
Arch. Mech., 41, 4, pp. 543-552, Warszawa 1989 

Can the finite memory of a simple material be nontrivial? 

K. FRISCHMUTH (ROSTOCK) and W. KOSINSKI (WARSZAWA) 

DIRECT implementation of the CoLEMAN-MIZEL theory [1-3] to continuous response functionals 
of materials with finite memory implies the trivial (vanishing) memory of the materials, which 
is characteristic of an elastic material. To overcome this drawback, another procedure is proposed 
in which most of the convenient features of the original theory are preserved and, moreover, 
on the history space every continuous functional represents a material with finite memory. 

Bezposrednie zastosowanie teorii CoLEMANA-MIZELA [1-3] do ciqglych funkcjonal6w reakcji 
material6w ze skonczonq pami~cia prowadzi do trywialnej (znikajqcej) pami~ci, charakterystycz­
nej dla material6w spr~i:ystych. Dla unikni~ciq tej wady zastosowano odmiennq procedur~ 
zachowujqcq wi~kszosc wlasnoki teorii oryginalnej, a ponadto kai:dy ciqgly funkcjonal na 
przestrzeni historii reprezentuje material ze skonczonq pami~ciq. 

Henocpe)J;CTBeHHoe npHMeHemt:e TeopHH KonEMAHA-MH3EJUI [1-3] K HenpepbiBHhiM cpyH~Ho­
HanaM peaKIJ;lflf MaTepHaJIOB C KOHel..JHOH naMHThiO npHBO,[J;lfT K TpHBHaJibHOH (HCl..Je3aroru;ei1) 

naMHTH, xapaKTepHCTHl..JeCKOH ,[J;JIH ynpyrHX MaTepHaJIOB. ,UJIH ycTpaHeHHH 3Toro He,[J;oCTaTKa 

npHMeHeHa ,[!;pyraH npou;e)J;ypa, coxpaHHIOIIJ;aH 6oJihlllHHCTBo csoi1cTB opHrHHaJihHOH TeopHH~ 
H KpOMe :noro Ka>K,[J;biH HenpepbiBHhiH cpyHKIJ;HOHaJI Ha npOCTpaHCTBe HCTOpHH npe,[J;CTaBJIHeT 

MaTepHaJI C KOHel..{HOH naMHThiO. 

1. Introduction 

A MATERIAL for which in the case of mechanical processes the present response, i.e. stress, 
is a functional of the entire past history of the configuration, i.e. deformation, is called 
a simple material with memory (cf. [4]). On the other hand it is clear that not every funct­
ional of the entire past history will represent a real material. Here we understand that 
a functional represents a real material if there exists a material in real life such that modelling 
its physical properties yields just the dependence described by the given functional.. Search­
ing for necessary conditions that would be satisfied for each functional having a real 
counterpart, we obtain a minimal set of requirements to a mathematical theory of materials. 
Among others, such a minimal set of the requirements should provide a continuity of the 
dependence of the present response on the past events (i.e. on the history of deformation, 
in the case of a mechanical theory, cf. [3-5]). Moreover, some empirical inequalities (cf. 
[4]) and thermodynamic restrictions (cf. [5-7]) impose further requirements on the response 
functional. 

Our special interest here is to inspect the consequences of the continuity requirement 
in the case of modelling a class of materials possessing certain observed physical behaviour, 
namely the so-called finite memory. 

It is obvious that the concept of continuity is strongly related to the topology. It will, 
however, introduce no restrictions on a given response functional if the topology is just 
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constructed to make it continuous. It was the case considered by W. NoLL in his funda­
mental paper [6]. If, on contrary, the topology is assumed as a primary notion, one can 
obtain a framework for the description of material classes with some desired property. 
This way was proposed by B. D. CoLEMAN and V .. J. MIZEL in their series of papers [1-3]. 
For the case of materials with fading memory this seems to be the mathematically most 
attractive way. Hence there were many attempts to apply their idea to obtain other classes 
of materials (cf. [7-9]). 

