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Long time tails of hydrodynamic friction coefficients of rigid spheres

I. PIENKOWSKA (WARSZAWA)

NONSTATIONARY hydrodynamic interactions of a finite number of rigid spheres, immersed in
an incompressible fluid, are considered. The main point of interest is the impact of the hydro-
dynamic interactions on the drag force, and torque exerted by the fluid on the spheres. The
properties of the friction coefficients at long time are discussed.

W pracy tej rozpatrujemy niestacjonarne Stokes’owskie oddzialywania hydrodynamiczne
migdzy skonficzong liczba sztywnych kul, umieszczonych w cieczy niesciliwej. W szczegblnosci,
praca dotyczy wplywu, jaki oddzialywania hydrodynamiczne wywieraja na sile i moment sily
oporu hydrodynamicznego kul. Analizowane sa wiasnosci wspolczynnikow tarcia w granicy
dhlugich czasow.

B stoit paGoTe paccMaTpMBaeM HeCTallHOHAPHbIE CTOKCOBCKHE TMAPOAHHAMHUECKHE B3aHMO-
JCUCTBHA MEXIY KOHEWHBIM KOJHUYECTBOM >KECTKHMX LIAPOB, MOMEIIEHHBIX B HECKHMAaEeMOH
JKHAKOCTH. B uacTHOCTH, paloTa KacaeTCHA BIIMAHHMA, KaKoe THAPOAMHAMMYECKAE B3aHMO-
JeHCTBHA BBLI3BIBAIOT Ha CHIIY M MOMEHT CHJIbI IMAPOAMHAMHUECKOro COMPOTHEBJICHHA LIAPOB.
AHaHAUDYIOTCA CBolicTBa KO3(hHUMEHTOB TPEHHA B Npefesiec OONBIIHX BpPEMEH.

1. Introduction

THE PAPER CONCERNS the transient effects arising in the hydrodynamic interactions of
a finite number of rigid spheres immersed in an incompressible, unbounded fluid. Atten-
tion is confined to the case of hydrodynamic interactions which can be described within
the fully linearized scheme, both with respect to the velocities of the spheres and the
velocity field of the fluid. Hence the velocity and pressure fields of the fluid are gover-
ned by the nonstationary Stokes equations. This range of hydrodynamic interactions
has been regarded recently by vaN SaArLoos and MAZUR [l], in relation to the hydro-
dynamic mobilities of the spheres, and by WEeINBAUM [2], in relation to the trajectories
of the sedimenting spheres (comp. [5, 8] for further literature).

In this paper the main point of interest is to discuss the appearance of the long time
tails of the hydrodynamic drag exerted on the spheres by the fluid. To this aim the inter-
actions at long time ¢ » /?/» are considered, where / denotes the characteristic distance
of the interactions, »—the kinematic viscosity of the fluid, /2/v—the viscous relaxation
time. This means the range of the hydrodynamic interactions involved is close to the range
of the quasi-stationary hydrodynamic interactions described within the frame-work of
the quasi-stationary Stokes equations. The appearance of the long time tails of the hydro-

dynamic drag gives rise to “’fluid memory” effects which are absent at quasi-stationary
conditions.
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Restricting our attention to the spherical particles, we note that the geometry of the
particles immersed in the fluid is an important factor in establishing hydrodynamic inter-
actions [3, 4].

2. Multiple scattering representation of hydrodynamic interactions

To account for the presence of the spheres in the flow, we use the idea of time-depen-
dent induced forces f;(¢), j =1, ..., N (N—the number of spheres) distributed on the
surfaces of the spheres [1]. Taking advantage of that idea, the dependence of the induced
forces f;(¢) on the relative velocities V;(¢) of the spheres with respect to the fluid can be
expressed in terms of a set of integral equations [5]. For the particular case of the hydro-
dynamic interactions of N spheres specified by:

(i) the hydrodynamic conditions close to the quasi-stationary ones,

(ii) the ‘non-slip boundary conditions on the surfaces of spheres.

