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Theoretical and computational aspects of large plastic deformations
involving strain-induced anisotropy and developing voids (*)

R. LAMMERING (GOTTINGEN), R.B. PECHERSKI (WARSZAWA) and
E. STEIN (HANNOVER)

THE AIM OF THE PAPER is to formulate the constitutive equations of elastic-plastic solids with
strain-induced anisotropy and growing voids and to develop numerical algorithms to solve
the equations proposed. The anisotropic hardening of porous material is described in terms
of the combined isotropic-kinematic hardening model which appears to be a combination of
the hardening laws of Prager and Ziegler. The considerations are limited to the associated
flow rule, what is related with the simplified assumption that the nucleation of voids during the
process is neglected. The rate equations are formulated by means of substructure corotational
rates involving the relation for plastic spin. The theory derived is complemented with finite
element formulation and numerical examples. In the numerical approach the operator-split
and return mapping strategy is applied. The Newton-Raphson algorithm is used to solve the
system of nonlinear equations. For this purpose the Lagrangian form of the principle of virtual
work is linearized. The finite element implementation is based on the convected coordinate
formulation. The problems of simple shear and the necking of a cylindrical bar were computed
to show the correctness of the numerical procedure and to describe the behaviour of the material
subjected to large plastic deformations and developing voids.

Celem pracy jest sformulowanie réwnan konstytutywnych cial sprezysto-plastycznych z indu-
kowana odksztalceniem plastycznym anizotropia i rozwijajacymi sie pustkami oraz zbudowa-
nie odpowiednich algorytmoéw numerycznych rozwiazujacych te rownania. Wzmocnienie ani-
zotropowe materialu porowatego jest opisane za pomoca modelu wzmocnienia izotropowo-
kinematycznego, ktory jest pewna kombinacja modeli Pragera i Zieglera. Rozwazania ograni-
czono do stowarzyszonego prawa plynigcia, co jest zwiazane z upraszczajacym zalozeniem
o zaniedbaniu efektu nukleacji pustek w czasie procesu. Réwnania predkosciowe zostaly sfor-
mutowane z zastosowaniem predkosci wspélobrotowych ze struktura materialu, co pocigga
za soba zastosowanie rOwnania na spin plastyczny. Teori¢ uzupeiniono sformulowaniem algo-
rytmu dla metody elementéw skonczonych i przykladami numerycznymi. Zastosowano przy
tym strategie dekompozycji operatora spregzysto-plastycznego i metod¢ rzutowania powrot-
nego. Do rozwiazania uktadu réwnan nieliniowych wykorzystano metod¢ Newtona—-Raph-
sona. Zlinearyzowano w tym celu Lagranzowska forme¢ zasady prac przygotowanych. Imple-
mentacja metody elementoéw skonczonych opiera si¢ na sformutowaniu roOwnan we wspoirzed-
nych konwekcyjnych. Rozwiazane numerycznie problemy prostego $cinania i szyjkowania
cylindrycznego preta wykazuja poprawno$¢ procedury numerycznej oraz opisuja zachowanie
si¢ materiatu przy duzych odksztalceniach plastycznych i rozwijajacych sig¢ pustkach.

Lenpro pabotel siBAeTCA (DOPMYJIMPOBKA ONpPEAesIsIONINX YPaBHEHHH YIPYro-IjlacCThUCCKHX
TeJl C MHAYIMPOBAaHHOH, IUIacTHMYeCKOH Aedopmanmed, aHH30TPONHEH M pPa3BHBAIOLIMMMCH
MyCTOTaMH, a TalK)<e MOCTPOEHHE COOTBETCTBYIOIMX YHCJIEHHBIX aJTOPHTMOB PELIAIOIUX 9TH
YpaBHEHMsA. AHH30TPOIIHOE YIIPOUHEHHE IMOPHCTOrO MaTepHaa OMHCAaHO MPH MOMOIIK MOJIETH
HM30TPOINHO-KHHEMaTHUECKOTO YIPOUHEHHsI, KOTOpas SABJISAETCA HEKOTOpoil KoMOMHALMeit
mopeneii ITparepa u 3urmepa. Paccy)kaenuss orpaHHueHbl aCCOMHPOBAHHBIM 3aKOHOM Te-
UeHHsI, YTO CBf3AHO C YIIPOINAIOIIMM INPEeAnoIoKeHneM o npeHeOperkenun sddexramu Hy-
KJIeaIiuu IyCTOT Bo Bpemsi mpouecca. CKOpPOCTHBIE ypaBHEHWs C(HOPMYJIHPOBaHbI C IPHMeE-
HEHMEM COBpAIlATebHbIX CKOPOCTEH CO CTPYKTYPOM MaTepHasia, UTo NPUBOOUT ¢ coboll mpu-
MEHeHMe YpaBHEHMA JUIA NIAaCTHUYECKOro CnuHa. Teopus momoJsiHeHa (hopMyJIMPOBKOH anro-

(*) The main results of this paper were presented during the 4th Bilateral Symposium PRL-BRD on
Mechanics of Inelastic Solids and Structures, 13-19 September, 1987 in Krakéw-Mogilany.
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pHTMa I MCTOJa KOHEUHLIX DJIEMEHTOB M UNCJICHHbIMHA Ipumcpamu. [Ipu sTom npumenena
CTpaTerus AEKOMMNO3ULMH YIPYTO-HIACTHUCCKOTO ONMEpaTopa M METO/ OOPATHOH IIPOEKIIHA.
Ilns peleHHs CLCTeMBI HEJIMHEHHBIX ypaBHeHMH WCloJib3oBaH MeTona HetotoHa-Padcona.
C 370it 1espio IMHEapU30BaHa Jarpamxenas (GopMa NPRHIKNA BUPTYaJBHBIX pabor. Hm-
IUIEMEHTALIMS METOJa KOHEUYHBIX OIEMEHTOB ONHupaercss Ha (hopmyJIMPOBKEe ypaBHEHHUI
B KOHBCKUHOHHBIX KOOPAHMHATaX. PelleHHbIe UHCIIEeHHO MpobsieMbl MIPOCTOrO CABHUra W o0pa-
30BaHHE IUEHKH UHJIMHAPHYECKOIO CTEPXKHA IMOKAazbIBalOT IPaBHJILHOCTh YHMCIEHHOM Mpo-
LeAYPhl, a TAK)KEe OMHCBHIBAIOT IIOBEJICHHE MarepHrana mpu Oo/BUIMX MJIACTHUYECKHX iedop-
PMaIMAX M pasBUBAIOIIMXCH [IYCTOTAX.

