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On the stability of third-grade fluids 

K. R. RAJAGOPAL (ANN ARBOR) 

IT IS SHOWN that unlike the Navier-Stokes and second-grade fluids, fluids of grade three which 
are compatible with thermodynamics do not require the presence of the coefficient of viscosity 
p. in order that disturbances may die down asymptotically, to the null flow. Also, in marked 
contrast to the class of second-grade fluids, we find that the normal stress coefficient ~X2 plays 
a less significant role that the normal stress coefficient IX i in determining the characteristics of the 
stability of third-grade fluids. 

Pokazano, ze w przeciwienstwie do plyn6w Naviera-Stokesa i plyn6w rzctdu drugiego, plyny 
trzeciego rz~du, kt6re ~ niesprzeczne z zasadami termodynamiki, nie wymagaj~ istnienia wsp6l­
czynnika lepkoSci p. do tego by zaburzenia mogly w nich zanikac asymptotycznie do zera. Po­
dobnie, w odr6znieniu od plyn6w drugiego r~du, stwierdzono, ze wsp6lczynnik ~X2 napr~:Zenia 
normalnego odgrywa mniej istotn~ rol~ nii: wsp6lczynnik naprct:Zenia normalnego IX 1 w okre51aniu 
charakterystyki statecznoSci pJyn6w trzeciego r~du. 

lloKaaaHo, liTo B npot~tBosec 1< >KJW<OCTHM HaB~>e-CtoKca 1t >Kil.!V<OCTHM Btoporo nopJI):ll(a, 
>KIUlKOCTil -rpep~>ero nopH.m<a, KOTOpbie He npoTHBOpellaT npHHIWiaM tepMOJmHa.MHI<Il, He 
Tpe6yiOT C~eCTBOBaHHJI K03$<l>~eHTa BJI3KOCTI{ !L MJ1 TOrO, li.TOObl B03M~eHI{JI MOrJIII 
B HllX aCilMBTOTI{lleCI<J{ 3aTyXaTb 1< HYJnO. AllaJIOI1{t{HO KOHCTatl{poBaHO, B OTJIIIlllle OT >KH~­
KOCTCH BTOporo BOpJI,I:ll<a, liTO Ko34>$~eHT IX2 HOpMam.Horo Hanp.R>KCHHJI mpaet MeHee 
cymecrBeHHYIO pom. lleM H03cPcP~HeHT HOpMam.Horo HanpJI>KeHWI IX 1 B onpe~eJieHHH xa­
PaKTePilCTHHil YCTOWmsOCTil >KJW<OCTeH Tpetbero nopJI,I:ll<a. 

1. Introduction 

THE CAUCHY stress T for an incompressible homogeneous third-grade ftuid is of the. 
following form, [1]: 

(1.1} T= -pl+,u(8)A1 +cx1(8)A2 +cx2(8)Ai+P1(8)A3 

+P2(8) [A1 A2 +A2 A1]+P3(8) (trA.2)A1 , 

where ,u is the viscosity, cx1 and cx2 the normal stress moduli, P1 , P2 and P3 material moduli 
which resemble shear dependent viscosity- all these moduli being functions of tempera­
ture 8. The term -pi indicates the spherical stress due to the constraint of incompressib­
ility and the tensors A1 ~ A1 and A3 are the first three Rivlin-Ericksen tensors defined 
through 

and 

where 

(1.2)1-3 

• T A,.= A,._ 1 +L A,._ 1 +A11 _ 1 L, 

L = gradv, 

where v Is the velocity, and the dot denotes material time difFerentiation. 
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868 K. R. RAJAGOPAL 