(iii) the zero velocity field at time ¢ = 0, that set of integral equations assumes the form

V,(2,0),1) = [dr [ a2 GR,(2,(0), 1)-R;(2)(0), 1), t~1']
0
N t
@1 (@0, )+ ) [ dr [ dRGR,(240), 1)
k#j 0

~Ri(2:00), ), t—1']- i (24(0), '),
V;(2,00),2) = R, (2,(0,) 1)-v°(2,(0),7), ¢>0,

where the initial distribution of spheres in a fixed laboratory reference frame is descri-
bed by R}(z)—the position of the centre of the j-th sphere, R;(t)—the position of an
arbitrary point on the surface of the j-th sphere, j =1, ..., N.
The velocities of the spheres are given by

RO(7) the translational velocity of the j-th sphere,

w;(?) the rotational velocity of the j-th sphere,
i{,(r) = il‘}(t)+m,-(t)xr, the velocity of the j-th sphere, where r; = R;—RY,
rj(a, 2)) =r;(a, 0;,d;) in the spherical polar coordinates connected to the j-th sphere,

a the radius of the spheres.

The fluid velocity due to the external forces acting on the fluid is denoted by vO(r,t).
G(r, t) denotes the Green tensor [6] which reads in the form of the Fourier transform
with the respect to the space variables

22  GIR, (2, N—Ri(2, 1), t—1']
— | 7233 kk
- éf (2d:)= °"P“"'(Rf(91">—l‘i(!?i,t’))—vkm—t')l(l—ﬁ),

where r and k are the variables conjugated by the Fourier transformation, k = (k, %, £)
in spherical polar coordinates, p—the density of the fluid.
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In the set of integral equations (2.1), the first term on the r.h.s. describes the inter-
action of a single sphere with the fluid, the second—the hydrodynamic interactions
of N spheres.

After the following steps:

the expansions of V;, f; in terms of the normalized surface spherical harmonics Y{"[10],

the integrations with respect to the angular variables £2;, using the orthogonality
relations for Y[,

the Laplace transformation with respect to time #, involving the convolution form
of the equations,

we arrive at the set of algebraic equations

@3) V,m(® = an:z 0,,) £,1,m,(P)

l:l’ﬂ:

+ Z 2 Tim Ry, P) fuum(P), Reyp >0, 120, |m<!
k#j lamy
where p is the variable conjugate to ¢ by the Laplace transformation, V; ;,, f; m are the
expansion coefficients of V;, f; in terms of the surface harmonics, Tiy2(0;, p) and Tih:
(Ry;, p) are so-called self- and mutual-hydrodynamic interaction tensors.
According to the results, obtained in the paper [5], the interaction tensors can be
presented in the following form:

(i) the self-interaction tensors:

"mz(Oj ) = Fi 1, 0005, P)Kltf’;f, 00 Y0,
where the functions F; ;, o describe the p—dependence of the self-interactions of a single
sphere with the fluid:

s — =
st = g toy/ 2 /)
; ; 1 P 3
Sl = --gaﬂ««z(ﬂ/ raly)

I, 3, Ky, 3 denote the modified Bessel functions,
the second order tensors, equal to:

2.4)

; ; kk
Kb 1, = 14700 | smzddeY::”*YﬂzY::'"’(l— ~,;2—)
describe the tensorial properties of the interaction tensors,
(ii) the mutual interaction tensors having a similar structure

max

Eml(RkJap) 2 Pty zﬁ(Rkj,P) K{ixf, dty-2pm” Yiiv1,—28(%, 9),
2= -2

where 26 =1, +1,—1;

_{11+12 if L+, is even

= R%t = t=0),
h+h=1 if L+l s odd}’ Ry, = Rj(t = 0)—Ri(z = 0)
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R,; = (Ry;, %, ) in spherical polar coordinates,

- - .
£ hs ‘a(RU’p) ‘/’:Z:av (RkJVi') Il+i-(al/ f)]11+i—(al/i )
.K,,+{-(Rkj]/f') for 2ﬁ=0,2,4,_“’
Vo Ty I+, + )
R T

oav \ R
° 4 1“(1@3)1’(12 )

= L++4 L+L,+3 p— l*_,2_r == 2
P R A e
2p0av \ 2 Ry; v v

5
i )
3 3
F(11+ 2)1“ 12+-2a)
> T(l, +1y+2+2n) o\
+\ (h+1+2+2n __*__AA(_.‘;_]/’:_) , for 28= -2,

n=1 F(11+12+2+n)F(11+g +n)1"(lz+ 2'+”)

where ' is the gamma function.

We note that the dependence of F,,, ,, functions on the distances between the centres
of two spheres is involved at time ¢ = 0.