1. Introduction

MoDELLING of ductile fracture, metal forming and related strain localization produces
an increasing demand for the adequate constitutive description of the inelastic behaviour
of engineering materials and efficient numerical strategies. The constitutive equations for
small elastic and finite plastic deformations with strain-induced anisotropy modelled as
combined isotropic-kinematic hardening have been implemented in finite element pro-
grams (cf. e.g., HUGHES [1]). A constitutive description of plastic deformations taking
into account nucleation and growth of voids was studied by GUursoN [2, 3] and NEEDLE-
MAN and RICE [4]. Further references can be found in the review given by TVERGAARD
[5]. On the other hand, it has been found by TVERGAARD [6] and HUTCHINSON and
TVERGAARD [7] that the application of kinematic hardening provides a more realistic
prediction of the strain at the onset of localization than the plasticity with isotropic harden-
ing. In MeAR and HutcHinsoN [8] and TVERGAARD [5, 9] the Ziegler model of kine-
matic hardening with the Zaremba—Jaumann rate was applied for the numerical analysis
of the effect of yield surface curvature on localization in porous plastic solids described
by means of the modified Gurson model [2, 3]. The effect of strain-induced anisotropy
in plastic flow and localization of damaged solids was also studied by Duszek and Pe-
RZYNA [10].

The introduction of tensorial internal variables, e.g., the kinematic hardening par-
ameter (back stress), is related to the formulation of objective rate-type constitutive equat-
ions. The application of the Zaremba-Jaumann rate can lead to the non-adequate pre-
diction of the material reaction while the finite shearing with pertinent large rotations
of the principal axes of the back stress tensor plays the dominant role. A detailed discussion
of this problem with pertinent references is provided in PAULUN and PECHERSKI [11, 12]
and in PECHERSKI [13].

In the computational approach to the solution of large plastic deformation problems
the incremental methods of initial stress or tangent matrix have been widely implemented
(cf. e.g. ZIENkIEWICZ [14] and and NEEDLEMAN and TVERGAARD [15] or KLEIBER [16]).
Although these techniques appear very successful in many applications, they create cer-
tain difficulties for some classes of problems, particularly when advanced plastic flow is
involved. The method of initial stresses uses the same coefficient stiffness matrix for all
iterations and gives unconditional but very slow convergence. In tangent stiffness methods
divergence may occur. The tangent stiffness methods are implicit, with coeflicient matrix
updates based on the instantaneous plastic state. Very small increments are necessary in
such a case to provide the required accuracy. This involves high computation costs.
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Numerous ways of improving these schemes have been proposed using either extensions
or mixtures of both methods, or approximating to the tangent stiffness matrix to avoid
the expensive reinversion required at every iteration (cf. HELLEN [17]).

An important aspect in computational plasticity is to retain the consistency condition
which requires that the stress trajectory be confined to the elastic domain, what is diffi-
cult to inforce exactly. Frequently, projection techniques have been introduced to restore
consistency. The search for an efficient method leads to the application of a “return
mapping” algorithm (cf. Pinsky, OrRTIZ and TAYLOR [18] and HuGHES [1]). This technique
consists in solving for every time step an incremental linear elastic problem (elastic pre-
dictor) followed by the application of a return mapping algorithm to the stresses to res-
tore the consistency condition (plastic corrector). Such a procedure appears to have
been suggested first by WILkINs [19] and thoroughly analysed by KRrIEG and KRIEG [20]
and SCHREYER, KuLAK and KRAMER [21], largely restricted to perfect plasticity with the
Huber-Mises yield condition. The extension of the radial return method to accommodate
linear isotropic and kinematic hardening was provided by KRIEG and KEy [22]. In the case
of the general convex yield surface, the closest point algorithms have been formulated
(cf. OrTIZ [23], ORTIZ ¢f al. [24] and PLANK and STEIN [25]). As it was pointed out by
OrTiZ and Simo [26] the application of the closest point procedure to non-trivial plasticity
models requires calculation of the gradients of the plastic flow direction, the normal
to the yield surface, the plastic moduli and the elasticity tensor. In order to avoid the
laborious evaluation of such quantites, OrRTIZ and Simo [26, 27] proposed a new class
of return mapping algorithms applicable to a general class of plastic and viscoplastic
constitutive models. The algorithm is formulated solely on the basis of the yield function,
the normal to the yield surface, the direction of plastic flow and the tangent elastic moduli
without involving their gradients. In this procedure the elastic predictor stress is returned
to the yield surface in successive steps. Each one of these steps involves a projection of
the stresses onto a linear approximation of the yield surface or “cut”.

The extension of the return mapping algorithms to nonlinear hardening rules and the
development of the consistent tangent moduli was considered by SiMo and TAYLOR [28]
The consistent linearization of the response function resulting from the integration algo-
rithm provides the quadratic rate of asymptotic convergence. When the radial return
algorithms are employed in conjunction with the so-called elasto-plastic tangent moduli
that are obtained from the continuum model by enforcement of the consistency condi-
tion, the quadratic rate of convergence is lost. This fact was recognized by NAGTEGAAL
[29] for a plastic material with isotropic hardening. The problem of linearization of the
discretized weak form of the momentum balance equation (virtual work) and the con-
sistency between the tangent operator and the integration algorithm employed in the
solution of the incremental problem were considered by HUGHES and PisTER [30] and
PiNsKY et al. [18] as well as by WRIGGERS [31] and GRUTTMANN and STEIN [32].

It has been emphasized by PiNskY et al. [18] that some numerical integration schemes
applied in the past to spatial rate constitutive equations have employed difference oper-
ations on the spatial stress components. However, such quantities have no mathematical
sense, for the linear space operations can only be applied to relate tensor fields which
are determined on the common configuration. The set of all configurations of a body



350 R. LAMMERING, R. B. PECHERSKI AND E. STEIN

can be shown to be a smooth manifold (cf. MArsDEN and HuGHEs [33]). A tensor field
defined on a particular configuration is a member of the tangent space associated with
that configuration. Therefore, tensor fields defined on different configurations belong
to different linear spaces and cannot be combined by means of the linear space oper-
ations such as addition and subtraction. This leads to the concept of pulling back of spatial
quantities to a common reference configuration in order to define precisely difference
operators to be used in numerical algorithms. This is the reason why the linearization
of tensor fields defined on the spatial configuration can be properly expressed in terms
of pull back, push forward and Lie derivative (cf. Appendix for the pertinent defini-
tions and references). These geometrical concepts are applied sometimes for the formu-
lation of the covariant theory. Covariance embodies material frame indifference with
respect to arbitrary spatial diffeomorphisms. In [33] the mathematical theory of elasticity
was formulated as a covariant theory. Some attempts have also been made to extend
such an approach to inelastic materials with internal variables (cf. e.g. Simo [34] and
PERZYNA [35]). The first comprehensive and critical analysis of the application of the
Lie-derivative in continuum mechanics was provided by Guo ZHONG-HENG [36]. This
problem is also tackled in the paper.

