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Unsteady one-dimensional extensions and small amplitude
longitudinal waves in simple fluids

S. ZAHORSKI (WARSZAWA)

It 1s sHowN that certain unsteady one-dimensional extensions of simple fluids, under the assump-
tion of small amounts of extension, can be treated as particular cases of the motions with pro-
portional stretch history (cf. [4]). Solutions of the governing equations are obtained for the
case of harmonic oscillations, leading to one-dimensional longitudinal waves standing or pro-
pagating in a compressible viscoelastic fluid. Various properties of such waves, e.g. the damping
coefficients, the phase shifts, the maximum amounts of extersion, the speeds of propagation
etc., are discussed in greater detail for very low and very high (ultrasonic) frequencies. It is shown,
among other things, that damping effects in the fluids considered are always weaker than those
in purely viscous fluids with the same viscosities at zero frequency. Viscoelastic fluids subjected
to high frequency disturbances may be more or less deformable than purely viscous fluids,
depending on their limit behaviour at short times.

Pokazano, ze pewne nieustalone jednowymiarowe przeplywy rozciagajace w cieczach prostych,
w zaloZeniu matych amplitud rozciggania, mozna traktowaé jako szczegdlne przypadki ruchow
z proporcjonalng historig deformacji (por. [4]). Rozwigzania odpowiednich réwnati, okresla-
jace jednowymiarowe fale podiuzne stojace lub propagujace si¢ w $cifliwej cieczy lepkospre-
Zystej, otrzymano dla przypadku harmonicznych oscylacji. Bardziej szczegblowo przedysku-
towano r6zne wiasnosci fakich fal, jak np. wspolczynniki tlumienia, przesuni¢cia fazowe, maksy-
malne amplitudy rozciggania, prgdkoécl propagaciji itp., zarowno dla bardzo niskich jak i bardzo
wysokich (naddZwickowych) czestosci. Wykazano, rmedzy innymi, ze efekty tlumienia w roz-
wazanych cieczach sg zawsze stabsze niz w czysto lepkich cieczach o takich samych lepkosciach
przy zerowej czestoici. Ciecze lepkosprezyste poddane zaburzeniom o wysokich czestosciach
moga deformowa¢ si¢ mniej lub bardziej niz ciecze czysto lepkie, w zaleznosci od ich zacho-
wania przy krotkich czasach.

Tloxasaro, Yro HEKOTOpEIE HEYCTAHOBHBIIKECA OJHOMEDHbIE PpACTATHBAIOUHE TEYeHHSA
B OPOCTBIX MKUIKOCTAX, B NMPEIIOJIOKEHHY MATLIX aMIUTHTYH PAcTAXKEHHHA, MOYKHO TPaKTO-
BaTh KAK YACTHBIC CJIy4aH ABIKeHMN ¢ NMpomopLHoHambHOH HcTopmedt nedopmaumm (cp.
[4]). PemeHma cOOTBETCTBYIOIMX YpaBHeHuH, OHmpedeNAoliHe OFHOMEDHEIE MPONONBHBIE
CTOSIUMEe WIHM PACIPOCTPAHAIOLIMECHA BOJHBLI B CHKHMaeMOH BAIKOYNPYIOH MUIKOCTH, MONY-
YeHBI JUIA C/IyYad rapMoHHUecKux ocpuiamuid. Bosxee moapobHo obcy:ieHnb! pasHble CBOMH-
CTBa TaKHX BOJH, Kak Hamp. KoadduumeHTE 3aTyxanus, ¢asoBble COBHUTH, MAKCHMAIbLHEIE
AMIITHTYbl PACTAMKEHHA, CKOPOCTH PACIPOCTPAaHEHHA M T.II., TAK /UIA OYeHh HM3IKHMX, KaK
M OYeHb BBHICOKHX (CBepX3BYKOBBIX) uacToT. Ilokasamo, mexay mpoumm, 4ro 3dhdexrsr sa-
TYXaHHA B PACCMATPHBAEMBIX MKHOAKOCTAX Beeraa Goree cmabble, Yem B UMCTO BASKHX KU~
KOCTAX C TAKHMH CAMBIMM BASKOCTAMM IIPH HYJEBOH uacroTe. BASKOympyrme >KHIKOCTH,
MOJBEPTHYThLIE BOSMYIIEHUAM C BBICOKMMH YacTOTaMH, MOTYT AedOpMHPOBATECH MEHEe HIH
Gonee yem UMCTO BA3KHE YKMAKOCTH, B 3aBHCHMOCTH OT MX NOBENEHMA OPH KOPOTKHX OTpe3-
KaX BpeMeHH.

