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Shape sensitivity analysis and optimal design 
of physically nonlinear plates 

K. DEMS (L6DZ) and Z. MROZ (WARSZAWA) 

A UNIFORM variational formulation of sensitivity analysis for physically nonlinear plates is 
presented in terms of generalized stresses and strains. Both the external and internal boundary 
shape modifications are treated within this formulation. Next, optimal design problems for 
stress and deflection constraints are formulated and the relevant optimality conditions are 
derived using the concept of a linear adjoint plate. Finally, some illustrative examples of sensitivity 
analysis and optimal design problems are presented. 

Wariacyjne sformulowanie analizy wrazliwosci dla plyt fizycznie nieliniowych w zakresie teorii 
malych ugi~c jest przedstawione przy zastosowaniu uog6lnionych napr~zen i odksztaken. 
Rozpatrzono wariacje zewn~trznego ksztaltu plyty i wariacje ksztaltu wewn~trznych powierzchni. 
Optymalne projektowanie dla warunk6w napr~zeniowych i odksztakeniowych zostalo nast~pnie 
rozpatrzone i warunki optymalnosci zostaly wyrazone jako warunki ekstremum odpowiednich 
funkcjonal6w. Przyklady ilustrujqce zastosowanie og6lnego podejscia wariacyjnego do analizy 
wrazliwosci zostaly przedstawione w koncowej cz~sci pracy. 

BapHa~HOHHoe c<PopMynHpoBaHH:e aHaJIH3a qyscTBHTeJihHOCTH ,n;JUI <PH3HqecJ<H HeJIHHeHHbiX 
llJIHT B o6JiaCTl{ TeopHH MaJibiX nporH60B npe,n;CTaBJieHO npH npHMeHeHHH o6o6meHHbiX 
HanpH>KeHH:if H .n;e<PopMa~Hif . PaccMoTpeHbi BHeiiiHHe sapHa~HH <PopMbi nnH:Tbi H sapHa~HH 
<PopMbi BHYTpeHHHX nosepxHOCTeif. 3aTeM paccMoTpeHo onTHMaJihHoe npoei<THpoBaHHe 
,ll;JIH YCJIOBHH HanpH>KeHHH H ,n;e<PopMa~HH H YCJIOBHH OllTHMaJibHOCTH Bbipa>KeHbl J<aJ< 
ycJIOBHH 3I<CTpeMyMa COOTBeTCTBYIOI.UHX <PYHI<~HOHaJIOB. flpHMepbi , HJIJIIOCTpHpyiOI.UHe 
npHMeHeHHe o6mero BapHa~HOHHOrO llO,IJ;XO,IJ;a I< aHaJIH3Y qyBCTBHTeJibHOCTH, npe,n;cTaBJieHbl 
B OI<O~aTeJibHOH qacTH pa6oTbi. 

1. Introduction 

THE PRESENT PAPER is devoted to a variational formulation of sensitivity analysis and 
optimal design of plates subjected to flexure within small deflection and strain theory. 
However, a nonlinear relation is assumed between generalized stresses and strains. Such 
a situation corresponds, for instance, to fiber-reinforced composite plates which exhibit 
nonlinearity even within small strain and deflection ranges, as a result of progressing 
damage and inelasticity within fibers or matrix. Thus the assumption of nonlinearity pro
vides a more accurate description of the deformation of composite structures subjected 
to flexure. 

In optimal design problems of such structures, local or global constraints are usually 
set on displacements and stresses. The objective function then corresponds to a minimum 
of weight or cost of material of a structure. In order to derive the relevant optimality con
ditions, explicit expressions for variations of constraint equations and objective functions 
in terms of the variations of design functions are to be determined (sensitivity analysis). 
For linear elastic structures such variations were derived in Refs. [1-5] for any stress~ 
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482 K. DEMS AND Z. MR6Z 

strain or displacement functionals assuming both material parameters and shape variations. 
The general case of sensitivity analysis in the case of physical nonlinearity was discussed 
in [8, 9] and the case of both physically and geometrically nonlinear beams and plates 
was considered in [10, 12]. The present work supplements the results of [10, 12] by consider
ing the derivation of variations of functionals for plates with respect to external and internal 
boundary modifications. In spite of the fact that our analysis will be limited to the geometri
cally linear case, extension to the geometrically nonlinear theory can easily be obtained 
by following the present analysis and the one presented in [10, 12]. The concept of an 
adjoint structure and its mechanical interpretation discussed in [1-4] remains valid in the 
nonlinear case. However, the stiffness matrix for the ad_ioint structure is specified as the 
tangent stiffness matrix of the primary structure. Hence the adjoint stiffness matrix is not 
constant but depends on the strain or displacement fields of the primary structure. This 
renders the iterative solution of the optimal design problem more complicated since the 
tangent stiffness matrix should be updated after each redesign step. 

In Sect. 2, the sensitivity analysis of an arbitrary functional with respect to variation 
of an external plate boundary will be discussed and in Sect. 3 the case of an interface 
variation within a plate will be considered. Variations of potential and complementary 
energies associated with shape variations will be derived in Sect. 4. In Sect. 5, the optimal 
design problem will be formulated and the relevant optimality conditions will be derived. 
Some illustrative examples will be presented in Sect. 6. 