The aim of the paper is to formulate the new constitutive equations of elastic-plastic
solids with strain-induced anisotropy and developing voids. The model proposed by
GURSON [2, 3] and generalized by MeEar and HuTtcHINsON [8] is extended to formulate
the flow condition and the equation describing the growth of voids. The anisotropic
hardening of porous material is described in terms of the combined isotropic-kinematic
hardening model which appears to be a certain combination of the hardening laws of
Prager and Ziegler. The considerations are limited to the associated flow rule; this is
related to the simplified assumption that the nucleation of voids during the process is neglec-
ted. The new rate equations are formulated by means of the objective rates involving the
relation for plastic spin.

The theory derived is complemented with finite element formulation and numerical
examples. In the numerical approach, the discussed operator split and return mapping
strategy is applied. The Newton-Raphson algorithm is used to solve the system of non-
linear equations. The Lagrangian form of the principle of virtual work is linearized for
this purpose. Finite element implementation is based on a Lagrangian convective coordi-
nate formulation as described by GREEN and ZERNA [37] (cf. NEEDLEMAN [38]). Due to
this the total Lagrangian formulation of the principle of virtual work can be directly
related to the spatial rate equations, for the components of the Kirchhoff stress tensor
are equal to the components of the second Piola-Kirchhoff stress tensor and the compo-
nents of the rate of deformation tensor, referred to the current configuration, are equal
to the components of the material rate of the Green-Lagrange strain tensor, referred
to the initial configuration. By the integration of the rate constitutive equations of
hypoelasticity and elastoplasticity formulated in the current configuration, the principle
of objectivity was preserved (cf. PINSKY ef al. [39]). Geometrically, the calculation of
the elastoplastic case can be understood as the return mapping of the point in the stress
space, reached in the elastic predictor step, onto the yield surface in successive steps.
At every step, the updated stresses are computed by projecting the result of the previous
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iteration onto the linear approximation of the yield function. The finite element formu-
lation is implemented into the general purpose computer program FEAP (Finite Element
Analysis Program), developed by R. L. Taylor and described in ZieNKIEWICZ [14]. Two
examples are considered to show the correctness of the numerical procedure and to des-
cribe the behaviour of the material: the problem of simple shear and the necking of
a cylindrical bar (cf. LAMMERING (40)].

2. Kinematics

Consider the motion ¢, of a body described by introducing the initial configuration
B at time ¢, and the current configuration ¢(B) at time ¢. The position vectors X and
x represent a particle X in the configurations B and ¢(B), respectively; x = ¢,(X). A con-
vective coordinate net is introduced, which can be visualized as being inscribed on the
body in the initial configuration and deforming with the material. The convected coordi-
nates, @'(i = 1, 2, 3) serve as particle labels and the position vectors X and x are con-
sidered as functions of @' and the time ¢, i.e.,

X = X(0', 1),
x = x(@',1).

Covariant base vectors of the material net in the intial configuration, G;, and in the current
configuration, g;, are defined by the total differential

2.1

('))2 ; i :
dx:'a’j‘. de —G,dO, 1—19233’
2.2) X
X i — . @ o=
dx = — o d0' = gd6',  i=1,2,3.

Contravariant base vectors are related to the covariant base vectors by the equations
GoE=8, LI=1.25%
(2'3) gi‘gj:(s;! ivj=]v293-

Application of the chain rule lead to the following relation between the base vectors:

ax X
where F is the deformation gradient. The tensor F can be presented in the following form:
(2.5) F = gz®Gi = 5f(gz®GJ) = gu(gi®Gj) = GU(&‘@GJ),
where
8y = 8i &
28 GYJ =G G

The Green—-Lagrange strain tensor E is given by

Q2.7 E=%(FT-F—1),
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or due to Eq. (2.5)

(2.8) E = ;— (8i,—Gi) G'®G.

The material time derivative of E is given by the expression

(2.9) E:%(FT-F%-FT-F)-GJ.

where the dot indicates the material time derivative. The component form of Eq. (2.9)
reads

(2.10) Ey=GpE.G = -;Gi-(FT-F+FT-l'T)-GJ-.

The Almansi strain tensor e is referred to the current configuration and may be expressed
in the form

2.11) e= % (1-FT-FY

or due to Eq. (2.5)
1 . .
.12 e = (8,~Gyg'®g"

The velocity gradient grad v leads to the following kinematical relations:

L = gradv = F-F1,
(2.13) L=D+W,

D= :'2 (L+L7), W= -;-(L—L"),

where D is the rate of deformation tensor and W is the material spin tensor.
The components of D with respect to the covariant base vector of the current con-

figuration are calculated as
1 . ‘ . 1 . .
214 D;=g-"D-g = 'fgi “F-F'+F "' F)-g, = —2"—G1 “(F"-F+FT-F)-G;,.

Comparison with Eq. (2.10) shows that the components of the material derivative of
the Green—Lagrange strain tensor, referred to the initial configuration and those of the
rate of deformation tensor, referred to the current configuration, are the same.

The application of the Lie derivative to the Almansi strain tensor e yields

(2.15) Lee=D.

In plasticity of single crystals it is usually assumed that the dislocations traversing a volume
element produce a change of its shape but they do not change its lattice orientation. The
macroscopic counterpart of such a situation in finite deformation plasticity of polycrystals
is the Mandel’s concept of the intermediate relaxed configuration, called isoclinic, in which
the chosen director triad always keeps the same orientation with respect to the fixed axes.
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The relaxed configuration is related to the assumption of the existence of the instantaneous
natural state (KLEIBER and RANIECKI [41]). Due to this the unique decomposition of the

deformation gradient F is provided, MANDEL [42], LoreT [43], KLEIBER and RANIECKI
[41] and SmDoroFF and TeODOSIU [44]

(2.16) F = Fel'FDly

where F., and F,, correspond to elastic and plastic transformations, respectively (cf.
also DAFALIAS [45], PECHERSKI [13] and RANIECKI and SAMANTA [46] for a more detailed
discussion of these concepts and further references).

The following decomposition can be derived (cf. SiMo and OrTiz [27] and WRIG-
GERs and STEIN [47]):

2.17) L,e = L,e,,+Lyey,,
where
1
e = 5 (1-F5"-Fa),
(2.18) i
€p = 2 FaT Fo'-F T -F1)
are respectively the elastic and plastic Almansi strain tensors. The formula (2.17) is valid

in case of large elastic and large plastic deformations. If the elastic deformations are
assumed to be small, it can be rewritten as

(2.19) D = D, +Dy,,
where
1 1
(2.20) D, = 5> (La+L{), Dy = 5 (Lo +Lgy),
(2.21) Ly =¥ Fg', Ly = Fpl ‘For.

3. Balance laws

The axiom of local mass conservation reads
(3.1) 0o = detFo,

where p is the density. The relation between the volume element in the initial configuration
dV and the current configuration dv is given by

(3.2) do = 2° gV = detFav.

