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Dislocations and disclinations in a new light 

M. J. MARCINKOWSKI (MARYLAND) 

THE CONVENTIONAL treatments of the interrelationships between dislocations, disclinations, 
disclination dipoles and grain boundaries have been re-examined in detail and shown to con
tain a number of serious inconsistencies. When the concept of surface dislocations is introduced 
into the classical analysis, however, these difficulties are immediately eliminated and a new 
richness emerges from the theory. 

Szczeg6lowo przeanalizowano ponownie tradycyjne uje(Cie zwictzk6w mi~dzy dyslokacjami, 
dipolami dysklinacyjnymi oraz granicami ziaren, stwierdzajctc szereg istotnych niekonsekwencji 
w tym uj~ciu. Znikajct one natychmiast po wprowadzeniu poje(Cia dyslokacji powierzchniowych, 
co prowadzi do istotnego wzbogacenia calej teorii. 

flO)q)06Ho npoaHaJIH31ipOBaH BHOBb Tpa)UIIUIOHHbrH no,wcog K COOTHOIIIeHRHM Me>K.rzy gHCJIO

I<ai.UUIMH, gHCKJIHHai\IDIMH, gHCKJIHHal\HOHHhlMH gHnOJIHMH H rp~aMH 3epeH, KOHCTaTH
pyH pHg cyrueCTBeHHbiX HenoCJie,n;oBaTeJibHOCTe:H B 3TOM no,wcoge. OHH Hcqe3aroT MrHoBeHHo 

nocJie BBegeHIDI ITOHHTHH: noBepXHOCTHhiX gHCJIOKaiDrif, l.JTO npHBOgHT I< cyrueCTBeHHOMY 

o6oran~eHmo r~eno:H TeopHH. 

1. Introduction 

A CLOSE GEOMETRICAL relationship has been shown to exist between lattice dislocations, 
surface dislocations, disclinations and grain boundaries [1]. It has also been demonstra
ted by DE WIT that a close mathematical relationship exists between the theory of dis
locations and disclinations [2]; however, the concept of surface dislocations is not con
tained therein. It will therefore be the purpose of this study to bring forth a greater unity 
between the physics and mathematics that underlie the close interrelationship between 
these various types of defect. 

2. Disclinations and continuous dislocation distributions 

Consider first the simple quantized edge-type lattice dislocation shown in Fig. la. 
The components of stress associated with this dislocation may be written as [3] 

(]XX = -
p,b y(3x2+y2) 

2n(I-v) (x2 + y2)2 ' 

(2.1) a,, = 
p,b y(x2-y2) 

2n(I -v) (x2 + y2)2 ' 

Gxy = 
p,b x(x2-y2) 

2n(l-v) (x2 + y2)2 , 
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FIG. 1. a) Single, b) vertical wall of edge-type dislocation, c) dislocation representation of the wedge 

disclination in d). 

where p. is the shear modulus, b-the Burgers vector of the dislocation, and ,., is Poisson's 
ratio. The fourth component of stress can be readily obtained from the following relation: 

(2.2) 

A uniform distribution of a finite number of vertical lattice dislocations with nearest
neighbor spacing h yields the finite wall of length 2L shown in Fig. 1 b. Assuming this 
discrete array of dislocations to be continuously distributed, Eqs. (2.1) can be rewritten 
as [4, 5] 

L 

_ p.b J (y + y') [3x2 + (y + y')2
] dy' 

2n(l-P)h [x2 + (y+ y')2]2 ' 
-L 

L 

p,b J (y + y') [x2- (y + y')2] dy' 
2n(1-P)h [x 2 + (y+ y')2]2 

-L 

(2.3) 

L 

p,b J x[x2-(y+y')2]dy' 
2n(1-P)h [x2 + (y+ y')2]2 · 

-L 

(]XY = 

The above equations can be readily integrated to yield [6] 
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(2.4) 
[cont.] 

p,b [ 1 1 x2 + (y- L )2 + x 2 

2n(l-v)h 2 n x2+(y+L)2 x 2+(y-L)2 

p,bx [ y+L y-L ] 
2n(l-v)h x 2 +(y+L)2 - x 2+(y-L)2 · 

Consider the case in which L => R, where R is the radius of the body, and where R ~ x, y. 
Furthermore, let -L => L, i.e., the condition where the bottom of the dislocation wall 
lies along the positive y-axis. Equation (2.4) then become 