There has recently been an increasing interest in studying materials with so-called finite 
memory due to the possibility of numerical identification and carrying out simulations by 
computational method [15, 16]. Unfortunately, a direct implementation of the Coleman­
Mizel theory together with the assumption that each continuous functional on the history 
space should model materials with finite memory confines the possible framework for 
description of elastic materials, only. This procedure is contrasted with the present approach 
of describing materials with finite memory in which most of the convenient features of the 
Coleman-Mizel theory are preserved, and still each continuous functional on the history 
space represents a material with finite (nontrivial) memory, as well. This has been done by 
changing the main strategy of forming the framework for description: the domain of 
constitutive (response) functionals to be considered is restricted by a finite memory assump­
tion additionally to the postulates appearing in the Coleman-Mizel theory. 

The present paper brings a positive answer to the question posed in the title, provided 
the classical procedure of the Coleman-Mizel approach is replaced by a more physical one 
described further in the paper. Section 2 brings some of the most important facts from the 
CoLEMAN-MIZEL theory [1-3] together with the proof that in the original theory simple 
materials with finite memory are trivial. Section 3 contains the discussion of possible 
improvements of that theory. In Sect. 4 another approach is proposed in which instead 
of the whole history space the domain of definition of a constitutive functional is restricted 
by a finite memory assumption additionally to the postulates identical with those appearing 
in the Coleman-Mizel approach. An example of a constitutive functional of a material 
with finite memory is given together with some concluding remarks in this section. 

2. Materials with finite memory in the Coleman-Mizel theory 

In order to be able to answer the main question put in the title, let us recall in this 
section some of the most important facts from the Coleman-Mizel theory(l). 

Let us first consider the set e of all nonnegative functions defined for all nonnegative 
real numbers, and measurable with respect to a nontrivial, a- finite, positive, regular 
Borel measure p,, called further an influence measure. Let v be a nontrivial function norm 
with the sequential Fatou property (cf. ZAANEN [10] or [2, 8]). Now, if Vis a nClntrivial, 
separable Banach space with the norm I I and by "Y 0 we denote the set of V-vJ.lued p,­
measurable functions of the half line R+ = [0, oo ), then on the set 

"Y := {cjJE"Y0 Iv(l¢1) < oo} 

(1) For brevity we shall write C-M theory. 
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the function norm v will define the semi-norm I I II by 

11 </> 11 := v(l</> 1). 

545 

Identifying two functions whenever the semi-norm of their difference vanishes, we 
obtain a normed function space (PA, II II), which is complete because the sequential Fatou 
property implies the Riesz-Fischer property for v (cf. [10]). 

The functions ¢ in 1/ are called histories(Z) with ¢(0) as the present value, while the 
past values ¢(s) are those for which s > 0. Further, to every¢ in 1/ we relate its restriction 
to the open interval (0, oo) denoted further by ¢,. and called the past history of ¢. The 
collection of all those c/Jr forms the Banach space PAr, in the natural way, with the norm 

llc/Jrllr := II¢X<o,oo>l l, 

where X<o. oo> denotes the characteristic function of the interval (0, oo ). 
Now, the concept of a material with memory consists in introducing a continuous 

constitutive operator r defined on a cone !!} c PA with its values in a finite dimensional 
vector space S. 

Let us cite the first three postulates admitted in [3] and some of their consequences. 
They form the structure of the C-M theory. If¢ is in 1/0 and a ~ 0, then we define 

j¢(0), sE[O,a), 
cp<a>(s) =\¢(s-a) , s E [a, oo), 

c/J<a>(s) = cp(s+a), s E [0, oo). 

In terms of that two families of transformations (the first is called a static continuation, 
the latter - the section or the right translation), the three postulates read as follows. 