2. Sensitivity analysis of an arbitrary functional with respect to external boundary variation 

Consider a plate occupying the domain A with the boundary S, Fig. 1. The plate is 
subjected to transverse load p, whereas either generalized tractions or displacements are 
specified on S. Denote the generalized stresses (i.e., bending and twisting moments within 
plate domain) by M, the associated strains (i.e., curvatures and torsion) by x, and the 

FIG. 1. Plate occupying domain A with boundary S. 
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SHAPE SENSITIVITY ANALYSIS AND OPTIMAL DESIGN OF PLATES 483 

lateral deflection by w. It is assumed that the nonlinear stress-strain relations are generated 
by strain and stress potentials such that 

(2.1) M(x) = 
0 ~~x), x(M) = 

0~~) 
where 

M 

(2.2) U(x) = J M · dx, W(M) = J x· dM 
0 0 

and the dot between two symbols denotes the scalar product or the summation with respect 
to indices of lower order tensors. The incremental form ofEq. (2.1) is expressed as follows: 

(2.3) 
o2 U 

dM = - - · dx = D · dx 
oxox ' 

where 

(2.4) 

o2 W 
dx= oM oM ·dM=C·dM, 

ox 
oM-. 

For a stable elastic material, D is a symmetric and positive definite tangent stiffness matrix, 
whereas C is a compliance matrix. 

Under applied loads the plate passes from its initial configuration to a deformed one 
specified by the deflection field w. In addition to the deformation process, let us consider 
a transformation process which modifies the plate domain, xr = x + cp, with the imposed 
transformation field cp(x) specified within A, Fig. I. Obviously this transformation field 
modifies the shape of the external boundary of a plate or its internal interfaces between 
different materials and affects deflection, strain and stress fields within plate domain. 

Considering a simultaneous variation of transformation and state fields (cf. [4]), 
any point P within plate domain, initially placed at x, is transformed to the actual position 
x* according to the rule 

(2.5) 

whereas the state fields for the actual configuration of plate are 

(2.6) 
w*(x*) = w(x)+ &w(x), x*(x*) = x(x) + Jx(x), 

M*(x*) = M(x) + ~M(x) 

w 
X 

M 

X x*= X+Oip 

FIG. 2. Variations of state field within ~late domain. 
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where b( · ) denotes the total variation of enclosed quantity with respect to a fixed Cartesian 
reference system. From Eq. (2.5) and (2.6) it follows that, Fig. 2, 

(2.7) ~w = <5w+w,kb(/Jk, Jx = Jx+x,kb(/Jk, 6M = <fM+M,kb(/Jk, 

where the comma denotes partial differentiation and <5( ·) = ( · )*(x)- ( · )(x) is the local 
state variation for a fixed configuration of the plate. Furthermore, th~ following transforma
tion rules occur (cf. [4]): 

(2.8) 

6(dA) = bq?k,kdA, J(dS) = (c59?k,k-nkc59?k,n)dS, 

~n1 = nj-n1 = (n1n,-c51,)nkc59?k,, 

btl= tj*-tj = (c5Jk-t)tk)t,c5q?k,b 

where dA, dS denote the area and boundary length elements, n, tare the unit normal and 
tangential vectors to S, respectively, and c511 denotes Kronecker's symbol. Note that the 
vectors n, t form the local right-hand orthogonal reference system (n, s) along the external 
boundary of a plate. 

Consider now any kinematically admissible deflection field wk and any statically admiss
ible stress field Ms within a plate of fixed configuration. For the small strain theory, 
the generalized strain xk is obtained from wk by a linear equation 

(2.9) 

where w~iJ is the in-plane second-order gradient of the deflection field. Thus the equilibrium 
condition for a plate can be expressed in terms of the virtual work equation, namely, 

(2.10) 

where · 

(2.11) 

are the boundary moment components with respect to a fixed Cartesian coordinate system 
and vs denotes the shear force along the boundary S, that equals ( [ 11]) 

(2.12) 

In view of Eqs. (2. 7) and (2.8), the total variations of Mfn and vs can be expressed as 
follows 

bVs = b(M!!. 1)n · + M,!!. · 6n . = <fvs + M,!!. ·k bmkn. + M!!. ·(n·n 1 - c5· 1)nk bmk 1 
'J· ' J•J ' J.J r ' 'J.J ' ' r , ' 

where c5Mfn and c5Vs denote the local variations for a fixed plate configuration. 
Consider now the following functional: 

(2.14) G = J 1p(M, x, p, w)dA 
A 

depending on generalized stress and strain fields, transverse load and deflection ·within 
plate domain. The major question now posed is how the value of this functional is modified 
as a result of transformation of plate domain. Thus it is our goal to determine the first 
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variation of G with respect to the variation of plate shape. Assuming "P to be a continuous 
and differentiable function of its arguments, the first variation of G equals 

(2.15) ~G = f ("P.M · JM+"P.x · ~x+"P.PJP+"P.wJw+"P~<fik,k)dA 

= f {1p,M · ~M+"P.x · ~x+"P.PJP+"P.w~w)dA+ f "P~<findS, 
where ~<fin = n · ~ cp denotes the normal component of boundary variation on S. 

To eliminate bM, J)c and ;rw from Eq. (2.15), let us introduce an adjoint, physically 
linear plate of the same shape as the primary one, but subjected to the imposed fields 
of initial stresses and strains specified by 

(2.16) 

and loaded by 

(2.17) 

Mai = "P,x, )(ai = "P.M within A 

pa = "P.w within A. 