1. Introduction

IN our PREVIOUS papers [1, 2, 3] certain examples of unsteady shearing flows of incom-
pressible simple fluids were analysed in greater detail. It has been shown, among other
things, that various oscillatory shearing flows lead, under the assumption of harmonic



888 . §. ZAHORSKI

time-dependence, to finite amplitude plane shear waves with linear, circular or elliptical
polarization [2, 3]. All the flows considered belonged to particular classes of the motions
with proportional or superposed proportional stretch histories discussed elsewhere [4].

In the present paper we consider the case of unsteady one-dimensional extensions
and one-dimensional longitudinal waves in compressible simple fluids (cf. [5]). Instead
of introducing a priori any material restrictions, we assume that the amounts of extension
involved are sufficiently small (small-amplitude waves) to linearize the corresponding
governing equations. Various properties of such waves, e.g. the damping effects, the phase
shifts, the maximum amounts of extension, the speeds of propagation etc., are discussed
in the full range of frequencies, that is from zero to infinity. To this end two types of limit
behaviour at short times and very long times have been introduced (cf. [6]).

2. Unsteady one-dimensional extensions

Consider the following motions:
@.0) x=X+eX)f(x), y=Y, z=2,

where x, y, z denote Cartesian coordinates of a particle at an arbitrary time 7, X, ¥,
Z—Cartesian coordinates of the same particle in a reference configuration, g is a function
of X only, and f is a smooth function of time. If the motions considered are harmonic
oscillations, f can be taken in the form ’

(2.2 J(2) = exp(io),

where @ is a constant angular frequency.

Assuming that the amounts of extension ¢’ and their derivatives are small enough to
disregard terms of order ¢'? and higher as compared with those of order ¢’, the deformation
gradient at time 7 with respect to a reference configuration can be written as

(2.3) —g——; = F(7) = 1+Mf(7) ~ cxp(Mﬂr)),
where
@ 00
24) Ml=[o000f [M]=[0@?], tiM=¢
' 000

and primes denote the derivatives with respect to X. For the assumed degree of accuracy
the history of the right Cauchy-Green relative deformation tensor can be expressed in the
form (cf. [5])

(2.5) C(s) = exp(22(s)M) = exp(2g(s)L), . s € [0, ),
where _ .
(2.6) 86) = f1=3)—f1), g(s) = g&1), L = Mfir)

and ¢ refers to present instant of"time.
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Under the assumption of small amounts of extension, the flow considered is a partic-
ular case of the motion with proportional stretch history [4]. Thus the constitutive equa-
tion of a simple fluid (cf. [5])

@7 T() = § (€6 ),

where T(t) is the stress tensor at time ¢, & denotes an isotropic functional of C(s) being
also a function of the time-dependent density g(¢), can be written in the form

@8 1) = 6 (69 M, ) = § (¢ L, e)),

where ® and $ denote functionals of scalars g(s) or g(s), being simultaneously isotropic
functions of the tensor arguments M or L, respectively.
Retaining terms of order ¢’ only, we arrive at the following representation:

29) () =E% (&(); trM, o()1+ Ejlo(é(s); o(t)M,

where the material functional a, is a linear function of tr M.
On the other hand, bearing in mind the representation theorem proved in [4], we can
also use the following equation:

(2.10) T(t) = 30 (e(); A, (1), Ax(1), e(1)),
where the Rivliﬁ-Ericksen kinematic tensors are defined as follows (cf. [5]):
@.11) AO= -0 | aai
ds 5=0
Under the assumed order of approximation, Eq. (2.10) leads to
(2.12) T(t) = (—p+AtrA)1+nA,; +a,A,+0(¢'?),

where p denotes a thermodynamic pressure, 4, % and «, are the material functionals of g(s)
depending also on ‘o(f).
Since for the flow considered

2¢' 0 0] 29’ 00]

(2.13) [A,J=] 0 00|f, [A)J=] O 00|f+[O(@™)],
0 00 0 00

the continuity equation gives

(2.19) o(t) = goexp(—¢’f) = o (1-¢f+0(¢'?)),

where g, denotes the density at reference configuration. Therefore, it can be deduced that,
within the assumed order of approximation, 4,  and a, are functionals of g(s) depending
on a constant parameter g,.