PosTULATE CMI. If¢ is in"//, then cf><a> is in 1/ for all a ~ 0, and the conditions¢, 'lfJ E 1/ 

with 11 ¢-VJ II = O.imply ll cf><a>_'lfJ<a> ii = 0 for all a~ 0. 
POSTULATE CM2. If cf> is in "//, then so are all functions c/J<a> for all a ~ 0. 
POSTULATE CM3. If r:x E V, then so is the constant function rxt, where rxt(s) = r:x for 

any s ~ 0 
As consequences of CM1-CM3 one can receive among others the following results 

[1-3]: 
LEMMA 0. A) If we put Ea</> : = cp<a> for any a ~ 0, then Ea is a well defined operator 

on f!4 with values in 31. (We call it static continuation by the amount a). 
B) The measure fl must have an atom at s = 0 and be absolutely continuous on R+ + = 

= (0, oo) with respect to the Lebesgue measure A. Furthermore, either fl(R++) = 0 or A 
is absolutely continuous on R+ + with respect to fl· 

C) The space PA is algebraically and topologically the direct sum of V and PAr', i.e. 
fA = VEBPAr and the norm II II is equivalent to II II ' defined by 

11 ¢ 11 ' : = 1¢(0)1 + llc/Jr ll r· • 

The points of Lemma 0 state that each element of "Y has its trace at s = 0; the value 
of ¢ at 0 contributes in the same degree to the norm at s = 0 as the whole past history. 
This observation will be crucial in getting the next result. 

(2) In the mechanical theory of continua V is usually the space of symmetric second order Euclidean 
tensors in which the positive cone represents all possible values of the Cauchy-Green strain tensor. Then .;. 
is a strain history. 
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As it is well known, the concept of fading memory was put in the precise mathematical -
functional analysis setup for the first time in [11] (cf. also [12]). In the C-M theory it 
appears in the form of two postulates, namely the separability of f!J and the relaxation 
property of the norm. Not introducing those postulates, we would like to check whether 
the finite memory is possible in the framework of the general theory of material with 
memory restricted by Postulates CM1-CM3, only. 

The finiteness of the memory will be introduced by the following 
PosTULATE 4'. There exists a finite positive w such · that for arbitrary¢ 1,,¢2 Ef!J, 

the condition 

(2.1) 

For further discussion we introduce 
DEFINITION 1. A material with memory represented by the operator r defined in the 

space f!J satisfying Postulates CM 1, CM2, CM3 and 4' will be called a material with finite 
memory. 

We see that for a material with finite memory two histories do not differ (they are 
equivalent) if they are the same on the (final) time interval of duration w. The minimal 
amount w the same for all histories and for which Eq. (2.1) is true, if existing, can be 
treated as an intrinsic (constitutive) value. 

The next observation has a fundamental meaning. 
REMARK 1. The material with finite memory has the relaxation property for its norm 

and, consequently, it has fading memorye). 
Proof. Let ¢ be in "1/ and consider its static continuation by the amount (.tj) . We 

obtain 

(Ea¢)1ro.wl = ¢(0)Xro.wJ iro.w] = ¢(O)t lro.wl· 

Hence, by Eq. (2.1), we have 11 Ew¢-¢(O)t ll = 0 and, consequently, 

lim IIEa¢-¢(O)tJJ = 0. 
a-+ oo 

In view of the arbitrariness of¢, the last relation expresses the relaxation property and 
hence the proof is complete. • 

Since in f!J the norm is introduced through the function norm v, the latter being lbased 
on the measure· fl, the following observation is essential 

REMARK 2. The requirement formed by Postulate 4' implies that 

(2.2) #( ( ())' 00)) = 0' 

and in view of B) in Lemma 0 the finite memory is trivially short. 
Proof. Let c1 and c2 be two different elements of V, then 

cl x(W,C(')i[O,w] = Cz X(w,oo)I[O,w]. 

From the requirement (2.1) of Postulate 4', we infer 

ClX(w,oo) = CzX(w,oo)· 

This, however, in view of the fact that c1 =I= c2 , is equivalent to 

fl({s E R+ JctX(w.oo)(s) =I= CzX(w,oo)(s)}) = fl((w, oo)) = 0. 