Starting from Eq. (2.3) the expansion coefficients of the induced forces can be pre-
sented in the following form:

@5 Gum® = Y T 0,0 V.m0~ Z > i

lam: k#j Iymsy lama
N

Ry, P)TUR0,, p) - Vi ..m‘+2 D N TR, p)
k#j ki#k f;un;

T4, ) T Reo ) T ], 1= 3,456,
where f'ﬁﬁf (0;, p) denote the respective inverse tensor [10]:
D (0, p) - TR (0, p) = 10,1, O,
lams

The expression (2.5) gives the multiple scattering representation of the hydrodynamic
interactions of N spheres. The first term on the r.h.s. describes the interaction of a single
sphere with the fluid, the next ones—the interactions of two, three, and so on, spheres.
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In view of the fact that the hydrodynamic drag force and torque can be expressed in
terms of the coefficients f;;,(p) [5] the expression (2.5) is used (Sect. 4) to establish the
form of the friction relations of N spheres.

3. Nonstationary hydrodynamic interaction tensors

Here we restrict ourselves only to the discussion of these properties of the hydrody-
namic interaction tensors which concern the long time effects. Consideration of other
properties of these tensors is presented in [5, 8].

The functions F,;, o(0 , p) describing the p-dependence of the interaction of a single
sphere with the surrounding fluid, for the considered case of the hydrodynamic interac-

tions close to the quasi-stationary case (i.e., for a}/p/v < 1) assume the form

Fi,i,000;.p) = ZA];I;Q; ) '"'. [( . ) ] ag,ﬁ’o-l-otoﬂ (2 l/f)z
Y RT3 e e
3.1) .
B o LU A

where

o= o B
Tl -
( n+ )
We see that only the function Fy4 4(0;, p) vanishes as } p for a|/'p/v < 1. From Eq. (2.4)
it follows that among the self-interaction tensors, only the tensor T33(0;, p) is built up

of this function. Hence only the tensors T39(0;, p) and T33(0;, p) possess the long time
tails.

The functions F,, ;. (R, p) for the case of interest (ie., for R}'p/r < 1) read
G)if 286 =0,2,4, ...:

N

PR Hriane 1 )
g/
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(i) if 28 = —2

R R I
O Y N e a0
a8y 2T ] bl n( 2y 2]
Sl /2 Tessl 220

- L+l +1
nyn 1 al'
(3.2) Fl,12,1,+tl+2 = ' )

where
n[/:?' 1
T dpav [/ I L
Sin[(l, +12 —2ﬁ+ "2' )n]
1 1 1
Gy = —— s &= = —= = e,
F([ )1’(1 3) r(z 775)1"(1 3) r(z + )r Bl
1‘?‘2 2+2 1+2" 2+*2* 1+, 2t 5
bo = — — N’ by = - el )
F(_13+7) F(—l3+~2)
do = 7717 5—’ dl = 177 5 \ >
P(13+7) F(l3+»2--)

R—the typical distance between the centres of two spheres at time ¢ = 0.

From Eq. (3.2) it follows that the long time effects (~ R}/p/») are described only by
the function Fyg (R, p). In turn, this function appears only in the tensor Tgg(R, p).
In the result, the slow decay at long time is characteristic of only the particular sequences
of the hydrodynamic interactions described by Eq. (2.5). These sequences have to involve
at least one of the following self-, and mutual interaction tensors:

ng(oj ’ p)! ng(oj ] P) ’ or ng(R ’ P) .

4. Long time tails of friction coefficients

Taking advantage of the property that the hydrodynamic drag force F;(p), and the
torque T;(p) can be expressed in terms of the expansion coefficients f; o0(p) and f;, ;m(p)
of the induced forces, and calculating the relevant expansion coefficients from the iter-
ative expression (2.5), we obtain the nonstationary friction relations in the following form:
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N N N
F(p) = — D ETP) RUD ~ D ERE) D+ @)= D D Elim(®) V()
k=1 k=1 k=1 Im
“4.1) W & - '
T,(p) = — Y EX(p) R2D) — Y EXA(0)- (@) + IR0 — D) D) ER (D) VE.n(P),
k=1 k=1 k=1 Im

where
T 4 3,10 R 8 5
I = —3—m1 opR}, If= 15 na’o pw;

describe the inertia of the fluid displaced by the sphere, E{;” denote the self (j = k), and
mutual (j # k) friction coefficients acting on the velocities of the spheres, §(;?.., denote
the self (j = k) and mutual (j # k) friction coefficients acting on the fluid velocity
vo(r, p).
The summation > is given by
Im

al
“2) D B Vo im = Efitoo * V.00 FEGiDwo WA Y EGidim V2 i
Im I>22m
1
where W° = 3 a_,v?,, is the tensor of the second order, i-th component of e, reads:
m=—1