While the constitutive assumption (1.1) may be considered as a third-order approxi­
mation to the response functional of a simple fluid in the sense of retardation (CoLEMAN 
and NQLL [2]; TRUESDELL and NOLL [1]), it may also be. considered as an exact model 
for some fluid, as it is done, when all the coefficients except the coefficient of viscosity 
are set to be zero ; namely the classical Navier-Stokes fluid. A detailed study of the thermo-' 
dynamics of a fluid whose constitutive relation is represented by Eq. (1.1), in the sense 
of an exact model, has been carried out by FosDICK and RAJAGOPAL [3]. They find that 
if a fluid modeled by Eq. (1.1) is to be compatible with thermodynamics, that is meet 
the restrictions imposed by the Clausius-Duhem inequality and the assumption that 
the specific Helmholtz free energy be a minimum when the fluid is locally at rest(!), the 
material coefficients have to meet the following restrictions, [3] : 

(1.3) 

and 

p(8) ;?; 0, 

cx1 (8) ;?; 0, 

Pt (8) = fJz(8) = 0, 

{J3(8);?; 0, 

- y24p(8){J3 (8) ~ cx 1 (8)+cx2 (8) ~ y24p(8){J3(8). 

For the purposes. of our analysis, we shall assume that all the material moduli are con­
stants. Thus, the Cauchy stress T is given by the form 

(1.4) T = -p+ pA1 + cx1 A2 + cx2 A~+ {J3 (tr Ai)A1 • 

The presence of the coefficient of viscosity p is necessary if disturbances are ever to 
subside in both the Navier-Stokes fluid and the second-grade ftuid, [4]. However, in this 
analysis we find that there is a departure from this necessity in third-grade fluids, 
wherein disturbances die down asymptotically even when the coefficient of viscosity "p'' 
is absent.(2) This decay is due to the presence of a higher order material coefficient {J3 

which bears a certain resemblance to the notion of shear dependent viscosity which, by 
Eq. (1.3)4 , is required to be nonnegative if the constitutive assumption of a third-grade 
ftuid is to be consistent with the restrictions imposed by thermodynamics. 

Also, in contrast to the class of second-grade fluids, we find that the sign of the normal 
stress coefficient cx2 plays a less significant role than the sign of the normal stress coefficientcx1 

in determining the stability of third-grade fluids. Since in the second~grade fluids a 1 = -a2 

such ftuids with the coefficient cx2 > 0 (i.e., cx1 < 0) exhibit unstable characteristics (cf. [4], 
[5]), the same conclusions cannot be drawn from the . normal stress coefficient cx2 being 
positive in third-grade fluids. In fact, third-grade fluids are stable irrespective of the sign 
of CXz .as long as cx1 > 0, p > 0, {J3 > 0 and l(cx1 + a2)1 ~ V 24p{J3 , [4]. However, we 
find that the magnitude of the sum of the normal stress coefficients (a1. + a2), and hence 

(1) See Sect. 2 for a definition. 
(2) While third-grade fluids whose coefficient p = 0 decay asymptotically, it is easy to establish that 

no initial disturbance can ever decay away in finite time. Thjs is similar to the results established for second­
grade fluids [4], and those for the Navier-Stokes fluid under special regularity assumptions ' [6, 7] and 
third-grade fluids where p :F 0 [J]. 
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the magnitude of oc2 , plays an important but secondary role in determining the nature 
of the stability. 

It has been shown, [4], that a fluid whose stress constitutive relation is given by Eq. (1.1) 
is stable when mechanically isolated(3) in the sense that the averaged stretching and the 
kinetic energy decay asymptotically to the null flow whenever the materlal moduli are 
such that p > 0, oc1 > 0, loc1 + oc2 1 < y24J.'{J3 and {J3 > 0. We shall first investigate 
the stability of fluids modeled by Eq. (1.4) when p, = 0. We shall study a very general 
class of flows and show that in such flows disturbances decay asymptotically to the null 
ftow(4 ). 

2. Stability 

Let !J denote the interior of a bounded three-dimensional domain which is occupied 
by an incompressible homogeneous fluid whose constitutive relation is given by Eq. (1.1) 
subject to the restrictions(5) 

(2.1) 

in addition to those of Eq. (1.3lt,_ s. The boundary EJ!J is rigid and fixed and the fluid 
is assumed/ to adhere to the boundary, i.e. 