(l) According to the classical definition [C-M 2] f!J should be separable. 
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From the condition B) in Lemma 0 follows t-t((O, oo )) = 0. This, however, means that 
whenever ¢ 1 (0) = ¢ 2 (0) the histories ¢ 1 and ¢ 2 are equivalent, i.e. 11¢1 -¢2 11 = 0. • 

In terms of the constitutive properties from the above follows that for a given constitutive 
operator r there exists the function r: V---+ S which realizes r, i.e., 

r(¢) = r(¢(0)). 

Since just elastic materials (in the sense of Cauchy) are characterized by trivial .(instantan­
eous) memory, we can formulate the final result of this section as follows: 

THEOREM 1. Every material with finite memory in the sense of Definition 1 is elastic. 

3. Searching for a material with finite memory 

Theorem 1 of the above section was obtained as the result of strengthening the relaxation 
property. This was done in order to get the finiteness of the memory. Theorem 1 cannot be, 
however, treated as a satisfactory solution. In this section we shall try to find another 
formulation of Postulate 4' that could help us to give a weaker condition than Eq. (2.1). 

Searching for a gap between the relaxation property and the trivial outcome of Theorem 
1, let us note that the relaxation property for the norm is equivalent to the following condi­
tion: for every continuous functional r: f!J ---+ R and any ¢ E ~ 

a->oo 

which is in fact expressed in terms of constitutive operators(4
). Now we formulate the 

following 
POSTULATE 4. There exists a positive w such that for every continuous functional 

r: PJJ---+ R and every pair ¢ 11 ,¢2 E ~' the condition 

LEMMA 1. Postulate 4' is equivalent to Postulate 4. 
Proof. The proof of the implication "=>" is obvious. To show the opposite implica­

tion, let us assume that there exists a pair ¢ 1 ,, ¢ 2 E ~' such that ¢ 1 =I= ¢ 2 and. ¢i x[o ,w1 = 
= ¢ 2 X[o.w1 . Then there exists(5

) a continuous functional (even linear) r: ~ ---+ R, such that 
r(¢ 1) =I= r(¢ 2), which contradicts Postulate 4'. • · 

The equivalent formulation of the requirement (2.1) gives some hints for the direction 
in which a weaker postulate could be looked for. Namely, by exchanging quantificators 
the uniform existence condition P4 could be replaced by the pointwise existence. To this 
end we propose 

PosTULATE 4a. For every continuous functional r: f!J ---+ R there exists a positive w 
such that for every pair ¢ 1 , ¢ 2 E f!J, the condition 

(3.1) 

(
4

) Compare COLEMAN and MIZEL [1, p. 109] and the weaker version of the relaxation property in the 
form of the constitutive asymptotic stability property in KosiNSKI and VALANIS [9, p. 544]. 

( 5) Note that &.J is a Banach space. 
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Unfortunately, in the new version the requirement of finiteness of the memory leads 

to the same result as that of Remark 2. To make this obvious, we take for r the norm, 
i.e., 

r(¢) = 11¢1 1 for every ¢ E 81. 

Then, in view of Postulate 4a, there should exist an w > 0 for which Eq. (3.1) becomes 

true. In particular, if ¢ 1ro,w1 = Ot l[o.w1, then r(¢) = r(Ot) = 0, and, consequently, 
Eq. (2.2) holds. 

According to the authors, the last possible improvement of the finiteness requirement 
in Postulate 4 can be done in the following form: 

PoSTULATE 4b. For every continuous functional r: 81 ~Rand for every ¢ 1 E fJ6 there 

exists an w > 0, such that for every ¢ 2 E 81 the condition 

(3.2) 

holds. 

In this case, however, the outcome is not alluring, either. Namely, for a fixed ¢* from 
81 we can define the continuous functional r by 

(3.3) r(¢) = II ¢* -¢ 11 . 