Furthermore we assume that on the boundary S of the adjoint plate either generalized 
tractions or generalized displacements vanish and the adjoint plate is supported in the same 
way as the primary one. The stress field Ma within the adjoint plate is related to its strain 
field xa by the relation 

(2.18) Ma = DT . (xa- )(ai)- Mai 

with the stiffness matrix D specified by Eq. (2.4). Obviously M" satisfies the equilibrium 
conditions for the adjoint plate and xa is the associated strain field that follows from the 
deflection field wa. Using now Eqs. (2.16), (2.17) and noting that in view of Eq. (2.3) 
we have 

(2.19) bM = D· ~x, 

Eq. (2.15) can be rewritten in the form 

(2.20) ~G = J [(07
. • Xai+M"i) · "Jx+?p,p~p+pa~w]"dA+ J "P~<findS 

= J (xa · ~M-Ma · ;rX+?p;pJP+pa;rw)dA+ J "P~<findS. 
fdentifying now Ms, wk and xk with M"', ~wand <fx, respectively, the virtual work equation 
(2.10) can be written in the form 

(2.21) 

On the other hand, setting Ms = d:'\1, wk = wa and xk = xa, it follows from Eq. (2.10) 
that 

(2.22) 

Then, in view of Eqs. (2.21) and (2.22), Eq. (2.20) can be transformed as follows: 

(2.23) ~G = J (wa+"P.P)bpdA+ J (bVwa-~Minw~i-va;rw+Min~rw. 1 +1p~Q?n)dS. 

Thus the first variation of G is expressed in terms of local variations of boundary moment, 
shear force and deflection of primary plate along its boundary. 
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One can now express these local variations by means of total variations. Making use 
of Eqs. (2. 7) and (2.13) and noting the following identity that holds on the plate boundary 
s 

(2.24) f (Mil , kw~;-Mu. 1kwa)n 1 ~q;kdS = J [(Vw~k-M;nW~;k)~q;k 
- (M · )(a-pwa) ~({Jn+ (Vwa-Min W~;) ~({Jk , k+ (Mu W~i- Mlj ,Jwa)nk ~(/Jk,l]dS , 

Eq. (2.23) can be rewritten in the form 

(2.25) ~G = f (wa+1J.' .p)bpdA+ J [(1p-M · xa+pwa)~cp11 +(Vwa- M111 W~1) (~s. s -K~q;11) 

+ (Vw~k- M 111 w~ik + Vaw,k- Mrn w. ik) ~({Jk + Jvwa- JMln w~i- VJw+ Min Jw. ;]dS, 

where ~({)11 = ~<p · n and ~({Js = ~<p · t are the normal and tangential components of the 
transformation field along plate boundary and K denotes the curvature of S. Equation 
(2.25) expresses the first variation of any functional Gin terms of components of boundary 
tractions and deflection and their derivatives of both primary and adjoint plates with 
respect to the fixed Cartesian reference system as well as the total variations of primary 
state fields. Specifying boundary conditions, it is generally more convenient to specify 
them in a local coordinate system (n, t, b) associated with plate boundary, see Fig. 3a. 

a b l 
t 

FIG. 3. Boundary conditions along S ; (a) components of generalized surface tractions, (b) total variations 
of traction components. 

The generalized tractions along plate boundary are then the bending moment M, 
and generalized shear force Q which can be expressed in terms of Min and V as follows 

(2.26) 

where the twisting moment M 11 s along plate edge equals 

(2.27) 

During the infinitesimal transformation of plate boundary to its actual configuration S*, 
a typical point P passes to P* and the unit vectors n, t are translated and rotated to their 
actual orientation n*, t*, whereas the vector b is translated to b*, Fig. 3a, specifying the 
new local coordinate system (n*, t*, b*). The change in orientation of n and t in a global 
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fixed Cartesian coordinate system during this transformation is expressed by the last two 
equations of the set (2.8) that can be now rewritten in the form 

(2.28) 

whereas Jb = 0 and variation of the boundary length element described by the second 
line the set (2.8) can be expressed in the equivalent form 

(2.29) 

Consider now any vector field f(s) specified along plate boundary S, whose components 
in the global fixed Cartesian coordinate system are denoted by jj (j = 1 , 2, 3) and in the 
local coordinate system (n, t, b) by In, Is and Ji,, respectively. During the transformation 
process of plate boundary shape, f changes to f* with components In~, Is! and Ji,! with 
respect to the axes n*, t *, b*. The total variation of f with respect to a fixed coordinate 
system is defined as 3r-= f*-f with components bjj =It- jj. For purposes of our 
subsequent analysis, besides considering the total variations Jjj, let us introduce the 
corotational variations of components of f with respect to the local reference system, 
which do not take into account the rotation of this system during the transformation 
process. Since the components of f and f* are denoted by (J,,fs,lb) and (f,.~,fs!,f,~) 

in configurations Sand S*, respectively, then the corotational variations off are defined 
as follows: 

(2.30) 

* 0 0 

~f,. = f,.~-ln =Ifni -jjni = ~jjni+jj~n1 , 

~Is =Is~ -Is =It tt-jj tj = Jjj tj + jj Jtj, 

~/, = /,!-/, = f/bj-jjbj = bjjbj. 

The solution of Eqs. (2.30) with respect to Jjj provides the relations between the total 
variations ~jj of any vector field f and its corotational variations ~In, ~Is, ~Ji,. Noting that 
n3 = bn3 = t3 = bt3 = 0 and b1 = b 2 = 0, b3 = 1 and taking into account Eqs. (2.28), 
it follows from Eqs. (2.30) that 

(2.31) 
bjj = nJ bf,. + ti ~Is+ (n;fs- t;/n) (Kbq;s + ~(/Jn, s), j = 1, 2, 

~~3 = ~lb· 
Furthermore, for any quantity defined along plate boundary length, the following identity 
can be written: 

(2.32) ~[(-) ] = ~ [!!U_] = d[~(. )] 
,s ds ds 

d( ·) ~[dS] 

Lds ds 

In view of Eq. (2.29) it follows from Eq. (2.32) that 

(2.33) 

Using Eq. (2.31) we can now express the total variations !vf1n (i = 1, 2) in terms of coro
tational variations of the boundary bending moment Mn and twisting moment Mns' namely, 

(2.34) bMtn = nt~Mn+t;~Mns+CntMns-ttMn)(K~q;s+~q;n,s). 