Q
The principle of balance of local momentum is expressed by
(3.3) DivP +0ob = g0 X,

where P denotes the Ist Piola-Kirchhoff stress tensor. The body force oob and the inertial
force oox will be neglected in the following.
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The principle of local moment of momentum takes the form
(3.4) P-F' =F-PT
and shows, that P is not symmetric. The relations for the tensors of the st Piola~Kirch-

hoff stress P, the 2nd Piola—Kirchhoff stress S and the Cauchy stress T as well as the
Kirchhoff stress t are given as follows:

(3.5) S=F'-P,
1
3. . p.pr
(3.6) T=— P F,
(3.7) T = (detF)T = F- S ¥,

In the convective coordinates the components of the 2nd Piola-Kirchhoff stress tensor

S = SYG;®G; and the components of the Kirchhoff stress tensor T = 7,/g,®g; are

given by the identity

(3.8) T = §Y,

This can be shown in the same way as the identity £;; = D;; in Egs. (2.10) and (2.14).
In the equations describing the behaviour of elastic-plastic deformations with com-

bined isotropic-kinematic hardening, the rates of stress and back stress appear. The for-

malism of the Lie derivative is sometimes applied to define objective stress fluxes.
According to the discussion in the appendix, the representation of the Lie derivative

of the stress tensor field is not unique. The expression of the Kirchhoff stress T respectively

in the covariant, contravariant and both mixed bases

T, = 17g,®g;,
3.9 T, = 7,8 ®g,
T, = 1,508,
T, = Tigi®g;

«can lead to four different representations of the Lie derivative L,* (MARSDEN and HUG-
HES [33], pp. 99-102, box 6.1). The Lie derivative of the Kirchhoff stress tensor T expressed
in the covariant base vectors takes in the absolute notation the form

(3.10) Lt =1, -L-7t,—7,-L".

This representation corresponds to the Oldroyd derivative. Equivalently, the Truesdell
derivative of the Cauchy stress 6, = o'/g;®@g; can be written as follows:

(3-11) chl = LUTI+TltrD.

All the representations discussed above are reduced to the one unique expression

(3.12) Lt=1=1t+1-W-W-1,
if and only if the velocity field v is a Killing vector field for the metric g. In such a case,

v
each map ¢, ; of the flow of v is an isometry and D = 0. The rate T corresponds to the
Zaremba-Jaumann derivative of the stress tensor T.
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When D # 0, the relation between the Zaremba—Jaumann rate and the representation
of L, in the covariant basis (Oldroyd rate) takes the form

(3.13) T =L+t -D+D- 1.

“l“

This relation will be used frequently in further considerations, therefore the index
will be omitted in the following.

The first comprehensive and critical discussion of the application of the Lie derivative
in continuum mechanics was presented by Guo ZHONG-HENG [36] where also physical
conditions were considered. One of these conditions, very important in the theory of
plasticity, was formulated by PRAGER [48]. It requires that vanishing of the objective
time derivative of the second order tensor A should induce vanishing of the time deri-
vative of its arbitrary invariant:

(3.14) E K = s Ty = T = s = B,

Fulfilment of this condition leads to the Zaremba-Jumann-type representation of the
objective rate of A,

The principle of virtual work is a formulation which is equivalent to the balance of
momentum, Eq. (3.3). This work principle, often referred to as weak form of the balance
of momentum, is applicable in a general way because no further assumptions, e.g., the
existence of a potential, are made.

The derivation of the principle of virtual work starts with the balance of momentum,
Eq. (3.3), which is scalar multiplied with a vector-valued function %, usually called virtual
displacement or test function. The integration over the volume B of the body under con-
sideration yields
(3.15) J o,b mdV+ | DivP-ndV = 0.

B B
The boundary conditions are introduced for the displacement field u and the surface trac-
tions t on the part 6B, and the part on ¢B, of the surface of the body, respectively

u=u on 08B,

3. ~
3:16) t=P-n, on dB,.

The partial integration of the second term of Eq. (3.15) using the divergence theorem gives
with the boundary conditions (3.16)

(3.17) Gu,m) = [ [P:Gradn—oob-mdV— [t-ndd =0,
B By

Introducing the 2nd Piola-Kirchhoff stress tensor, Eq. (3.5), the principle of virtual work
may be rewritten as

(3.18) Gu,n) = [ [S:0E—pob-mldV— [t-mdd =0.

B 9B
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4, Constitutive equations

4.1. Constitutive relations of elasticity

For the sake of brevity and simplicity the isothermal processes will be considered

only. Assume the mechanical state variables (S, a) corresponding to the instantaneous
natural state in the intermediate configuration, where

4.1 S=F5' v F5"

and a represent the structural variables, e.g., the back stress a and the isotropic harden-
ing parameter x.

. . 1
The elastic Green—-Lagrange strain E. = 727(F5Fe,' —1) can be calculated from

the free enthalpy # per unit mass that can be assumed in the form (MANDEL [42] and
KLrEBER and RANIECKI [41])

(4.2) H = H(S,8) = £+ H,@),
. 0K
4.3 Eg=—0 5.
(4.3) | 3
The rate of elastic strain is given by
(4.4) E., = N:S,
where
- . O
4.5 N=—p—F5—%
(43 o868

is the elastic compliance tensor and  is the density related with the relaxed configura-
tion. The transformation of Egs. (4.1) and (4.4) to the current configuration yields

(4'6) Dcl = N: %a

where

@47 Niju = (dethl)(Fe—i])ai(Fe_ll)ﬁj (Fe_ll)yk (Fe_lj)é.l};}mﬁyﬁ
and

(4.8) T=%—Lg - t—7-L%.

This is the Oldroyd rate with respect to the elastic transformation E,,. Taking into account
the decomposition

(4'9) Lel = Del+wcl-
Eq. (4.8) reads
(4.10) T=1-W, t+1t W, ,-D, -t—7 D,

where W, is the elastic spin and D,, is the elastic rate of deformation.
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It is typical for most deformed metallic solids that their distortional elastic strains
remain small under arbitrary loading conditions, whereas they can undergo large elastic
dilatational changes in shape under very high pressure. RANIECKI and NGUYEN [49] have
shown, studying thermomechanics of isotropic elastic-plastic solids at finite strain and
arbitrary pressure, that the tensor of elastic moduli in Eulerian description can be expressed
in terms of derivations of the free energy as simply as in the case of infinitesimal strains,
provided the logarithmic elastic strain is adopted as a state variable and that the values
of the ratios of principal elastic stretches U,,, F,, = R,,- U, are limited in a certain
interval (cf. RaNIECKI and NGUYEN [49] for further details). The large elastic dilatational
changes will be neglected in our further considerations. The dilatation produced by pro-
gressively developing voids will be discussed instead. It is therefore justified to assume
that U, is close to unity. In such a case Eq. 4.10 can be approximated by the Zaremba-
Jaumann rate with respect to W,

“.11 Txt=1-W, t+1 - W,
and the relation of elasticity can be rewritten in the form
4.12) t=C:D,, C=N"!
where C can be specified as follows:

(4.13) C = 2(1®1)+2ul.
Let us observe that due to the decomposition

(4.14) W =W_,+W,

Eq. (4.11) can be expressed by means of the material spin W and the plastic spin W,

(4.15) F= i (W-W, )ttt (W=W,) = T+ W, -1 W,,

and an additional equation for plastic spin is required. The rate expressed as in Eq. (4.15)
is sometimes interpreted as the rate corotational with the substructure (cf. PECHERSKI
[13]). This rate fulfills the discussed Prager condition and therefore will be applied in the
formulation of the constitutive equations of plasticity.