,JJ [I x1 +(y+L)1 x
2 x

2 
] 

Uxx = 2n(l-v) 2ln R2 + Ji2- x2+(y+L)2 ' 

(2.5) ,JJ [ I x1 +(y+L)1 x2 x'] Uyy = 2n(l-v) 
-In + - Rz ' 2 R 2 x 2 +(y+L)2 

Uxy = ,JJx [ I y+L ] 
2n(l-v) R- x 2+(y+L)2 • 

The above equations represent the stress field of a wedge disclination located at the posi
tion L within a finite body of dimensions R. The wedge angle Q associated with this dis
clination can be written as 

(2.6) 

Compared to the stress field expressions for an edge dislocation given by Eqs. (2.1), those 
associated with a wedge disclination are relatively complex since, as Eqs. (2.5) show, they 
depend on both R and L. They may be simplified somewhat by placing the disclination 
at the center of the body; i.e., letting L = 0. Further simplification occurs by allowing 
the body to become infinite, which corresponds to letting R = oo. Equations (2.5) thus 
become 

Uxx = -00' 

(2.7) 

p.Dxy 
Uxy = - 2n(1-v)(x2 +y2)' 

which corresponds to the configuration depicted in Fig. lc. This wedge disclination is 
represented again in a nondislocation manner by the circle and dark wedge symbol in 
Fig. ld. It was VoLTERRA [7] who first proposed the six basic types of distortion. One of 
them was the edge dislocation and another the wedge disclination. It has been reasoned 
that the uniqueness of the disclination lies in its rotational character in contrast to the 
translational nature of the dislocation [2]. However, to the extent that a disclination can 
be represented in terms of an array of dislocations, this uniqueness is eliminated so that 
only the pre-eminence of the dislocation is maintained. This pre-eminence will be made 
even sharper in the following sections when the concept of a grain boundary is discussed. 
In principle, however, it should be possible to arrive at the same stress fields for a discli
nation whether one uses the non-dislocation model of Fig. ld or the dislocation model 
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of Fig. lc. Utilizing the former approach, DE WIT [2] was able to obtain an expression for 
a:x:y analogous to Eq. (2. 7)3 • Since he was also dealing with an infinite body, his equations 
corresponding to a:x::x: and ayy should have also reduced to the same infinite values given 
by Eqs. (2.7)1 and (2.7)2 , which they do not. The reason for the present results is that 
the logarithmic terms in Eqs. (2.5)1 and (2.5)2 increase without limit as R in the deno
minators increase without limit. This is a physically reasonable result since the dilata
tional stresses would be expected to become infinite as the extra matter associated with 
the dislocation wall approaches infinity. The fact that this result is not reflected in De Wit's 
stress field expressions may be related to his stated omission of all those terms in his pre
paratory equations that gave rise to infinities. 

3. Disclination dipoles 

In the limiting case where L = oo and -L = - oo, the infinite wall of uniformly 
spaced edge type dislocations shown in Fig. 2a is obtained. When these dislocations are 
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Fxo. 2. a) Vertical wall of uniformly spaced edge dislocations, b) configuration obtained after removal 
of dislocations over a length 2L in a), c) disclination dipole representation of b), d) surface dislocation 
representation of configuration in b), e) disclination dipole model of d), f) disclination representation 

of Fig. lb. 
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continuously distributed, Eqs. (2.4) can be used to arrive at the following results: 

(3.1) 

The vanishing of these stresses is the cornerstone of the conventional, albeit incorrect 
belief, that the dislocation configuration of Fig. 2a corresponds to the correct represen
tation of a grain boundary [3-6]. In fact, the results of Eq. (3.1) are in surprising contra
diction to the findings of Eqs. (2. 7) for a semi-infinite wall of dislocations. In particular, 
it is intuitively obvious that the dilatational stresses must approach infinity as both y ~ oo 
and y ~ - oo in Fig. 2a, as was also argued to be the case for the semi-infinite wall of 
Fig. lc. The seeming contradiction between the results of Eqs. (2.7) and Eq. (3.1) arises 
from the fact that the latter were obtained by assuming L ~ x, y in Eqs. (3.1 ), so that 
in the limit where L ~ oo, they represent the stress at the center of an infinite wall of 
dislocations only [8]. At large distances from the center, Eq. (3.1) no longer holds, so 
that the wall in Fig. 2a generates long-range stresses. 