According to Eq. (2.12), the non-zero stress components

T — _p+21¢,’j‘+2qqo'f'+2¢z?'f;

2.15 i
9 T% = T5 = —p+2ig',
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substituted into the dynamic equations of motion lead to
0 — "
(2.16) a2 (P29 + 29 + 20, ¢'f)~ 009 = 0.

If pressure p is a barotropic one, i.e. p = p(p), we have moreover,

op _9p % _ _ _..0p Op
(2.17) W—a—g‘gf‘ 90?’.{6—9, 3—9>
and Eq. (2.16) takes the form linear with respect to ¢:
ap rd PR i
(2.18) Qof“éé' +2uf 9" —eofp = 0,
where
_ /
(2.19) b= A+n+ta, 7

Equation (2.18) being the governing equation for the flow considered can, in prin-
ciple, be solved for known functions p(g), u(t, go), f(t), f(t) and appropriate initial and
boundary conditions.

3. One-dimensional longitudinal waves

If function f(7) is of the harmonic form (2.2), then

3.1) g(s) = —%(e“‘“-— 1), f= iwexpiwt

and the material functionals 4, n and a, (cf. (2.12)) become functions of angular frequen-
cy . The governing equation (2.18) takes the form

(3.2) (eo —g—g + Ziwﬂ*(w))qv"'keow’q’ =0,

where u*(w) may be considered as the generalized complex viscosity function. This differ-
ential equation can be solved effectively only if dp/dp does not depend on time. This
is the case of isothermal processes for which p = Cp, C = const. For adiabatic processes
p = Co*, C = const, k = const and Eq. (2.14) implies that

(3.3) 0 % = okCg*~* = gbkCexp(—(k—1¢f) = kCob(1—(k—1)¢’f+0(¢"%))-

Thus, in both cases the term dp|dp present in the linearized equation (3.2) can be treated
as independent of time.
A general solution of Eq. (3.2) can be written as

(3.9 @(X) = Aexp(f+iy)x+Bexp(—f—iy)X,
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where 4 and B are integration constants, and

; -gow(:!y”-k-g%——?g +2igowp’
G5 G0 L.
2#*((,,)_,'&__62 4u'? + 2;,**4.&?1 ? ’
o dp w? Op

where p* = pu'—ip"”.

Any solution of the form (3.4) describes small-amplitude one-dimensional longitudinal
waves, standing or propagating along the X-axis with the phase velocity c(w) = w/y.
The coefficient of damping (attenuation) # and the phase shift (wave number) ¥ can.be
presented as follows:

Qo® 1 & 1_ Q@ E &
W) Y18 148 ] .1 e 0P\ Y148 1+5’]’
vV | 4(;1 (@)+ 5 2 39) V

(3.6) *p? =

2 _Go® 1 £ 1. Q0@ ¢ &
67 7 =5 |yt e = Y st e
# 2 w dp

where the second forms are valid only for & # 0, and

" 1 Qo aP T 1 5P
Gl S = w'(w)+ 7w % _ H'(w)+ 5 9“3_9
# () H"(w)

The quantities
(3.9) H'(w) = op'(w), H"(0)= op'(w)

can be considered as the generalized dynamic moduli.
For the majority of viscoelastic fluids (polymer solutions and melts) it is reasonable
to assume that
(3.10) limé(w) = v, limé(w)= o
w0 @—+ 00
and there exists a certain frequency at which &(w) takes a positive minimum value. For
very low frequencies or very long times the fluid considered behaves like a purely viscous
compressible liquid while for very high frequencies or very short times its behaviour
is almost purely elastic.
Thus, Egs. (3.6) and (3.7) imply that
(3.1 limp? =0, limy?=0,
w-0 w@—0
while for w tending to infinity we can distinguish the following types of limit behaviour:
a) the Kelvin-like behaviour at short times when the corresponding instantaneous
modulus H(0) is infinite and
2
(3.12) lim = = const,

w0 g 1 op
H(‘*—’)"‘f@n@
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then

(3.13) limf% =0, limy? = lim ——% = const;
@400 @+ W= . 0
2u"(w) + = "b?
b) the Maxwell-like behaviour at short times when the corresponding instantaneous
modulus H(0) is finite and

N T ) T
(3.14} :]_{1:} (H (QJ)"' —2— Do 3_9) = const,
then
3.15) l.irnﬂ2 =comstoro, limy? = lim —— %% _ .
s 14
w 0Op

The limit values of #? may be finite or infinite depending on the rate at which &(w) tends
to infinity for increasing w.