4.2. The model of porous plastic solid

For porous (dilatant) ductile materials, GUrsoN [2], [3] proposed an approximate
yield criterion and a flow rule that take into account the influence of hydrostatic stress
on plastic deformation and void growth. The yield criterion is based on an upper bound
solution for spherically symmetric deformations of a rigid plastic material obeying the
Huber-Mises yield criterion around a single spherical void. The initial yield surface is
given by

trv

42 :
+2fcosh ( >

(4.16) S

T
o )—(1+fo)=0-

Y y

Here, ' denotes the deviator of the Kirchhoff stress tensor, f, the initial void volume

fraction and o, the initial yield stress of the matrix material.
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In order to study the influence of the yield surface curvature on flow localization in
dilatant plasticity, MEAR and HuTCHINSON [8] take into account the combined isotropic-
kinematic hardening. In this case, the radius of the yield surface o, is calculated by

(4.]7) Ty = (]_‘b)o—y‘i‘be.

The constant b, b € [0, 1], influences the way the material hardens: b = 1 corresponds
to kinematic, b = 0 to isotropic hardening. The yield stress in case of purely isotropic
hardening is denoted by o¢,. Introducing the back stress tensor a the flow surface of the
material takes the form

J (v—a):(t'—a)
I T +2fcosh(

tr(t—a) )
=

1]

(4.18) &b = —(l+f? =0.
For /= 0 the yield conditions (4.16) and (4.18) reduce to the Huber-Mises criterion.
It is assumed by BisHop, HiLL [50] as well as by BERG [S1] and Gurson [2, 3], that the
direction of plastic flow is normal to the yield surface of the porous material if the matrix
material obeys the Huber-Mises yield criterion

1 .y 0D . 0P
(4.]9) Dpl = _ﬁ- (F..T) - a“é_ — ‘/1 —"a*T .
The vector w is perpendicular to the yield surface and H is a scalar function. The changes
of the yield stress and the void volume fraction are calculated by

. o (t—a): Dy,
(4.20) oy = bo, = b ey
4.21) f=U-trD,,.

Due to Egs. (4.17) and (4.18) different values of b produce a family of combined isotropic-
kinematic hardening surfaces. Following MEAR and HUTCHINSON [8] it is assumed that
each member of the family is constructed such that under proportional stressing it coin-
cides with Gurson’s purely isotropic hardening version. The difference between any two
members of the family appears only when departures from proportional loading path
occur. This requirement formulated by

T—a T

(4.22) —_—
M e

is fulfilled when the back stress tensor a is evaluated by Eq. (4.22)
(4.23) @ = R(t,a)(t—a),
where & is defined in the same way as * in Eq. (4.15). Specifying the evolution function

k(‘r, a) the different hardening laws can be obtained. For example, taking

(4.24) Rit,a) = O(t—a): if ,

the Ziegler hardening law proposed by MEAR and HUTHINSON [8] is obtained. The func-
tion Q could be evaluated from Eq. (4.22) and the consistency condition
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: b . 0P ., 0P . od .
(4.25) D = o 1T gy et Fo., O+ {,jfrf= 0.
This is not suitable for the radial return and the predictor-corrector procedure imple-
mented here, for in the calculation of the plastic corrector step, cf. Eq. (5.19) and (5.20),
the consistency condition is applied and all increments of T, &, oy, and fshould be expre-
ssed in terms of . Using the hardening law (4.24) would be related to the double appli-
cation of Eq. (4.25) what leads to tautology. It is more convenient from the numerical
point of view to assume that the rate of back stress a« is linearly dependent on D,,. Such
a dependence is provided by the Prager hardening law

(4.26) @’ = D

2 :
When f = 0 the parameter ¢ = §§. In porous materials, however, ¢ should be deter-

mined from an additional condition. The condition (4.22) will be assumed here.
Consider the projection of & in the direction of (t—a):

5 5 I,,:('r: a)
4. = i S (=
. : l ("—' ):(T—a) i

Taking into account Egs. (4.19) and (4.27) the evolution equation (4.23) can be rewrit-
ten as

(4.28) a = .1R(t—a),
where R will be determined from Egs. (4.22) and (4.25).

The function H is calculated from the consistency condition (4.25) and the evolution
equations (4.20), (4.21) and (4.28) as well as (4.22)

3 I, 8!15 od
4.29 —-(1- - = I
(4.29) H= (1—f>aM[ A= “’] D o o !
The calculation of the vector # in Eq. (4.19) yields
oD
(4.30) B= g

Thus the flow rule (4.19) can be rewritten as

1| oD ,| 0@ . 0D
(4.3[) D:,' = H [ E‘T . ]‘a‘t = A *é;‘r”’.
This means that an associated flow rule is obtained. The function R is calculated by use
of Egs. (4.22) and (4.25):
@
H+ —-aa?(l——f)tr %,, 7‘;”
(4.32) R= (o) >t T W,
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4.3. Elastic-plastic material

Taking notice of the additive decomposition of the rate of the deformation tensor
into an elastic and a plastic part (cf. 2.19), the combination of the constitutive descrip-
tion of an elastic material, (4.12) and plastic material, (4.31), yields the elastic-plastic
constitutive relation

1 00 _ b
— -1 )
(4.33) D= [c foen B - ].1:.

Its inverse formulation is calculated as

e 5ol 5%

b oD
r R

(4.34) t=|C— :D.

H+

The constitutive equations discussed are complemented by the equation for plastic spin
W, proposed by PAULUN and PgcHEersk! [11] (cf. also Pgcuerskr [13] for more detail
discussion and further references)

(4.35) W, =n(e-D-D-a),
where
(4.36) - DDy = e DA
V(@ D-D-a):(a-D-D-a)
and
3 3(? ..
(437) n = 7 l+3E;;clf)_2 69?7
- 2
(4.38) Ep) = T D, - Dy,
and
14
(4.39) el = [ .
0

The relation for plastic spin (4.36) has been derived from the analysis of the problem
of finite simple shear. The function # (4.37) results from the difference between the con-
stant angular speed produced by the material spin W and the angular velocity of the
material line element lying initially perpendicular to the direction of shear. The angular
velocity of such a material line embodies the average lattice spin over the polycrystalline
volume element. The function specified in Egs. (4.37) provides satisfactory results in the
analysis of the simple shear traction problem and the axial elongation predicted theore-
tically conforms with experimentally observed Swift effect, PAULUN and PECHERSKI [12].
The analysis of the simple shear traction problem under reverse loading requires modi-
fication of the function (4.37), as discussed in [13].
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5. Finite element formulation

The starting point for the finite element formulation is the principle of virtual work,
(3.17). Since this equation is nonlinear in the displacements u, an iterative numerical
algorithm has to be employed for its solution.