If now a portion of the dislocations in Fig. 2a that lie within a region 2L at the 
center of the wall is removed, the configuration depicted in Fig. 2b is obtained. Appli
cation of Eqs. (2.4) to this configuration yields 

I 

Gxx = - (JXX' 

(3.2) G yy = I 

- Gyy' 

I 

Gxy = -(JXY' 

where a~x' etc. simply denote the stresses given by Eq. (2.4) 1 etc. The negative sign indi
cates that the configuration of Fig. 2b corresponds to that of a finite wall of dislocations 
of length 2L, such as depicted in Fig. 1 b, but of opposite sign, as shown in Fig. 2d. The 
dislocations are drawn dotted in this figure to differentiate them from the extra matter 
dislocations which were the original source of the distortion. These will be termed surface 
dislocations for reasons that will be made clear later. 

Extending the reasoning obtained in connection with Figs. 1c and 1d to Fig. 2b, it 
follows that the latter configuration can also be represented in terms of a pure wedge 
disclination dipole, as illustrated in Fig. 2c. The disclination, symbolized by the light 
wedge, simply represents the material that was removed, as contrasted to the dark wedge 
which corresponds to extra matter [9]. Application of the wedge disclination expressions 
given by Eqs. (2.5) to Fig. 2c, where the sign of Q is taken as negative for the lowermost 
disclination, yields the same results as those given by Eqs. (3.2), as expected. It also fol
lows that the dislocation configuration in Fig. 2d can be alternately represented as a dis
clination dipole, such as depicted in Fig. 2b, which is in turn identical to the disclination 
dipole of Fig. 2c. This result is to be expected since both configurations are identical. 
In a similar fashion, the finite wall of dislocations shown in Fig. I b can be represented 
in terms of the wedge disclination dipole illustrated in Fig. 2f. It is clear that this · dipole 
is of opposite sense to that in Fig. 2e, i.e., rotated by 180°. It is a relatively straightfor
ward procedure to apply the disclination stress field Eqs. (2.5) to the configuration in 
Fig. 2f to obtain the results given by Eqs. (2.4). Application of DEWIT's [2] disclination 
stress field equations to this configuration yields results similar to Eqs. (2.4) (see his 

2* 
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(Eqs. 9.6)) but with x2 and -x2 in Eq. (2.4)1 replaced by -(y+L)2 and +(y-L)2 res
pectively, and presumably arises from his discrepancies with Eqs. (2. 7) mentioned earlier. 

Consider next the vertical wall of disclination dipoles illustrated in Fig. 3a. It is 
clear from reference to Figs. 2e and 2f that this array may be depicted alternately in terms 
of a nonuniform array of lattice and surface dislocations, as shown in Fig. 3b. LI [10] 
has in fact used the representation in Fig. 3a to describe the structure of grain boundaries; 
however, he incorrectly interprets Fig. 3a in terms of only the single array of lattice dis
locations in Fig. 3b, apparently unaware of the concept of surface dislocations. For rea-
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FIG. 3. a) Vertical wall of disclination dipoles, b) alternate representation of a) in terms of lattice and 
surface dislocations. 

sons similar to that given in connection with Fig. 2a, the omission of the surface dislo
cations in Fig. 3b would generate enormous long-range stresses. LI [10] then writes the 
energy of the dipole array in Fig. 3a in terms of a single finite wall of edge dislocations 
such as shown in Fig. 1 b to obtain 

(3.3) 

http://rcin.org.pl



DISLOCATIONS AND DISCLINATIONS IN A NEW LIGHT 285 
--- -- - -- - --

where R ~ L. This is clearly an unacceptable result since E becomes infinite as R ap
proaches infinity; i.e., the same result obtained for a single dislocation within an infinite 
body. 