(2.2) V(X, t) = 0 on o!J X [0, 00]. 

We shall assume that the body force b is derivable from a potential function. Then, it follows 
that the mechanical working(6) · 

(2.3) J Tn. vda + J eb. vdv = 0 
ao o 

for all t e [0, oo ), where n is the unit outer normal to EJ!J and where e is the mass density. 
Thus the power theorem has the form 

(2.4) :t f ~ elvl 2dv+ f T. Ldv = 0, t E [0, oo). 
Q D 

We first observe that Eqs. (1.3)s and (2.1) imply that 

(2.5) 

(3) See Sect. 2 for a definition of mechanical isolation. 
(

4
) The asymptotic decay of disturbances in a third-grade fluid whose coefficient of viscosity I' = 0 

is interesting in the light of the decay characteristics exhibited by third-grade fluids whose coefficient of visco­
sity I'=/: 0, but whose normal stress coefficients cx 1 and cx2 are such that lcx 1 +cx2 1 = y'24pf13· In this regard, 
see the remarks following Theorem 2. 

(5) If {13 = 0, then the fluid belongs to the class of second-grade fluids and the following analysis 
not valid; 

(
6

) Thermodynamic processes which are such that the mechanical working vanishes over any period 
of time are said to be mechanically isolated during that period of time [8, 9]. We are thus interested in a body 
which has been subjected to arbitrary motions for all times t e (- oo , 0) but which is mechanically isolated 
for all times t e [0, oo ). 
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Next, with the aid of Eqs. (1.4), (2.1) and (2.5), we can rewrite Eq. (2.4) in the form 

(2.6) 

The above equality (2;6) can be rewritten in the form 

(2.7) • {33 f E(t) = -- IA1 1
4dv, 

f!Q 

where 

(2.8) E(t) = J lvl 2dv+ ;
1 J IA1 1

2dv. 
Q . (! D 

E(t) is a measure of the kinetic energy and the energy due to stretching of the fiuid, E(t) 
being zero if and only if v = 0 in D. 

We are now in a position to prove the following: 
THEOREM I. Let a third-grade fluid whose material coefficients meet Eqs. (1.3)1 _ 5 and 

(2.1) be mechanically isolated for all times t e [0, oo). Then E(t) < 0 for oil times t e [0, 
oo) 3 :E(t) =I= 0. 

P r o o f. Since Eq. (2.2) is a sufficient condition for the validity of the Poincare in­
equality, we obtain the following: 

(2.9) f lvl 2dv ~ C, f lgradvl 2dv = C{ f IA1 1
2dv, 

D D Q 

where C 11 is the domain-dependent Poin~re constant; the last equality (2.9h being true 
by virtue of Eq. (2.2) and the divergence theorem. 

From the definition of E.(t), Eq. (2.8), and Eq. (2.9) it follows that 

(2.10) E(t),;;; (ex, ;e!!C.) 1 IA1 1
2dv. 

Since e and {J3 are strictly positive, the theorem follows from Eqs. (2.7) and (2.10).o 
Next, we would like to investigate whether the disturbances in the fluid die down 

asymptotically. On rewriting Eq. (2.7) in the form · 

(2.11) E(t)+ {33 J IA11
4dv = 0, 

(] D 

and applying Holder's inequality, we obtain 

(2.12) 

where V(Q) is the volume measure of Q. Thus, by virtue of Eq. (2.10), Eq. (2.12) can 
be rewritten as 

(2.13) • /33 1 2e 2 
( ) ( )

1 

E(t)+ e V(.Q) rzt +eC, E (t) ~ 0. 