Furthermore, we have bV = bV, and then in view of Eqs. (2.26) and (2.33) we can write 

(2.35) bV = ~Q- ~(Mns,s) = ~Q- (~Mns),s+Mns,s(~({Js,s- K~q;n) · 
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The relation between total and corotational variations of the deflection field w and its 
gradient along the plate boundary, in view of Eq. (2.31) and (2.33) has the form 

~w = !5w, 
(2.36) 

Jw,; = n; !5(w, n) +It( !5w),s- It W, s( !5cps, s- K!5cpn) + (n; W, s- I; W, n) (K!5cps + !5cpn,s). 

Moreover, we can write the two following equalities along plate boundary: 

(2.37) 
W,k !5cpk = W,s !5cps+ W,n !5cpn, 

W, tk !5cpk = - (n; Xn +I; Xsn) !5cpn- (nt Xsn + 1; Xs) !5cps, 

where 

(2.38) 

denote the curvatures and torsion of the deformated plate which are expressed in the local 
coordinate system (n, t ). 

Using now Eqs. (2.34)-(2.38) in Eq. (2.25) after some transformations and integrations 
by parts along the plate boundary, the first variation of the functional G can be expressed 
in the following form: 

(2.39) !5G = J (w0 +tp,p)3""pdA+ J [tp+pwa-Msx~-2MnsX~s+Qw~n+Q0W,n 

+M:xn- (Qwa-Mn W~ n)K- (Mn W~ s+ M:w,s),s] !5cpndS+ J (Mn,s W~ n-Q,s W0 

- M~W.ns+Qaw,s) !5cpsdS + J [!5Qwa- !5Mn W~ n-Qa!5w+ M~ !5(w,n))dS 

+ J [j\f~s ow- !5Mns WIJ + (Qwa- Mn w~ n- Mns w~ s- M:s w,s) !5cps 

+ (Mn w~ s- Mns w~ n+ M~w.s- M~s W,n) !5cpn],sdS. 

The last integral on the right-hand side of Eq. (2.39) vanishes when the plate boundary 
is smooth and all terms of this integral are continuous functions of the boundary parameter 
s. On the other hand, when there exist some singular points Si along the plate boundary 
at which either the plate boundary is not smooth or some terms of the last integral of Eq. 
(2.39) suffer discontinuities, it is reduced to the form 

(2.40) I [ .. .], s dS = }; { [ M:s] !5w- [ !5Mns] Wa +[ (Qwa- Mn W~ n- Mns W~ s 
i 

where [!] = f(S;)- f(St) denotes the jump of proper quantity calculated as a difference 
of its values on both sides of the singular point S;. 

Equation (2.39) expresses the first variation of any functional G defined over the 
plate domain A in terms of its integrand tp, deflections, generalized stresses and strains 
of both primary and adjoint plates as well as in terms of normal and tangential components 
of plate boundary shape variation. Note, furthermore, that since along the boundary w 
or Q and w. n or Mn are specified in advance, theq their corotational variations are also 
known and can be expressed in terms of !5cp. Similarly, the variations [ !5Mns] which are 
equal to the variations of concentrated forces at the boundary singular points can be 
calculated from the specified boundary conditions in terms of !5cp. 
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The formula (2.39) derived for the first variation of an arbitrary functional may appear 
to be rather complex. This complexity results from a general formulation of the problem 
and a general form of nonhomogeneous boundary conditions along plate edges. Even 
in the most general case, ·an terms occurring in Eq. (2.39) are computable and ~G may be 
calculated analytically or numerically. However, in most applications many of terms that 
appear in Eq. (2.39) will vanish and many others will have a simple form. Assume, for 
instance, the homogeneous boundary conditions along plate edges. Thus w or Q and w,n 
or Mn are equal to zero along the boundary of the primary plate. Since, in addition, the 
generalized tractions and/or displacements vanish along the edges of the adjoint plate, 
then Eq. (2.39) is simplified to the form 

(2.41) ~G = J (wa+VJ,p) ~dA + J ('IJ.'+pwa-Msu~-2Mns~s+Qw~ n+Qaw,n 

+ M~ Un) ~cpn dS. 

3. Sensitivity analysis for interface shape variation 

Consider now a two-phase elastic plate contained in a domain A and bounded by the 
boundary S, Fig. 4. Assume the plate to be composed of two materials occupying the 
subdomains A1 and A2 and separated by the interface F, that is A = A1 uA 2 • The interface 

FIG. 4. Two-phase plate with interface. 

can separate either domains of different material properties or domains of different thickness 
in a plate. Moreover, it is assumed that the interface r does not contain any singular 
points. Regardless of the finite jump of material properties or plate ridigity on r, the 
deflection field within the plate is continuous and smooth and the generalized internal 
tractions on r are continuous. Thus this assumption yields 

(3.1) 

5 Arch . Mech . Stos . 4/89 

[w] = 0, 

[Mn] = 0, 

[w.n] = 0, 

[Q] = o, on r, 
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490 K. DEMS AND z. MROZ 

where [ ] denotes the jump of the enclosed quantity on r calculated as a difference of the 
respective values in the domains A 1 and A 2 • Furthermore the continuity and smoothness 
of the deflection field w assure the continuity of tangential curvature and torsion along r, 
that is 

(3.2) 

The case when the internal tractions suffer discontinuity across Fwill be treated in a separate 
paper. 