If we take ¢ 1 = ¢*,then from the last formulation we can conclude the existence of a posi­
tive w with the property 

(3.4) 

which leads to r(¢ 1 ) = r(¢ 2 ). However, in view of Eq. (3.3) r(¢ 1 ) = 0; it means that the 
condition (3.4) with fixed ¢ 1 and an arbitrary ¢ 2 , implies ¢, = ¢ 2 • As in the previous 
case, the proposition of Remark 2 remains unaffected by our efforts to weaken it . It means 
that our efforts do not lead to the desired result, mainly due to our way of the improvement 
preserving the first three postulates of the C-M theory. We are forced to choose another 
way and to neglect some of the primitive notions of the classical theory. It will be done 

in the next section. 
We conclude this section with a remark of general nature. It concerns the concept 

of a state space, for the first time introduced by NoLL [6] in the theory of simple materials 

and subsequently discussed by PERZYNA and KosiNSKI [13], arid the present authors in 
[8, 14]. The starting point for the domain of definition of an arbitrary constitutive function 

of a simple material with memory in the C-M theory is the space fJ6. In terms of the concept 
of a state we can say that the space 81 restricted by Postulates CM1-CM3 differs, in general, 
from the state space of the material in the sense of NoLL [6] and others [9, 13, 14]. The 
difference can even appear for the case of a viscoelastic material (in the sense of Boltzmann), 

not mentioning a material with finite memory. The latter case is certain. 

4. The finite history space 

The procedure which we are attempting to formulate now has to modify the framework 

of the C-M theory. It will be done by allowing the representation of histories by functions 
defined on a finite time interval and preserving the convenient features of the C-M theory. 
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In this way the procedure becomes alluring through its direct applicability to computer 
simulations, especially in the description of non-elastic material behaviour. 

We are not going to reject the main concept of the C-M theory which requires that 
each continuous functional on a given history space ought to exhibit the demanded features 
(i.e. the finiteness of memory), since it could lead to great difficulties. One of them could 
be observed in the identification problems, for in the space f!B*, regarded as a space of all 
continuous (linear and nonlinear) functionals on fJI, there would be functionals of materials 
with infinite memory in each neighbourhood o~ a functional of a material with finite 
memory. 

As we know in the approach given by C-M, the domain of a constitutive functional 
of a material with memory is defined in a formal way in terms of ,u-measurable functions . 
This attempt leaves only one object unspecified for the further analysis, namely the influence 
measure#· Consequently all postulates impose restrictions on this measure. In the procedure 
we arc now suggesting the same general postulates to hold, but they should restrict the 
domain rather than the measure. 

Before the new definition of the domain is given, we would like to point out one more 
problem. Namely, if cjJ is a given history, then in the case of a material with finite memory, 
characterized by a positive number (amount) w, the whole information contained in 

</>l<w. oo>) has no influence on the response of the material. This observation, expressed 
by the property (2.2) of the influence measure ft, unables to satisfy Postulate CM2 by an 
arbitrary t-t-measurable function, because the function 

'l'(s) ~ {~ on [0, w], 

on (w, oo) 

is in f!B and no a-section "P<a> of 1p is in f!B, if a is greater than 0. This fact implies the question: 
why, in the case of a material with finite memory, do physically non-admissible histories 
have to be regarded as proper objects for the: derivation of the restrictions on the influence 
measure if the domain of definition of the corresponding constitutive functional does not 
contain them? Now we are well prepared for the following: 

DEFINITION 2. The domain of definition of a constitutive functional of a material with 
finite memory is a cone G)P 

(4.1) ffi 11 := {</> E~J V v(!¢<a> l) < oo}, 
a;;l:O 

in the Banach space fJI defined(6 ) in Sect. 2 (together with its cone ~ c f!B), the space f!B 
has to be restricted by the postulate CM 1 and CM3. Furthermore, the measure ,u has to have 
the following splitting in the Dirac measure at s = 0 and an absolutely continuous with respect 
to the Lebesgue measure ), on (0, oo) 

(4.2) ft = C1 15(0)+ A', 
where c1 is a positive constant and dJ.f(dJ.') =1= 0 on (0, oo ). 