The Newton-Raphson algorithm will be implemented to solve the system of nonlinear
equations. For this purpose it is necessary to linearize the principle of virtual work.

5.1. The linearization of the principle of virtual work

The basic equation for the linearization procedure with respect to a deformed con-
figuration, described by the displacement vector u, is expressed by

(5.1 G(u,n; Au) = G(u,n)+DG(u,n) - Au.

Equation (5.1) may be interpreted as the expansion of Eq. (3.18) into a Taylor series.
The expression DG (u, y) - Au, in which Au denotes the displacement increment, is cal-
culated by the formula

(5.2) DG(u,n) - du = —d(if [G(a+edu, n)]lo.=-

The Newton—Raphson algorithm is obtained when Eq. (5.1) equals zero
(5.3) G(a,n) = —DG(u, ) * Au.

The linearization of the principle of virtual work (3.18) results in
(5.4) DG(u,m) Au = [ {GradAu-S+F [DS(u)- Au]}: GradndV,
B,

in which quantities with a bar are related to the known configuration. The surface trac-

tions t vanish because they do not depend on the displacements. The linearization of the
2nd Piola-Kirchhoff stress tensor is calculated by use of the chain rule

aS
JE

Now, the tangent operator (5.4) may be rewritten in the form

(5.5) DS(@) - Au = . :DE(u)- Au = ; (FT - Grad Au+Grad” du- F).

(5.6) DG(u,m)-du = fGradAu S:GradqndV

fF [--—— (FT - GradAu+GradTAu~f)]:GradndV.

The expression dS/JE depending on the constitutive equation is calculated by its spatial
counterpart. Following WRIGGERS [31] the linearization of a spatial tensor field, i.e., the
Kirchhoff stress tensor =, is obtained by its Lie derivative

5.7 Lxt=F- {;e [F~! - t(u+edu) 'F"T]Ezo}--FT =F- { i [S(u+ edu)], - 0}

7 Archiwum Mechaniki Stosowanej 3/90
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It is visible that the linearization of the Kirchhoff stress tensor < is the spatial formula-
tion of the linearized 2nd Piola-Kirchhoff stress tensor S. The components of these lin-
earized tensors are equal, c.f. (2.14). By the chain rule it follows

(5.8) L(x) = %‘-;L,,(e).

In a convective coordinate net, the components of L,(e) are equal to the components
of the linearized Green—Lagrange strain tensor DE(u)- Au, c.f. Eq. (5.5). This means
that the components of dS/JE can be substituted by the components of ov/de

oSy értl

¢ OB T

which will be calculated from the constitutive equation.

5.2. Integration of rate constitutive equations

The algorithm is based on updating the known variables at a converged configura-
tion B,, deformation gradient F,. plastic variables a,, oy, f» and stresses 7, to their
corresponding values F,,,, &,,1, Opni1s frr1 and T,,., on the updated configuration
B, .. The geometric update from B, to B, , is assumed to be given.

From an algorithmic point of view special care must be taken in the integration of
rate constitutive equations formulated in the current configuration because the principle
of objectivity has to be preserved (PINsKY, ORITZ, PISTER [20]).

In a material description the integration scheme is given by

i1

(5.10) Swe1 = So+ [ Sar.

In

Introducing Eq. (3.7) and an intermediate configuration given by the deformation gradient
Fu+a

(5.11) Frio = ¢F, . +(1—)F,,
Eq. (5.10) may be expressed by the Kirchhoff stress tensor with

Iniy
(5.12) prr Tae Foli =Fol- 7 FoT 4 f Folo: t Friade.

In
Objectivity is preserved by the integration algorithm for « = 0.5. This means that the
increment of stress has to be calculated in an intermediate configuration.

5.2.1. The hypo-elastic case. In order to calculate the components of dtv'//de, from Eq.
(5.9) the approximation
8t GL(7Y)

1 N Bl
G.43} dey dDy,
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is made. The constitutive equation (4.12) is rewritten with the help of Eq. (3.13) in the
form
(5.14) L(t)=C:D—x-D-D"r.
The index notation L,(z'/) = (CYK — ¢ikgi! — 7¥/gi) D, makes the derivative with respect
to Dy, easier and leads to
dL,(t)
b
These components replacing the components of dS/dE in Eq. (5.6) complete the tangent
operator.

Equation (5.12) demands to refer all quantities of Eq. (5.14) to an intermediate con-
figuration. This is done for the elasticity tensor CY* = u(g™g/ +g''gi*)+ Ag'ig by cal-
culating the quantities g'/ from the deformation gradient F,,, of this configuration

(515) — pijkl — Cijk[_.ﬂikgjl_tkjgil.

(516) g:;";q = Gi ) (F:+CLFII+0:) ) GJ7
and for the stress tensor t by the pull back /push forward operation
(5.17) Tura = Fosa @7 0 F. 7)) Flia.

5.2.2. The elastic-plastic case- In consequence of the additive structure of the constitutive
equations for elastic-plastic problems, return mapping algorithms have been proposed
for the integration of the constitutive equations, splitting the calculation into an elastic
and a plastic part with the application of the methodology presented in SiMO, ORTIZ
[27] and OrTIZ, SiMO [26].

For the moment it is assumed that the deformation process from the configuration
B, to B, is purely elastic and that there is no plastic response of the material. Combi-
ning the plastic variables &, o), and f into the vector q the elastic constitutive equations
can now be summarized as follows:

D =D, +D; = D(),
L(t) =CD-7-D-D-'~,
(5.18) D, =0,
L@ = 0.

The stresses calculated in this way generally violate the yield condition. Therefore, this
elastic predictor step has to be followed by the plastic corrector. The plastic part of the
constitutive equations is defined by

D =D,+D, =0,

L,(r) = —C:Dy,,

. 0P

(5.19) D, = A—a-;,

L,(q) = Ah(g, 7).
In this equation h denotes a simplified notation for the evolution equation of the plastic

variables, summarizing Egs. (4.20) (4.21) and (4.28). The right hand sides of Eqgs. (5.18)
and (5.19) add up to the right hand side of the total rate constitutive equation.