Hence the follo_wing: 
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THEOREM 2 (1). Let a third-grade fluid whose coefficients satisfy- the restriction· (1.3) 
and (2.1) occupy the region within a fixed rigid container. Further, suppose that the motions 
are such that Eq. (2.2) is met. Then there exists a ). > 0 such that 

E(t).,; E(O){l+E~O)lt }. t e [0, oo), 

where 

(2.14) ;. = {13 (-1 ) ( 2e )
2 

- e V(D) «1 +eC, 

Proof. Follows trivially from integrating the inequality (2.13) and the definition 
of A given in Eq. (2.14h. o 

We now make the following remark on the roles played by the normal stress coeffi­
cients cx1 and a2 in determining the stability of the class of third-grade ftuids. It can be 
easily verified (cf. Appendix) that for a third-grade fiuid whose coefficient of viscosity 
p -I= 0 and whose normal stress coefficients cx1 and cx2 are such that lcx1 +cx2 1 = y24p{J3 , 

one could pick initial data such that E(t)+A.E2 (t) > 0 for all t e [0, ~)where ~is some 
positive number and A is given by Eq. (2.14). Thus, if two third-grade ftuids which have 
the same material moduli {J3 and cx1 , one of whose coefficient of viscosity. pis zero while 
the other whose coefficient of viscosity f.t is arbitrarily large together with normal stress 
moduli cx2 such that cx1 + cx2 = Jf24p{J3 , are given identical initial disturbances, there 
is a future interval of time wherein the third-grade ftuid with the arbitrarily large coefficient 
of viscosity is more disturbed than the one whose coefficient of viscosity is zero! However, 
this is not to say that such is the case for all future times. Even so, we see that the sum 
of the normal stress moduli lcx1 + cx2 1 determine to a certain extent the rate of decay of dis­
turbances in the class of ftuids under consideration. 

(') The sign of the coefficient {J3 is crucial to our theorem. The following interesting result is a con­
sequence of Eq. (2.13) if we assume that {J3 < 0. Firstly, we note by virtue of Eq. (2.11) that 

E(t) > 0, t e [0, oo) provided E(t) #: 0. 

Furthermore, by virtue of Holder's inequality, Eq. (2.11) can be rewritten ·as 

Thus, by Eq. (2.10), we obtain 

(AI) 

where 

. ,p3, ( 1 ) t r z l E(t) ~ -(}- V(D) ~ IAII dv . 
!J, 

A= ~--~- (~}z 
- (} (V(.Q)) a;I +(}Cp . 

. 1 1 
It can be easily verified that (AI) implies that E(t) does not exist for timet > -- and that at t = ,-( , 

).£(0) ,.,£, 0) 

E(t) becomes unbounded. Thus by Eqs. (2.8) and (2.10), both, J lvl1 dv and f IA1I1dv become unbo~ 
Dt Dr 

unded in finite time, a pro~rty which would be undesirable in any fluid which is to be modeled by 
Eq. (1.1). 
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It-has been shown in [3] that if «1 ~ 0, and the other material moduli meet the restric· 
tions of Eq. (1.3), disturbances continue to grow in mechanically isolated flows of fluids 
ofgrade three. However, it is also shown that the disturbances decay asymptotically to 
the null flow if a1 ~ 0 irrespective of the nature of a2 , provided ja1 +a2 1 < y24~Jf13 • 
Our analysis shows that the . magnitude of 1«1 + «2 1, and thus the magnitude of a2 does 
to some extent determine the character of the decay of the disturbances for the class of the 
third-grade fluids considered, the material moduli a2 , however, playing a much less signi-
ficant role than the moduli a1 . · 

We conclude our analysis by showing that while the disturbances die down asympto­
tically for third-grade fluids with p = 0, there is always, however, some disturbance at 
t e [0, oo). For any number y(t) ~ 0, by Eqs. (2.7) and (2.8): 

E(t)+y(t)E(t) = - p3 J 1Atl4dv+ y~)a1 J IA112dv+y(t) J lvl 2dv. 
e D e D [) 

Since 

and 

y(t) ~ 0, 

E(t)+y(t)E(t) ~ - {33 J IA114dv+ y(i«1 J IA112dv. 
e n e fl 

Let us define 

Then, 

E(t)+y(t)E(t) ~ 0. 