Using the results of [3] concerning the consequences of Postulates CM1-CM3, we get 
the point A) of the Lemma 0, as well as the point C). The second part of the point B) 

(
6

) Another interesting case occurs when one changes the norm of ~ into the alternative one 

ii<Pii := sup{v(i<P(a)i): a;;>- 0}. 
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is no longer true, for Postulate CM2 has not been assumed, and, moreover, Eq. (4.1) 
introduces the restriction on the domain rather, than on the whole space f!l. Now, if we 
identify p,- a.e. ·equal histories and choose representatives vanishing on (w, oo ), we 
obtain now a new space of "histories" of finite duration: The new space will be exemplified 
in what follows. 

Let !F be a Banach function space, the elements of which are p,' - measurable functions 
on [0, w] where the measure p,' is the restriction of p, to [0, w]. If II II ' denotes the norm 
in . !F then the first property of the finite history space is given by the following: 

POSTULATE Fl. If fPl•,fP2 E!#' and llcp1-cp2 ll = 0, then ff!1(0) = fP2(0). 
From this requirement it follows that the measure p,' must possess an atom at s = 0. 

To formulate the next property, let us now notice that the function cp (or more precisely -
an equivalent class) from !F can be regarded as a history of finite duration and, con­
sequently, the static continuation map ra defined by 

(4.3) (Ta )(s) = J cp(O)' 
fP \ cp(s-a), 

if s~min(a,w), 

if a< s ~ w , 

and reflecting the properties of the map E a given in Sect. 2 for the case of infinite memory 
does not have any sense for a > w. However, for any a ~ w this map should be well defined 
in !F, and should be continuous, as E a was (cf. [8]). Hence the next requirement will be 

PosTULATE F2. For any a E [0 , w] the map T a defined by (4.1) is contiimous as a map 
from !#' into !#' 

The image of cp under the map T a can be regarded as the result of a composition of an 
element from !#' with a constant function cp (O)t on [0, a]. We would like, however, to be 
able to compose elements from !IF with nonconstant functions, as well. The latter can be 
called processes. To this end we introduce the following requirements: 

PoSTULATE F3. There exists a class II of S-valued functions defined on the closed 
intervals of the type [0, d], d ~ 0, such that: 

a) for every cp E !IF and P E II the superposition cp* P, called continuation of cp by the 
process P, and defined by 

(4.4) 
J P(dp-s) 

(cp*P)(s) := l cp(s-dp) 

belongs to :#', where dom P = [0 , dp]; 

if s ~ min{dp, w }, 

if dp < s ~ w, 

b) for every cp E :#' and a E [0 , w] , (p l[o ,wl1Ila =I= 0, where 

ip(s) := cp(w -s) and IIa := {P EllldurP =a}; 

c) for every PElland each pair (t 1 , t 2) such that 0 ~ t 1 < t 2 < dP and t2 -t~ < w, 

there exists an element cp E !#' such that C) P/u
1

, r
2 1 

E cp l(o,r
2 
-td. 

We can see that this representation of the finite history space !F contains an additional 
object in the description, namely the class of processes II. That class is introduced in a 
way, which makes it possible to lengthen a finite "history" by such a process to obtain 
a new finite history. The properties of the prolongation are natural for the model of material 

C) Note that processes are functions while histories ar~ classes of equivalent functions. 
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with finite memory. Thanks to this, the properties of class II are similar to that required 
by NoLL in his framework of "a new mathematical theory of materials" [6]. 

At the end, let us notice that the space :F serves as a compl~te example for the domain 
of definition of a material with finite memory if we put w = I and dv' /d'A( r) = I- r 2

, 

r E [0, I], and p,' = ~(0) + v'. With this measure at hand we can put 

:F = L~, ([0, 1]) and II= Ullt, 
t;?:O 

with 
1 

lit= {P:[O, t]~ Sif (I-r2)P2 (r)dr < oo}. 
0 

A particular form of the constitutive functional could be 

1 

r(qJ) = E ( (qJ(O) + J (I- r 2)qJ( r)dr). 
0 

The functional .will describe a viscoelastic material if we identify the values of r with the 
stress tensor and of ·qJ- with the strain. In case of a beam made of such a viscoelastic 
material, further identification is necessary. It will be done in the next paper [15] together 
with the investigation of a vibration problem. 
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