1 i
(@m)i = 031 (Om1 + Opm—1) 72—4‘ 0i2(— Om1 + Op—1) T/_i- + 03 6o

The friction coefficients are the tensors of the second order with one exception—the coef-
ficient §$; w0, being the tensor of third order.

Hence we have the linear relations (4.1) of the hydrodynamic drag, exerted on the sphe-
res by the fluid, to the velocities of the spheres and to the fluid velocity v°. This feature
is the common one for both cases of quasi-stationary hydrodynamic interactions (descri-
bed within the framework of quasi-stationary Stokes equations [10]), and for the range
of the nonstationary hydrodynamic interactions specified in this paper. The difference
lies in the p-dependence of the quantities involved, which leads to the memory character
of the friction relations. This kind of memory effects reflects the nonstationary character
of the flow of the fluid. Here the properties of the friction coefficients are discussed from
the point of view of the prediction of long time tails, Hence the influence of the nonsta-

tionary character of the flow of the fluid is accounted for up to terms proportional to 1/}3.
The dependence of the friction coefficients on the spatial distribution of spheres is reta-
ined up to the terms of the order of (a/R)3, to account for the first contributions, due to
the nonadditivity of the hydrodynamic interactions.

In what follows we restrict our attention to the case of the spheres immersed in the
constant fluid velocity field v 5,(v,,,, = 0 for / > 1. Then we have to deal with six self-,
and mutual friction tensors entering the friction relations (4.1). From the formulae for
the friction coefficients, given in terms of the hydrodynamic interaction tensors in an
earlier paper [8] it follows that only five self- and mutual friction coefficients depend

on the tensors T33(0;, p) and/or TI3(Ry,, p), describing the long time tail effects. For the
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case of the force F;(p) the respective friction tensors, being tensors of the second order,
assume the following form:
translational-translational friction coefficients:

@ -]
+g(Ri”) { 196 (1+3al/ )(1+3e“%)—(R“]/§)(l+eueu)}

ISR I
& Z Rk.l.j-sz ky -R;;{ 64 (1 +40V7 (1+ek’jek‘j) . (l +e"‘zklekzk1)

ki#j ka#ki
ka#j

9 /? 9 ?
. (1 +°sz eﬂ‘z) + W(Rkl}.' 7 ) (1 +e.‘.2klek:kl) . (1 + €k, ejk,) + _16 (Rjkz l/;

g —
“(Ltey e ) (T+ee, e )+ —— 16 (Rk,k, ]/% )(1 +e ;e ;)

Ry .
Ryl

the first term on the r.h.s. describes the hydrodynamic interaction of a single sphere with
the fluid, the second—the additive contributions due to two sphere interactions, the

third—the nonadditive contributions due to three sphere interactions;
translational-translational mutual friction coefficients:

1 3 P P
“y o ;i 1;;{ (1+2a'l/%)(l+e,ue,‘,)—(R,,j]/f)1}

a? 9 p
+k;; —R;;Rkk ! 16 (1 +3aV”’v— ) (l +e,‘1_,ekl_,) (1 +ekklek;‘l)

ki#j

3 P 3 P 3
_T(R”“ ]/ )(1+ek i)~ (Rk ‘/% )(1 + e, ekk;)} - %‘?}_ (1 +2a‘/-‘:— )

v N a* [ 27 ( p)
(1—3e,,,_,ekj)+ Z 2., E;Rklk; RM" l 64 1+8a ¥

k#ky ki#ka
j#ka

’(1+ejkzejk,)}, H=ve, €)=

5 )
(A+e  e,,) (1+e, er,) (1+e, e )t 16 (szj ]/f ) (1+eyx, e x,)