Consider now an infinitesimal variation of plate configuration prescribed by a continuous 
and differentiable transformation vector field bcp(x). The domains A1 and A 2 are then 
transformed into domains Af and Ai, with the interface transformed into F*. We assume 
that when the interface r does not penetrate the external boundary s then the function 
bcp(x) vanishes on S so that the external shape of the plate is not changed. On the other 
hand, when the interface penetrates the external boundary at points A and B, see Fig. 4, 
then S can undergo the tangential transformation only, so that b<p · n = 0 on S. 

Similarly as in the previous Section, we introduce now an arbitrary functional G 
expressed in the form 

(3.3) G = G1 +G2 = f VJ1 (M, x,p, w)dA 1 + f VJ2 (M, x,p, w)dA 2 

A, A2 

J 1p(M,x,p,w)dA, 
AtUAl 

and derive its first variation with respect to the shape variation of the interface r. To do 
this, we shall utilize the results obtained in Section 2. First of all, introduce the adjoint 
plate that is defined by Eqs. (2.16)-(2.18). It is obvious that the adjoint solutions w", 
x", M" satisfy the continuity conditions along r, expressed in a form similar to Eqs. (3.1) 
and (3.2). Next, to write the expression for the first variation of Eq. (3.3), we apply Eq. 
(2.39) to both subdomains A 1 and A 2 of the plate domain A. Keeping in mind the conditions 
(3.1 ), (3.2) and those similar for adjoint fields, we then obtain 

(3.4) bG = bG1 +bG2 = J (w0 +VJ,p)bPdA+ J ([VJ]+[p]w"-[Ms]x~ 
-2[ Mns] x:s+M~[ xn]) bcpndF+ f (Mn,s w~ n -Q.s w"- M~w.ns+ Qaw.s) bcpsdS 

+ J [bQw"- bMnw~ n-Q"bw+M~b(w,n)]dS+ J [M~5 bW- bMn5 W0 

+ (Qwa-Mn w~ n-Mns W~s-M~s W,s) bcps],sdS+ {[M~s] bw-[ bMns] WQ 

- ([ Mns[ W~ s + [ M~s] W, 5) bcps- ([ Mns] W~ 11 + [ M~s] W, n) bcpn }~~~ ,. 

where { ... }/~~ denotes the difference of enclosed quantities at points B and A calculated: 
along r. 

When the interface r is a closed curve within the plate domain, then in Eq. (3.4) all 
integrals along the external boundary S and the last term in square brackets vanish. On 
the other hand, when r penetrates S, we assume that the points A and B are placed on the 
smooth parts Sa and Sb of the boundary S, so that S = SauSbuS0 , and the tangential 
transformation bcps of the external boundary influences these parts only. Moreover, we 
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assume that on the remaining boundary portion S0 there exist no such singular points 
at which concentrated forces are specified if this portion is unsupported. In view of such 
assumptions, and noting the following identities which hold at points A and B 

(3.5) (w,sO<J?s+w ,nO<J?n)r = (w,sO<J?s)s, 

where the symbols ()rand ( )s denote that the enclosed quantities are calculated along r 
and S, respectively, Eq. (3.4) is reduced to its final form 

(3.6) oG = f (wa+tp ,p)(fpdA+ f ([tp]+[p]wa-[M· xa]+Mn[x~] 
r 

+ M~[ un]) O<pndF + J (Mn, s W~ n- Q , s W0
- M~ W,ns + Q0 W,s) O<psdS 

SavSb 

+ J [oQw0 -0Mnw~n-Qaow+M~o(w,n)]dS. 
s. v sb 

When the primary plate is subjected to the set of homogeneous boundary conditions, then 
Eq. (3.6) is much simplified since the last two integrals on the right-hand side vanish. 

The assumption that the points A and B move along the boundary S during shape 
transformation of the interface r yields, in addition, the following relationship between 
normal variation of r and tangential variation of S at A and B: 

(3.7) I
s 1 lr 

O<ps = - - .- O<pn ' 
smy 

where y denotes the angle between S and r, see Fig. 4. The change of this angle during 
the transformation process is expressed as follows: 

(3.8) 

where IJ<pn denotes the normal component of the shape variation of r at A or B and K 5 , 

Kr are the curvatures of Sand rat A orB, respectively. If we assume no change of angle y 
during the transformation process, then the following constraint has to be set down on the 
rate of IJ<pn at A or B: 

o = (Ks 1 -~sin2y -Kr) o at A or B. <J?n. s sm y <J?n 
• 

(3.9) 

Up to now, we consider the problem of variation of an arbitrary functional G defined over 
the whole domain of a primary plate. Thus the functional G has been treated as the global 
structural response of a plate. However, the same approach can be applied to a closely 
related class of problems associated with variation of local generalized stress and strain 
components or deflection at a typical point x 0 of a plate domain, or associated with varia
tion of any quantity f(x0 ) depending on state fields at x0 • Using the well-known property 
of the Dirac delta fuqction IJ(x- x0), any local quantity f[M(x0), x(x0), w(x0 )] can be 
converted to the global one by the following relationship: 

(3.10) f(xo) = G = J f[M(x), x(x), w(x)] IJ(x- x 0 )dA. 