The fact that y(t) ~ 0, equality holding if and only if E(t) = 0, follows from the mean 
value . theorem .f~r integrals (Fleming 1977, p. 190). Thus we have established 

THEoREM 3. Let a third-grade fluid whose material coefficients meet Eqs. (l.3)t_ s and 
(2.1) be mechanically isolated for all time t E: [0, oo ). Then there exists a y( t) > 0 such that 

E(t)+y(t)E(t) ~ 0. 

Appendix 

In this section, we show that for a third-grade fluid whose material moduli meet (a 1 + 
+ a2 ) = V 24p{J3 , one· could pick initial conditions governing the flow in a manner that 
it has E(t)+AE2 (t) > 0 for all t e [0, ~) for some positive ~. 
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Consider initial conditions such that the first Rivlin-Ericksen tensor A1(x, t) is given 
through 

1 -y"6 y p/{13 + g(x) 0 0 

(A.l) 
1 ' 
~ v' f.Ll{J3-g(x) y6 ' 0 0 

0 0 
2 _ . 

- y'6y f.LlfJ3 

where g is a sufficiently differentiable real-valued function defined on the body, such that 

0 ~ g(x) < £, Vx E Q, 

where E is some positive number. 
Firstly, we observe that 

(A.2) trA1(x, 0) = 0, Vx E!J, 

(A.3) 

(A.4) 

and 

(A.5) 

If E(t) is as defined in Eq. (2.8), then it can be shown (cf. [3]) that in a mechanically iso­
lated flow of an incompressible third-grade fluid 

(A.6) E(t) = - _!_ J Lu IA1 (x, t) 12 + (a1 + a2)trA~(x, 0) + {J3 IA1(x, t)l 4]dv}, 
e a 

for all t E [0, oo ). 
When the material moduli of the third-grade fluid are such that 

(a1 +a2) = y24p{J3, 

it follows from Eq. (A.2) through (A.6), that , 

(A.7) E(O) ,= - lSp J g 2(x)dv-
4

{13 J g4 (x)dv. 
· e n e n 

We would like to show that, for the initial conditions under question, for the ). as 
defined in Eq. (2.14), 

(A.8) E(O) + ).£2(0) > 0. 

If we then define a function H(t) through 

(A.9) H(t) = E(t)+ AE2(t), 
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we would like to show that 

H(O) > 0, 

and the continuity of the function H would assure us that 

H(t) > 0, Vt E [0, b), 

where <l is some positive number, · and hence would validate our claim. 
From the definition of the function E(t) (2.8), it follows that 

(A.lO) E(O) ~ ~~ f IA1 (x, 0) l 2dv, 
ea 

since 

J lv(x, 0) l 2dv ~ 0. 
a 

Thus 

(A.IJ) · i:(O)+A£2 (0);;. i:(O)+A{;; f IA,(x, O)l 2dvr 

= - 18~' J g 2(x)dv-
4
p3 

• .r g4 (x)dv+A.{;1 J IA1(x,O)I 2dv\f
2

, 

efJ eD ea 

by virtue of Eq. (A. 7) and (A.l 0). 
It then follows from Eq. (A.2) and (A.3), and the fact that p, cx1 , {J3 , e and A are non­

negative, that the inequality (A.ll) can be rewritten as 

(A.I2) 

In obtaining the above inequality, we have also made use of the fact that the function g 
is non-negative. It can be very easily verified that an e > 0 such that 

• "' [- : ;. + V {I~;~ (81+ Air, V(!J))} t 
satisfies the strict inequality . (A.I2). Thus we JJ.ave established the fact that 

H(O) > 0. 
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