J {a,e•ln[::. ]-a.(e•-em')+/l.(e•-e•')2}dx;;, 0, 

where the equality holds only when e'"(x, t) = e'"*(x) for all X. The time derivative of this 
function His calculated using Eq. (3.14) as 

(3.18) fr = J { "• In { ee,: ) + 2/l.(e*- e•'>} a%; dx 

= J a:; {a, In { ::. } + 2/l.(e•- e*')} dx 

and by partial integration with the boundary contition lm = 0, we have 

(3.19) dH = f lm{~ ae'" _ a'" ae'"* + 2{3 ( ae'" _ ae'"*)} dx = _ f J~ dx ~ o, 
dt e'" ax e'"* ax m ax ax e'" 

where Eqs. (3.13) and (3.15) have been used. The equality of Eq. (3.19) holds again only 

when ''" = 0, that is e'" = e'"*. Therefore we can say that the solution of Eq. (3.14), 
always approaches the stationary solution e'"*(x) given by Eq. (3.16). The stationary 
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solution of Eq. (3.16) has a simple form, 

(3.20) ,. ,(O) [ ( Um(x)- um(O)) ] e = e exp - , 
IX, 

if {3, = 0. Equation (3.20) implies, in the case of a density-independent diffusion coefficient, 
an exponential dependence between steady state mobile dislocation density and the corre­
sponding potential difference between the two mobile states. The effect of density-dependent 
diffusion is to make the dislocation distribution flatter as the total number of dislocation 
increases. Steady state solution for the case of density-dependent diffusitivity of immobile 
dislocations (Di = oci + f3ie1

) can similarly be written as 

(3.21) e''(x) = e' (0) exp [ - ( U' (x): U' (O)) l 
3.2.1. Solution at the boundaries in stationary state. Equations (3.3) and (3.4) at the boundaries 
where J, = 11 = 0, as well as jm = p = 0, yield 

dem• 
(3.22) - = 0 

dx 

and 

(3.23) 

This implies that em• and ei• are constant. The same conclusion can be drawn from Eqs. 
(3.20) and (3.21). Also from Eqs. (3.9) and (3.10) for the steady state, 

e, = l'mm (!m + l'mi (!
1
' 

E l = l'lm (!m +I'll (!i • 
(3.24) 

The solution of equations (3.24) for l'tm = f-', 1 = I' yields 

(3.25) em(x)l, 2 = e, ± v { e!+4f-',,(l'uef- eue')} 
2f-', 

4. Analytical solution 

Let us consider the solution of partial differential equations given by (3.9) and (3.1 0) 
in a one-dimensional finite interval [0, I]. The nonlinear system (3.9)-(3.10) is difficult 
to solve analytically and we shall consider here a simplification of the above system by 
assuming l'mm = #H = 0. Also the mobile and immobile dislocation fluxes are assumed 
to be constant i.e.,jm = i = j 0 , wherej0 is a constant. Equations (3.9)-(3.10) thus become 

aem(x, t) 02 (!m m i m 
ot = D, ox2 +(e,e -p,,l(! (! ), 

(4.1) 

where 0 < x < /, t > 0. 
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The point (edftim' emf#mi) is an equilibrium point of the system (4.1). The nonlinearity 
is still quite awkward and we shall limit ourselves to small deviations from the temporal 
and special equilibrium state. Accordingly, if we set 

(4.2) 

em(x, t) = ~+um(x, t), 
fttm 

. em . 
e'(x, t) = -+u'(x, t), 

ftmt 

then Eq. (4.1) leads to 

(4.3) 

aum(x, t) 
at 

where I > x > 0, t > 0. The linear system corresponding to Eq. (4.3) is 

aum(x, t) o2um . 
( 4.4) ot = Dm ox2 -au' 

and 

(4.5) 

where a and b are given by (P,miedfttm) and (P,1memf#mi), respectively. Let the initial and 
boundary conditions for the system (4.4)-(4.5) and hence for Eqs. (4.1)-(4.2), as required 
by physical considerations, be 

um(x,O) = 0, ui(x,O) = 0, 0 <X< I, 

(4.6) um(O, t) = um(J, t) = K'"(t), 0 < X < I, t > 0, 

ui(O, t) = ui(J, t) = Ki(t), 0 < x < I, t > 0. 

The conditions urn(/, t), ui(J, t), um(O, t), and ui(O, t) represent the fact that mobile and 
immobile dislocation densities at the surface increase with time and reach a saturated 
value indicated by Km and Ki, respectively. If we use the nonsingular linear transformation 

[u~(x, t)] = [afb112cosb(ab)112t sinh(ab)112t ] !"ym(x, t)] 
u'(x, t) -sinh(ab)112 t -bfa1 f2cosh(ab) 112t yi(x, t) ' 

[y~(x, t)] = [bfa112cosh(ab)112t sinh(ab)112t ] [um(x, t)] 
y'(x, t) - sinh(ab)112t - afb112cosh(ab)112t ui(x, t) ' 

(4.7) 

then the system (4.4)-(4.6) becomes 

oym(x, t) o2ym 

at = Dm ox2 ' 
(4.8) 

oyi(x, t) a2yi 

at = D, ox2' 
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I> X> 0, t > 0; 

ym(x, 0) = 0, yi(x, O) = 0, 0 < x < I, 

( 
b )1/2 

(4.9) ym(O, t) = ym(l, t) = Km a cosh(ab)112t+Kisinh(ab)112t, X> 00, t > 0, 

yi(O, t) = yi(l, t) = -Kmsinh(ab)112t- : Kicosh(ab) 112t, X> oo, t>O, 

where I > x > 0, t > 0. 
The unique solution of (4.7)-(4.9) [14] is given by 

t 

(4.10) ym(x, t) = 2nD }; n{J ym(O, r)exp[ -n2n 2Dm(t- r)]dr} sinnnx; 
n=l,oo 0 

and a similar equation holds for yi(x, t). Equations (4.7)-(4.9) lead to 

( 4.11) um(x' t) = 2nDm .~ n I I { K'"cos(ah )1
1
2

( t- T) + ( : r2 

K'sinh( abj112 (t- T) 

exp[ -n2n 2Dm(t- r)]drsinnnx, 0 < x ~ 1. 

It is easy to see from Eq. (4.11) that as t ~ oo, 

• m 2 [ Et n
2
n

2
Dm Em a ] . hmu (x, t) = 2nDm n -- 4 4D 2 b -- 4 4 D 2 b smnx 

/--->- 00 #tm n n m-a #ml n n -a 
n= 1, oo 

(4.12) 

which is nothing but the Fourier sine expansion of the stationary solution of the system 
( 4.4)-( 4.6). If cp and "P are such stationary solution, then 

d2cp d2~ 
{4.13) Dm dx2 = atp, Dt dx2 = bcp, 

and the boundary conditions become 

(4.14) <jj (0) = cp (I) = K"', "P(O) = "P(l) = Ki 

for which a unique solution pair exists. Thus for the case of a finite interval, stationary 
solutions of the system ( 4.4)-( 4.6) exist and are unique; furthermore the nonstationary 
solutions of ( 4.4)-( 4.6) asymptotically approach the stationary solutions as t > oo. This 
implies that both mobile and immobile dislocation densities vary periodically in space and 
time to reach saturation values. 
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