5* 
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Comparing Eq. (3.10) with Eqs. (2.14) or (3.3), it can be easily noted that 

(3.11) tp(M, K, w) = f[M(x), x(x), w(x)] €5(x-x0 ) 

and then the discussed approach can be used in order to determine bf(x0), with proper 
qualification of the adjoint plate. 

4. Variation of potential and complementary energies 

Consider now a particular case when the functional G coincides with potential or 
complementary energies of a plate and derive their first variations associated with the shape 
variation of external or internal boundaries. The analysis of such a case is simpler than 
in the general case since the solutions of ihe adjoint plate can be expressed in terms of sol
utions of the primary plate. 

Assuming the homogeneous boundary conditions along plate edges, consider first the 
potential plate energy that equals 

(4.1) Ilu = J [U(x)-pw]dA, 

where U denotes the specific strain energy per unit area of a plate. Comparing Eq. (4.1) 
with (2.14) or (3.3) we easily observe that 

(4.2) 1p = U-pw 

and then, according to the relations (2.16) and (2.17) the adjoint plate is loaded by a 
transverse load pa 

(4.3) 

with the imposed field of initial stresses 

(4.4) Mai = V',x = M 

and vanishing generalized tractions or displacements on S. Moreover, we should note 
that 

(4.5) V'.P = -w. 

Thus the state fields within the adjoint plate are 

(4.6) 

and the first variation of Ilu can be obtained from the general expressions (2.41) and (3.6). 
When the external boundary is subjected to shape variation, then from Eq. (2.41) we 
obtain 

(4.7) 

whereas for interface shape variation Eq. (3.6) yields 

(4.8) 
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Assume now that the functional G coincides with the complementary energy of a plate, 

that is 

(4.9) IIa = f W(M)dA, 

where W denotes the specific stress energy per unit area. Comparing Eq. (4.9) with Eqs. 

(2.14) or (3.3), we have 1p = 1¥ and the adjoint plate is subjected to the imposed field 

of initial strains 

(4.10) 

with vanishing external loading and homogeneous boundary conditions along plate edges. 
Thus the state fields within the adjoint plate are 

(4.11) 

and the first variation of II a, with respect to the shape variation of the external boundary 

equals 

(4.12) 

When the interface r undergoes shape variation, then in view of Eq. (3.6) we have 

(4.13) 

Noting that U + W = M · x, it is easy to prove that biia = - bllu. 

5. Optimal shape design for specified displacement and stress constraints 

The typical optimal design problem involves minimization of the cost function 

(5.1) C = J cdA ~ mincp, 

where c is a specific material cost subject to the global constraint imposed on generalized 

stresses, strains or deflection, i.e., 

(5.2) G = f 1p(M, x,p, w)dA-G0 ~ 0 

or constraint on local or maximum values of stresses, strains or deflection, and othei· 

geometrical constraints which will not be considered here. Note that the constraint imposed 

on local values of stress, strain or deflection can be easily converted to t_he global form 
(5.2) by using Eq. (3.11) Similarly, any constraint imposed on maximum values of the 

stress or strain component or deflection can be also expressed in global form. The maximum 

local deflection, for instance, can be represented by the functional 

(5.3) 

since for p ~ oo, w ~ Wmax. The maximum local stress component or generalized stress 

intensity can be obtained by considering the functional 

(5.4) G = [f 1pP(M)dAr
1
P, 
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where p is even and 1p is assumed to be a homogeneous function of generalized stresses 
of order one. For p --+ oo, G --+ sup1p, that is the functional tends to the maximum value 
of its integrand. Another approach to impose a constraint on maximum stress is to apply 
the penalty approach. Namely, introducing the acceptable stress intensity level1p0 , we can 
consider the functional 

(5.5) G ~ J ~ \"~~) 1 " dA. 

For p--+ oo the integrand (1pj1p0 )P of Eq. (5.5) tends to zero for 1pj1p0 < I and tends to 
infinity for 1p I "Po > 1. This provides a proper penalty functional which for large p takes 
very small values when 1p < "Po and very large ones when 1p > "Po. 

Introducing the functional 

(5.6) 

where }, denotes the Lagrange multiplier and ex is a slack function, its stationarity condition 
yields the optimality condition 

(5.7) ~c = -J..~G 

with the switching and constraint conditions of the form 

(5.8) 

The variation of the constraint (5.2) is expressed here by Eqs. (2.39) or (3.6), whereas the 
variation of structural cost equals 

(5.9) 

for the case of external boundary variation or is expressed by 

(5.10) 

for interface shape variation. 
An alternative formulation of the optimal design problem would require the minimiza

tion (or maximization) of G with the upper bound set on the structural cost, thus 

(5.11) minG subject to C- C0 :::; 0. 

Introducing now the functional 

(5.12) G' = G+J..(C-Co+fJ2), 

where {3 is a slack function, we can obtain the following set of conditions: 

(5.13) ~G = -J..~C, J..{3 = 0, 

which are equivalent to Eqs. (5.7), (5.8). 

6. Examples 

In this Section, let us consider three simple examples which should illustrate the analysis 
presented in the previous Sections. 
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EXAMPLE 1. Consider a circular plate of radius r e with a central hole of radius r i, simply 
supported on the outer edge. The plate is loaded uniformly by bending moments Me 
and Mi, Fig. 5a. Consider the mean compliance design for which both radii r e and r1 

a b 

M ~~ ' M; M~ k 

Wmj~ 0.75 eWm= ~ 
I J.. 2i; .! J 0.5 

0.25 2re .. 
0 1.0 2.0 (3 

FIG. 5. Circular plate with a hole; (a) boundary conditions, (b) ratio rdre versus ratio _MdMe. 

are to be determined so that the complementary energy IIa attains a minimum. The plate 
is subject to the condition of constant structural cost 

(6.1) 2 2 Co re-ri = -- =c. 
en 

The optimality conditions in this case follows from (5.13) where the variation of the objective 
functional G = lla is expressed by Eq. ( 4. I 2) whereas the variation of structural cost, 
in view of Eq. (5.9) equals 

(6.2) ~C = 2re ~re- 2ri ~ri. 