4. Dislocation walls in terms of surface dislocations 

It has been shown conclusively that the classical model of grain boundaries first pro
posed by BURGERS [11], based upon a single wall of lattice dislocations, such as depicted 
in Fig. 2a, is incomplete [12-15]. In order to eliminate the long-range stresses associated 
with such a boundary, it is necessary to incorporate into it a continuous distribution of 
surface dislocations, such as shown in Fig. 4a. These surface dislocations are denoted by 
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FIG. 4. a) Vertical wall of uniformly spaced edge-type lattice and surface dislocations, b) configuration 
obtained after removal of lattice dislocations over a length 2L in a), c) same as b) but with periodic removal 

of lattice dislocations over intervals of 2L. 

dotted symbols and possess Burgers vectors opposite in sign to those of the lattice dis
locations. To a good approximation, then, the grain boundary may be visualized as 
a periodic array of dislocation dipoles. It therefore follows that the lattice and surface 
dislocations obey the following powerful conservation law [16]: 

(4.1) .EbL +Eb, = 0, 
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where the subscripts L and s denote lattice and surface dislocations, respectively. It is 
thus the dipole nature of the grain boundary that insures the vanishing of long-range 
stresses and therefore low energy. 

The energy of a fain boundary can be written as 

X 

(4.2) E = ~ J axydx, 
0 

where the expression used for axy in the above integral has customarily not been the 
general one given byEq. (2.4h, but one analogous to axy = 0 given by Eq. (3.1). Strictly 
speaking these authors used the expression for axy obtained from an infinite wall of discrete 
lattice dislocations. The general results were nevertheless the same, namely that Eq. (4.2) 
yielded a very low value for the grain boundary energy. As mentioned earlier, however, the 
results expressed by Eqs. (3.1) are not general. In order to incorporate this generalization 
into Eq. (4.2), let us consider Eq. (2.4h for the case where y = 0 to obtain 

ftb xL (J = _ __;____ ____ -~---==-
XY n(1-v)h X 2 + L 2 ' 

(4.3) 

substituting this result into Eq. (4.2) and integrating gives 

(4.4) 
ftb2L (x2+L2) 

E = 2n(l-v)h2 In --[}-

Letting x = L, i.e., the length of the grain boudary being of the order of the size of the 
body, we find 

(4.5) E = ftb2Lin2 
2n(1-v)h2 

which, for an infinite body, i.e., L = oo, yields E = oo. We thus arrive at a result which 
is just the opposite of that obtained from the conventional theory [3-6], giving yet another 
reason to reject the model of a grain boundary in Fig. 2a portrayed in terms of a single 
wall of lattice dislocations. 

If the lattice dislocations are removed from the center of the grain boundary in Fig. 
4a over a length 2£, the configuration illustrated in Fig. 4b is obtained. In particular, 
the surface dislocations, which originally formed dipoles with the removed lattice dislo
cations, are left behind at their original positions within the grain boundary. These sur
face dislocations were originally thought to be basically distinct from lattice dislocations 
and were therefore given the name of virtual dislocation [17]. This problem was later 
resolved when it was demonstrated that the surface dislocation could be visualized in 
terms of another geometrical representation based upon the coincidence site lattice [18]. 
Comparison of Fig. 4b with Fig. 2b, or its equivalent in Fig. 2d, however, shows that 
they are not identical, since in the former case the segments of the wall from L to oo and 
- L to - oo generate no long-range stresses, whereas those in Fig. 2b do. On the other 
hand, since these long-range stresses are screened from the center of the wall in Fig. 2b, 
Eqs. (3.2) can be used to represent the stress fields of the configurations in either Fig. 
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2b, 2d or 4b. At the same time, in view of the prohibitively high energy of the dislocation 
wall in Fig. 2b compared to that in Fig. 4b, the former must be ruled out as ever being 
physically realizable. 

If now lattice dislocations are removed from the grain boundary of Fig. 4a in a perio
dic manner, such as illustrated in Fig. 4c, the resulting structure will become unstable 
because of the generation of large long-range stresses. These stresses can be eliminated 
by allowing the surface dislocations that are coupled with the remaining lattice dislo
cations to move out of the boundary so as to generate the relatively low energy configu
ration of Fig. 3b, or its disclination dipole counterpart in Fig. 3a. 