7
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The numerical procedure in calculating the unknown values in the updated configur-
ation is as follows: After the elastic predictor step, which is a straightforward cal-
culation, the stresses violating the yield surface are computed iteratively in the plastic
corrector step. For this purpose the yield condition is expanded into a Taylor series

in order to calculate the unknown parameter A,

0P b oD b | :

%) O =Dy A e ey
(5 0) lﬂ=‘tg+ 8T T=To B aa (T=To xt do—M i1'='vo = af :t=-mj
9=qo a=go a=1qo g=4do

Table 1. Numerical procedure of the solution of elastie-plastic problem.

A) geometrical update
1) Upyy = 4p+Iu
2) deformation gradient for the incremental objective integration
Fuoia = oF, + (1 —2)F,
3) increment of strains
AE = Epyy —E,
B) elastic predictor

1) push forward of the stress and the back stress tensor
PLyid o from T Flegl , from o’

2) elastic constitutive equation with the Zaremba-Jaumann derivative of the Kirchhoff
stress tensor
Pi_lkl o Ciikl_ﬂr"LT’l"I;ngjl_FL.r:ilgll
3) calculation of stress
Ol | = 7+ PN AE,
4) calculation of the back stress tensor
Ol = alf — (PHalt, g+ ey 18 B
C) check the yield condition
‘ (O)O.M.IH—]. = OM,n; m’ﬁﬁi = ﬁz
“”‘pn-i-l = (D((O)T:{Fu (O)fxriu'iq.l s OV pg s ts (D)f;l-}-l) =0?

¢ ol o (O3 RE o o 0N s — (© o
yes: Tnﬂ.; = ( )T:ﬂ.l, ol = @il 15 Oaguer = ¢ Yopns 1 Jarr = Ofasy

no:i=0
D) plastic corrector
AA = A- At in accordance with Egs. (5.21) and (5.22)
D
3(f)rﬁl+ i

ij i ij i ij i i
gl | = GOgid 4 RIACOTY, = Oafly )

U+”T:.j+1 = (”Trirj;rl*- Atk

b& awd
i —(f . . = ¥ 4
DG ey = Oapgpey +44 o e & (Rl — gl ) o
Faans 1 (1= 1) [
i+ )y i) h o
Ul o= Of +AAQ=Pf ) - S
A P4
E) convergence check "
@((l+i)7':|J+i~“HJO-:;],g,L(H”GM,..-;-X,( H)fn_‘h:l) = &7 1

[ Y € o P T S R € R RS A — (i B S S
yes: Tplpy == WAl g OC,',J+| = i+ )CZ,,,J+1, Omart = 000 0y s furr = UL ‘

no: i «i+1, go to D)
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With the evolution equations, proposed in Sect. 4.2, it is possible to express all the incre-
ments in Eq. (5.20) in terms of A. The Newton—Raphson algorithm is obtained when Egq.

(5.20) is set to zero. A is calculated as
¢|‘l’=fo
(5.21) | = :‘\:"
: - n(p
520 T=2 .c.?® %% z-g
CT ==, cT dr [ T=To
“ng” 4=qo
b | L b | oD
T B e b~ i R L T
4=qo

a=aqo

A more detailed description of the procedure is listed in Table |. Geometrically, the
calculation can be interpreted as the projection of the point in the stress space, obtained
by the elastic predictor step, onto a sequence of linearized yield surfaces. The iteration

is terminated when the yield condition is satisfied within a given tolerance.

6. Examples
The finite element formulations pointed out are implemented in the general purpose

computer program FEAP, developed by R. L. TAyLor and described in ZIENKIEWICZ

[14].
Two examples will be considered to illustrate the correctness of formulation and to
describe the constitutive behaviour of the material: the problem of simple shear and the

necking of a cylindrical bar.

6.1. The problem of simple shear
The problem of simple shear is used to verify the computational results in case of

Mises material with combined isotropic-kinematic hardening without voids. The finite

0 L

FiG. 1. Discretized model of simple shear.
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element mesh is shown in Fig. 1. The shear deformation is enforced by a displacement
rate, subjected to the nodes at the top of the structure.

Consider a material with purely kinematic hardening and with application of the
Zaremba-Jaumann derivative in the evolution equation of the back-stress tensor a.
A semi-analytical solution is presented by ATLURI [52] for the ratio o,/G = 0.1225,
where o, denotes the yield stress and G the elastic shear modulus, The ensuing stress-
displacement relation and the components of the back stress tensor as a function of the
displacements are displayed in Figs. 2 and 3, respectively.

. Uy
T’k ‘ iy ,
(kN/em?) . f d %a gﬂa kN/cm
1300 S g 5
Gy = 7413 kN/cgn
> =942 kN/cm
1000 |- oy, L1om 3 /.
o~ S~
’I \o
/O/ \o \\\ 12
rd \ o, T
500 - /O/ . 5
/o/’ i own :.saluﬁon \\\o.Tﬁ=— 22
100 £~ | R Aﬂluri 452] . | 1 | ™o _
a 1 2 3 4 5 6 u, (cm)

F1G. 2. Simple shear, kinematic hardening with application of the Zaremba-Jaumann rate. Comparison
of the computed stress-strain relation with the solution of ATLurt [52].

a{/( u
2! B e
(kN/z;gr ) P_ E=30000 kN/cm?
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O// O\\
500} i oL
07 O\o \0\ a=-o 22
_~° N
100 - fLow™ | 1 i (\9\ . | | L ?\‘o——>
0 1 2 3\0 4 5 & u,(cm)
=== Atluri [52] g, gt
o awn solution

FiG. 3.Simple shear, kinematic hardening with application of the Zaremba-Jaumann rate. Comparison
of the computed back stress-strain relations with the solution of ATLURI [52].

From there it can be seen that the computational results agree with the semi-analyt-
ical solution. This illustrates the correct implementation of the equations describing
phenomena in the finite deformation range. On the other hand, the well-known oscilla-
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tory behavior of the components of the stress tensor and the back stress tensor can be
observed.

In a physical sense, more realistic results are obtained when the time derivative pro-
posed by PAULUN, PgcHERSKI [11] is applied in the evolution equation of the back stress
tensor. In order to have a small influence of elastic material behavior, which is neglected
in [11], a small initial yield stress and a large Young modulus were chosen. The material
constants were taken from an aluminium alloy: o, = 207 MPa, and £ = 414 MPa. The
solution given in [11] as well as the numerical results are displayed in Fig. 4.

rjk/ay A
5 -

Paulun, Pecherski [11]
o own solution

I 1 | | i | 1 | P

o 1 2z 4 6 8 10 UT(CTT’)

F1G. 4. Simple shear, kinematic hardening with the application of the substructure corotational rate (cf.
PauLuN and PgcHerskI [11]). Comparison of the computed stress-strain relation with the solution
obtained in [11].

It is visible that the shear stress and the normal stress increase now monotonously with
the displacement. Again, there is a good agreement between the finite element solution
and the semi-analytical results.