Thus, in view of Eq. (4.12), (5.13) and (6.2), the optimality conditions can be expressed 
as follows: 

( 1 1 1 )I ( 1 1 2n -.2 M, u, - -2 Ms U5 - - M, W, r _ r e ~r e- 2n -
2 

M, u, - -
2 

Ms Us 
r [r-re 

(6.3) 

r;-rl =C. 

Expressing the radial and circumferential bending moments and curvatures in terms of the 
deflection field w, Eqs. (6.3) yield the following set of optimality equations: 

(6.4) (w + __!__ w )
2 

-2(1-v) -
1
- w2 = - ~ • rr r . r ,2 . r D for 

ri-rf =C. 

The deflection field within the plate is expressed as follows: 

(6.5) 

where 

(6.6) C
1 

= 2(ri Me- rf Mi) 
(1 +v)D(ri-rf)' 

and 
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Introducing now the nondimensional quantities 

(6.7) {3 = Mt 
M' e 

and using Eq. (6.5) the optimality conditions (6.4) result in the following optimality equa
tion with respect to k: 

(6.8) [(1-v) (1- {3k 2 )+ (1 +v) (1- {3)k 2
] (1- k 2

)-2(1- {3k 2 )k2 

= [(1-v) (1- {3k 2
) + (1 +v) (1- {3)] (1- k 2 ) {3- 2(1- {3)(1- {3k2 ). 

Solution of this equation yields the optimal value of the ratio of r 1 and re, namely, 

(6.9) 

valid for 

(6.10) 

V
3-v 
l+v-{3 

kopt = 3-v 
--1 
l+v 

3-v 
1~{3~--. 

l+v 

Figure 5b presents the variation of the ratio rdre in function of MdMe for different values 
of v. It is seen that for {3 < 1 the optimal solution corresponds to the plate with vanishing 
hole, whereas for {3 varying within the range corresponding to the condition (6.10) the 
plate is gradually transformed from a thin ring into a circular plate without the hole. 

The relative compliance of the plate is expressed by 

(6.11) 
(1-v) (1- {3k 2) 2 + (1 +v) (1- {3) 2k 2 

(l-k_2)2 

Figure 6 shows the variation of the relative compliance as a function of k for {3 = 2 and 
v = 0.3. It is easy to see that the value of k satisfying the optimality condition (6.9) corres
ponds to a global minimum of the mean plate compliance. 

1.0 

(3=2 

I 

I 
/ 
v 

__.. 

3.0 

2.0 

I 
I 
lkopt. 
I 

0.2 0.4 0.6 k 

FIG. 6. Variation of relative compliance of a circular plate versus ratio of rdre. 
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EXAMPLE 2. As the second example, consider a rectangular plate of dimensions a x b, 
simply supported on its boundary, Fig. 7, and loaded by a transverse load of the form 

(6.12) 
. nx . .ny 

p = Posmasmb. 

y 

!.. a ~I X 

FIG. 7. Shape variation of rectangular plate. 

Assume now the material of the plate to be linear orthotropic, with principal axes of 
orthotropy parallel to the plate boundaries, so that the equilibrium equation for the plate 
can be written in the form 

(6.13) 

where Dx and Dy denote the bending stiffness moduli of the plate with respect to the prin
cipal directions of orthotropy. The deflection field that satisfies Eq. (6.13) together with 
the proper set of boundary conditions can be written in the form 

Po . .nx . .ny 
w = ··

1 1 2 sm--sm--,;-, 
.n4kD (- + ------=----) a 

Y a2 ]l kb2 

(6.14) 

where k denotes the ratio of the bending stiffness moduli DxfDv· Assuming the constant 
area of a plate, we are looking for its optimal dimensions a and b for which the global 
measure of the deflection field is minimized, that is 

(6.15) G = J I wj"dA --+ min for ab = C0 = const. 

Thus this example can be related to the general theory in Sect. 2, by introducing the 
adjoint plate of the same shape as the primary one, simply supported on its edges and 
subjected to the transverse load of the form 

(6.16) 

where 

(6.17) 

pa = o[iwl"] = sgn(w)nlwl"-1, 
ow 

sgn(w) = {-~ for 

w < 0, 
w = 0, 
w > 0. 
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Assume now the the plate boundaries x = 0 and y = 0 are fixed and the two remaining 
boundaries are allowed to translate in x and y directions, respectively, see Fig. 7. Thus 

the transformation field within the plate domain can be assumed in the form lJcpx = ~ lJa, 
a 

lJcp
1 

= ~ (Jb and, in view of Eq. (2.39), the general optimality conditions (5.13) for the 

functional (6.15) can be expressed in the form 

b a b 

-f f P,xWa ~ dxdy+ f (Qw~x-Myu;-2MxyU~1 +Quw,x)dy Jx=a = -Ab, 
0 0 0 

b a b 

(6.18) -.{ J P,ywai dxdy-J (Qw~y-Mxu~-2Mxyu~y+Qaw,y)dxiy=b = -J.a, 
0 0 0 

ab-C0 = 0, 

where the primary fields are generated by the deflection field (6.14) and the adjoint fields 
are the generalized stresses, strains and deflection of adjoint plate subjected to transverse 
load (6.16). 