Assuming the dislocation dipole spacing in Fig. 4a to be L, the energy of the boundary 
can be determined to be the sum of the self and interaction energies of each dipole to yield 

p,b2 L 
E = In-, 

2n(l-v)L r0 
(4.6) 

where r0 is the dislocation core or cut-off radius. In contrast to Eq. (3.3) the above rela
tion shows the grain boundary energy to be a function of the dislocation dipole spacing 
only. 

Comparison of Figs. 3b and 4a shows that in the limit of small values of L, both con
figurations are essentially identical, so that the grain boundary of Fig. 4a could also be 
viewed as an array of disclination dipoles. However, since the disclination is a derived 
quantity, i.e., derivable from a specific dislocation array, it is dangerous to rely on the 
disclination dipole model alone in those cases where a more accurate description of the 
grain boundary could be obtained in terms of surface and lattice dislocations [12-1S]. 

5. Dislocation walls within finite bodies 

We have not yet considered the surface effects on the various dislocation and discli
nation arrays discussed thus far. It will now be shown that these considerations can be 
significant. In the case where the size of the body R is large compared to the length of the 
finite wall L in Fig. 1 b, we obtain the configuration shown in Fig. Sa. In order to satisfy 
the stress-free boundary conditions, it is necessary to distribute a continuous array of 
surface dislocations on the surface of the body which satisfy Eq. (4.1) [16, 18]. The distri
bution of these surface dislocations in fact determines the shape of the outer surfaces 
of the finite body, as is evident in Fig. Sa. 

In the case where the dislocation wall in Fig. Sa extends to the upper surface of the 
finite body, we obtain the wedge disclination configuration of Fig. Sb. This is the finite 
counterpart of Fig. 1c. Unlike the situation in Fig. Sa, Lin Fig. Sb is on the order of R. 

When the dislocation wall in Fig. Sa is allowed to extend to both the top and bottom 
faces of the finite body, the configuration shown in Fig. Sc is obtained. This is the finite 
counterpart of Fig. 2a. Unlike the two cases shown in Figs. Sa and Sb,' it is not possible 
to arrange the surface dislocations on the surface so as to render it stress-free. Although 
the surface dislocations in Fig. Sc still obey Eq. (4.1), they generate surface stresses. These 
surface stresses are simply a realization of the fact that the finite body in Fig. Sc cannot 
be maintained in a state of equilibrium in the absence of external forces or tractions. 
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Upon removal of the surface tractions in Fig. Sc, the surface dislocations pair them
selves with the lattice dislocations and form the grain boundary shown in Fig. Sd. It is 
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Flo. 5. a), b), c), d), e) Finite body representations of configurations in Figs. lb, lc, 2a, 4a and 4b, 
respectively. 

clear that Fig. Sd is simply the finite body counterpart of Fig. 4a. Unlike the three cases 
depicted in Figs. Sa, Sb and Sc, the outer surfaces of Fig. 5d are entirely stress-free. 

Finally, upon removal of a finite number of lattice dislocations from the center of the 
grain boundary in Fig. 5d, we obtain the configuration depicted in Fig. 5e which is simply 
the finite body counterpart of Fig. 4b. The surface dislocations on the outer surfaces 
of the body in Fig. 5e are drawn solid to indicate that they originated from lattice dislo
cations which were originally situated within the grain boundary. This interchange be
tween surface and lattice dislocations underscores the close similarity between the two. 
It also follows that the surface dislocations in Fig. 5e render the outer surfaces of this 
body stress-free. 
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6. Summary and conclusions 

The conventional theory of the interrelationship between dislocations and disclinations 
has been re-examined in detail and found to contain significant conceptual drawbacks. 
The root of the problem lies in the failure of the more classical approach to incorporate 
into it the concept of surface dislocations. This in turn has led such important defects 
as disclination dipoles and grain boundaries to be incorrectly interpreted in terms of lat
tice dislocations alone. In addition, various boundary conditions associated with certain 
dislocation and disclination arrays have been neglected in the conventional theories, 
in turn leading to serious misconceptions. These difficulties have been shown to vanish 
when surface dislocations are incorporated into the classical treatment. 
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