" .
(4 ey, €px) + - 16 (Rklk, ]/ f )(1 ey e,;) (1+ew ew,)

g _
+ 16 (Rk.k‘ ]/% )(1+9n219k,j) “(I+e,, ehk;)};

where the first term on the r.h.s. is due to two sphere interactions, the second, and the
third, respectively, due to nonadditive three, and four sphere interactions,
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translational-rotational mutual friction coefficient:

1 Tk _ \_¢ 3( /P _ p_) } :
(4.5) o o A\JRui l+2al/v (+ege)—(Ry Y/ 7|11 Bace

is generated by additive two sphere interactions,
translational-rotational mutual friction coefficient:

1 TR = E . .
(4.6) G_WZE"",‘ = (l‘i'a‘l/‘u )1 ‘Pj;‘.e

1 oa )4 ﬁ
i Rm{"' (l+2a]/v )(l+c"1fe"xf)_(Rk:il/;)1}"Pkklifi,

Ki7]f
ki#k

where € is the Levi-Civita tensor,

the tensors ¥, which do not contain the long time tails, read
l

¥, = f 24 P’ T55* (R p) - Tina(0,, P) %%,

my=—1my=—1

Tim™ and T“"’ are defined by (2.4) and (2.5); here we have two sphere contributions, and
nonadditive three sphere contributions,
the friction tensors, acting on the velocity of the fluid

4.7 gﬂ:oo = mg}'jr’ ,T:oo = - }-kr-
The simple relations (4.7) reflect the property that the hydrodynamic drag depends in
fact on the relative velocity of the sphere with respect to the fluid (comp. also [5, 10]).

In turn the friction coefficients describing the torque T;(p) can be written down as
follows:

rotational-translational friction coefficient:

U prr \TERE » ( p)
s —€: - — 142 i - I
67’6/[& 7i € Z Akj Rjk l4 + 2a Py )(l+e_,kejk) Rjk.l/ y 1 )
k#j
this coefficient arises as a result of the additive interactions of two spheres.
rotational-translational mutual friction coefficient:

1 .
O RT _ e: A, - (1+a]/!:)1—e
\ | a 3 P /
D) M ié:.':{‘cf(‘ *2"1/5)“”**l""h)‘(’*“nl/ A

Kki#J
k#ky

where we have two sphere contributions, and nonadditive three sphere contributions.
In the above formula the following shorthand notation is used:

(4.8)

Il

1 1

A= o D Y e, im0, 0 Ti%Ry. p)
ek — %, L1mi Uy P 1m2{Rxj> P)
l/3 my=—1my=—1 J

and the tensor A;; does not exhibit the slow decay ~ }/p;
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the friction tensors, acting on the velocity of the fluid:
(4-10) Eﬁ,’oo = "'Eij, Eﬁ:‘.’oo = _gfkT'
We see that the contributions proportional to V/p arise either due to the nonstationary

character of the interaction of a single sphere with the fluid (the terms ~a]/ p/v), or due

to the nonstationary mutual interactions of spheres (the terms ~R1/ p/»). In comparison
with the friction tensors, describing the quasi-stationary interactions, here the coefficients
of the terms of all order with respect to a/R are changed due to slow decay effects. This
concerns also the terms, describing the nonadditivity of the interactions (comp. Egs.
(4.3), (4.4), (4.6), (4.9)).

We note that in the approximation considered all the friction coefficients entering the
expression (4.1) for the drag force F;(p) contain the long time tails. In contrast, only

four of the friction coefficients describing the torque T,(p) decay as }/p.
The effects of long time tails have been calculated by vAN SaarrLoos and MAZUR
[1] for the case of the mobility relations for a finite number of rigid spheres. Qualitatively,

the impact of the contributions proportional to J/p is similar for both the friction, and the
mobility relations. The experimental results on the influence of the long time tails known
to the author concern, however, different physical conditions. Namely, they have to do
with a single Brownian sphere, immersed in a quiescent fluid [9], and confirm qualitat-
ively the impact of long time tails of hydrodynamic friction.

Summarizing, from the relations (4.3)-(4.7) it follows that both the hydrodynamic
interactions of a single sphere and the hydrodynamic interactions of N spheres with the

fluid, impacting the drag force F (p), exhibit the long time tails ~)/p. In contrast, the
torque exerted by the fluid on a single sphere does not exhibit the long time tail ~1/ P

[11], whereas the torque in the presence of N spheres decays as [/ p, due to the influence
of the friction coefficients (4.8)-(4.10).
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