6.2. Necking of a circular cylindrical bar

Consider a circular cylindrical bar in uniaxial tension enforced by an axial displace-
ment rate at the ends of the bar. The geometric data and the finite element discretization
are given in Fig. 5. The material properties are: E = 210,000 MPa, v = 0.3, ¢, = 200 MPa.
The hardening function of the material is given by the modified Ramberg-Osgood law

, _ lLlao, a \" 1\"
Wl =55 - () |

which has been used, e.g., by ArGYRIS, DoLTsINIS, KLEIBER [53] and KLEIBER [54]. The
hardening exponent is assumed to be 8. The ends of the bar are cemented to rigid grips.
A small geometric imperfection has been given to the model prior to loading.
Various calculations with different constitutive assumptions are carried out:
isotropic hardening and kinematic hardening without voids,
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F1G. 5. Necking of a circular cylindrical bar for isotropic hardening without voids. Load-displacement
diagram and the diagram displaying the reduction of the midcross-section with increasing axial elongation.
Comparison with the computational results obtained by KLEIBER [54].

isotropic hardening and kinematic hardening with an initial void volume fraction
JS=0.04.

In case of isotropic hardening without voids, the results can directly be compared
with those of KLEIBER [54]. In Fig. 5 both solutions are presented in the load-displacement
diagram as well as in the diagram, displaying the reduction of the midcross section with
increasing axial elongation.

There is a good agreement between the curves up to the maximum of load. However,
in the present study the maximum is reached at an axial elongation u/l, = 0.053, whereas
in Kleiber’s solution it is calculated at u/l, = 0.06. This difference may result from the
finite element discretization which is finer in the necking region in the present study.

In Fig. 6 the same results are presented, but now kinematic hardening takes place.

It is visible that the results do not differ from those calculated with isotropic harden-
ing up to the maximum of the load deflection curve. In the case of kinematic hardening,
however, the maximum is reached at an axial elongation u//, = 0.051 which is a little
less than in the case of isotropic hardening. Furthermore, the curve applied to Kkine-
matic hardening decreases much more with further elongation. The deformed mesh at
maximum load is shown in Fig. 7.
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FiG. 6. Necking of a circular cylindrical bar for isotropic and kinematic hardening without voids. Effect
of kinematic hardening on the load-displacement and the reduction of the midcross section with increasing
axial elongation.
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Fig. 7. Necking of a circular cylindrical bar. The deformed mesh at maximum load.

These results agree with the studies of different authors (e.g., MEAR, HUTCHINSON
[8), TVERGAARD [9])., acknowledging that the increasing yield surface curvature favours
plastic localization.

In case of materials with voids the results are displayed in Figs. 8 and 9. In the load-
displacement diagram all the curves coincide up to the maximum load. Those referred
to the void containing material, however, descend steeper than the corresponding ones,
referring to voidless material, Fig. 8. Furthermore, it is visible in Fig. 9, that the void
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FiG. 8. Necking of a circular cylindrical bar for isotropic and kinematic hardening. Comparison of the
load — elongation diagrams for the voidless material with the material with the initial void volume
fraction f = 0.4.
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Fi1G. 9. Necking of a circular cylindrical bar for isotropic and kinematic hardening. The effect of kinematic
hardening on the development of voids in the different parts of the midcross-section.

volume fraction increases much faster in case of kinematic hardening. So it can be seen
again that kinematic hardening favours plastic localization. Just like in experiments, the
greatest amount of the void volume fraction takes place in the center of the bar.
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Appendix

In this appendix a brief summary of the notation and basic concepts of differential
geometry employed in this paper is given. The work of tensor analysis on manifolds of
ABRAHAM, MARSDEN and RATIU [55] as well as the texts on the applications for the con-
tinuum mechanics of MARSDEN and HuUGHES [33] may be consulted for further details.

Consider smooth orientable Riemannian manifolds (B, G) and (S, g) endowed with
Riemannian metrics G and g, respectively. B can be understood as the fixed reference
configuration of the body and S is the ambient space in which the motion of the body
takes place. Denoting by C := {@: B > S|p is C* embedding} the configuration space,
a motion of the body is the curve of configurations t e R — ¢,(X) € C and we can write

(A1) x=¢X) =oX,1), XeB.

The motion ¢, determines the material velocity as a vector field over ¢,, i.e., V,: B - TS,
defined as

(A.2) V.(X) = ~‘9?(%’9. ., XeB
and the material acceleration A,: B — TS,
(A3) A =20 xep

where T,.S is the tangent space to .S at x.

The spatial velocity v,: @,(B) = Tyx,S and spatial acceleration a,:¢,(B) = T,x,S
are defined as v, = V, o p~! and a, = A, o ;L.

The deformation gradient F of ¢ is the tangent of ¢; thus F = Tp. For X € B, F(X)
denote the restriction of ¥ to Ty B. Thus F(X): Tx B — T,x,S is a linear transformation
for each X € B. If {x'} and {X’} denote coordinate systems on S and B, respectively,
then the matrix of F(X) with respect to the coordinate bases g;(x) and G;(X), where
x = @(X), is given by
9¢'(X)

oXi
If tis a tensor field, defined on the deformed configuration ¢,(B), the pull-back of t through

the motion ¢, defines a tensor field T on B denoted by T = @ (t). For example, in the case
of a second order contravariant tensor the pull back operation takes the form

(A4) Fi(X) =

(A.5) T = (F=Y),(F ) (% 0 @),
or, in the absolute notation,
(A.6) T=F1'tFT.

Likewise, if T is a material tensor field defined on B, the push-forward of T through the
motion ¢, defines a spatial tensor field t on ¢,(B) denoted by t = @..(T). In this case, for
the example used above, the push-forward operation takes the form

(A7) th = F,FE (T o oY),
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or in the absolute notation
(A.3) t=F T -F".

Let v, be the spatial velocity vector field of a motion ¢,. Then the collection {fp,.slw,,, =
@ © @51 pe(B) = @ (B)} is the flow or evolution operator of v,.

Definifion of the Lie derivative

Let v be a C! (time dependent) vector field on S and let ¢, , denote its flow. If t, is
a C! (possibly time-dependent) tensor field on S, the Lie derivative of t with respect to
v is defined by

d
A9 Lt~ (7 zp,*,s(t,))} = go[ 29 (t,))

A general coordinate expression can be given for the Lie derivative of a tensor for arbit-
rary type, namely,

(A.10) (L.t = tde 7

v o
— 02 pa —all upper indices

k

dv L
+tgks 5 Tall lower indices,

where
2 Vi
(A.11) 1508 = g e i+ g tae fo

It is essential to note that such operations as pull-back and push-forward as well as the
Lie derivative have no unique representations, i.e., they do not commute with lowering
and raising of indices. The sufficient and necessary condition that these representations
are unique is that v be a Killing vector field for the Riemannian metric g.

When a map ¥:S — S is an isometry of a metric g, i.e., ¥* g = g, a vector field v is
a Killing vector field (or infinitesimal isometry) if each map ¥, of the flow of v is an
isometry in S.
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