For n = 2, the adjoint deflection field is expressed in the form 

a 2w 
w = 1,------------,..-1 --=-2 

n 4 kDy(-2 +-- ) 
a ykb2 

(6.19) 

and two first equations of the set (6.18) yield the optimal ratio of the plate dimensions a 
and b; that equals 

(6.20) 
a 41-

__ = rk. 
b 

EXAMPLE 3. The third example is related to the optimal design of interfaces within 
plate domain, treated previously in [2, 13]. Consider now a circular sandwich plate which 
is simply supported at the outer edge and uniformly loaded by the lateral pressure p. 

The plate is made of a linearly elastic material with sheet thickness tk constant over annular 
subdomains defined by the radii rk (k = I , 2, 3), Fig. 8; For the prescribed sheet thicknesses 

FIG. 8. Circular sandwich plate uniformly loaded by lateral pressure. 
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t,.., the optimization problem is reduced to determining the radii r 1 and r 2 , for which 

the global plate compliance attains minimum, within the class of plates of constant struc

tural cost that is proportional to 

(6.21) 

3 

C = 2n]; tk(rf-rf- 1) = Co 
k=l 

with r0 = 0 and r3 = R. Assume as the measure of global compliance the complementary 

energy of the plate, equal to 
3 'k 

(6.22) II n 2' 1 r ( 2 2 a= E'L.l - M, -2vM,Ms+Ms)rdr, 
fl tk L • 

k= 1 'k-1 

where M,, Ms are the radial and circumferential bending moments, 2h is the core thickness, 

and E, v are elastic constants. Thus, applying the stationarity conditions (5.13) and Eq. 

(3.6) and using the continuity conditions (3.1)-(3.2) for r = rb we obtain 

M 2 M2 1 M2 M2 I 
r - s r - s I 4 1£''-2( ) --- -- I + = II. Tl tk+ 1- tk , 

tk 'k tk+l 'k 

3 (6.23) 

]; tk(rf -rLt) = qR2 t0 , k = 1, 2, 
k=l 

where rk- and r{ denote the values of M, and Ms on the respective sides of the interface 

r = rb whereas q > 1 and t0 are prescribed quantities. The quantity q can be termed the 
relative cost of the design. The bending moments M,, Ms can now be expressed in the form 
(cf. [2]) 

(6.24) 
Bk pr2 

M = Ak+ -- - --- ·- (3+v) 
r r 2 16 ' 

'k-t ~ r ~ rb k = 1, 2, 3, 

where the constants Ak, Bk have to satisfy the conditions 

B3 pR2 
A3+ R 2 - 16 (3+v) = 0, 

(6.25) 

[ 
Bk prf 2 ] 

2tkAk+t = Ak[(l+v)tk+(1-v)tk+t]+ 'f(1+v)+16(1-v) (tk-tk+t). 

Using the form (6.24) in Eq. (6.23) the optimality conditions take the form 

(6.26) 

k = 1, 2, 

3 

~, ( ., 2 ) 2 ,L.J tk rk-rk-t = qR t0 • 

k=l 
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---------- - - - - -·--·-- ·- --

Equations (6.25) and (6.26) constitute a set of equations with 9 unknowns Ak, Bk (k = 

= I, 2, 3), r 1 , r2 and A, from which the optimal values of r 1 and r2 can be determined. 
In order to simplify the solutions of Eqs. (6.25), (6.26) assume that the plate thickness 

varies according to the relationship 

(6.27) tk = (4-k)t0 

which implies that the structure is made up of plate elements of given thickness t0 • The 
solution for the case v = 0 is i1Iustrated in Fig. 9a which shows the dependence of the 

a b 
r/ R w w 

q~?~ r -Til 
0.75 10 1.0 

0.25 I 

L-
_ __..___ J-.-- --- li l -'-- ---~--~0.85 0 85 - j_ 

D 0 2 0.4 0.6 T/ fi 
r1/R 

0 ,__ _ ____£.__ 

10 1.5 2.0 2.5 q 

FIG. 9. Optimal solutions for a .circular sandwich plate ; (a) optimal radii versus relative cost of design, 
(b) relative compliance of a plate versus radius of first subdomain. 

optimal radii -r1 and r 2 , as well as the relative compliance (i.e. the ratio of the mean compli
ance of the optimal plate to the mean compliance of a plate of constant thickness and the 
same cost) on the relative costq. It is seen that for decreasing relative cost q, the optimal 
solution corresponds to the vanishing interface r = r 1 , whereas for q tending to 3, the 
optimal plate is gradually transformed into the plate of uniform thickness. Figure 9b 
shows the variation of relative compliance for q = 2.0 as a function of r 1 defining the 
interface position between the first and the second subdomains. It is easy to see that the 
values of r 1 and r2 satisfying the optimality conditions (6.26) correspond to a globaJ 
minimum of the mean plate compliance. 

7. Concluding remarks 

The present paper supplements the results of previous works [3-5, 9, 10] and provides 
a systematic variational approach to sensitivity analysis and optimal design for plates with 
varying external boundaries and interfaces. The analysis is limited to geometrical linear 
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and physical nonlinear plates for which the concept of adjoint plate provides an effective 
tool in generating the first variation of any functional prescribed over plate domain. The 
extension to the geometrical nonlinear plate can also be obtained by following the present 
analysis and that presented in [10]. 
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