In both cases the phase shifts y? increase monotonically with o, while 82 may reach
maximum values for & = 1/ |/ 3. It results from Eq. (3.6) that

: (316) ﬁrznn = 0% s
16 |u" (o )+~l— &o ip;
€r. 2 wcr ae
where the critical frequency w,, is a solution of the following equation:
' — 1 Qo ap

Existence of a critical frequency or a critical time in various polymer systems may be attri-
buted to a passage from purely liquid states to highly elastic states (cf. [7]).

A diagram illustrating variability of % and y? is schematically shown in Fig. 1. It must
be noticed, however, that the scale of abcissa refers to &(w); the corresponding values
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of w are written for comparisons. Since for purely viscous compressible fluids (¢, = 0)
we have
31 2o gz Q00
where A+ 7 is a constant viscosity coefficient, the results (3.13) and (3.15) mean that damp-
ing effects in viscoelastic fluids are always weaker. as compared with those in viscous
fluids for which f2 increases proportionally to w.

So far, we tacitly assumed that £(w) was never zero in-the full range of frequencies.
It may happen, however, that for certain viscoelastic fluids (polymer systems) the equation

e, 1 90 ap —
(3.19) u (mo)+"2—w—oa—g =0
has one or more.positive roots mg. For such a root &(we) = 0, and
3.20 3= 3= Soo0
(3.20) Bs = vs 34" (o)

The above result shows that the cerresponding curves of §2 and y? are mutually crossed.
For two or more positive roots the curves of * and py? may cross twice or more times
at the points where &(w,) are equal to zero. In the case of two roots, for instance, values
of & are negative in the interval between the roots, and some local extrema may occur
for £ = +1/}/3. Existence of a frequency w, at which £(w,) = 0 may be useful to describe
an internal structure breakage observed in certain polymer systems.

-

-

I
~
N L ——

Diagrams illustrating the above discussed variability of > and y? are schematically
shown in Figs. 2 and 3. It is worthwhile to note that similar pictures are observed for some
fluid models with a number of discrete relaxation times (cf. [8]).

In general, the curves presented in Figs. 1, 2 and 3 resemble those usually obtained
for mechanical impedances resulting from acoustic measurements (cf. [8]). The relations
connecting > and A2 with the active R,, and the passive X, part of the mechanical impe-
dance are as follows:

(3.21) RZ = (u2+u"?)y?, Xi= (W?+p"?)p

5 Arch. Mech. Stos. nr 6/80



894 _ S. ZAHORSKI

P Vﬁ 0 —1/\5 0 w3 >
0 *w Wery  Wop W Werg w—>

FiG. 2.

4. Other properties of longitudinal waves

When the waves considered are caused by harmonic disturbances applied at time
t = 0 to the yz-plane (x = 0), the amount of extension or compression ¢’ essentially
depends on angular frequencies w. Since ¢’ is a complex function of X, we obtain from
Eq. (3.4) the following maximum value of extension:

(4°l) qgn: = l‘P'lz = C(ﬁ2+?z):

where C is composed of integration constants. Substituting Egs. (3.6) and (3.7) into
Eq. (4.1), we arrive at

: Qo® 1 Qo
T R . ]/1+
2 pyive 2 ( ,,(w)+Lg_gQ
w
Taking into account Eq. (3.8) and passing to the corresponding limits, we have
(43) fimgiu = 0, limgde, = - Clim — 2%
w—0 w— oo 2 w00 u( )+ l 90 ap
w dp

According to Egs. (3.13) and (3.15) the last limit is finite only in the case a), i.e. for
the Kelvin-like behaviour at short times. In the case b), i.e. for the Maxwell-like behaviour
af short times, g2,, tends to infinity almost proportionally to w?. In the case a) g2,, for
very high frequencies is less and in the case b) greater than the maximum amount of ex-
tension in purely viscous fluids, viz.

2 -
44 - mx =5 C

where 7+% is a constant viscosity.
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The speed of propagation for one-dimensional longitudinal waves in a viscoelastic
fluid which had been at rest in a fixed reference configuration can be derived from the fol-
lowing relation: [9]:

2
4.5 U? = 2 = limc*(w) = lim ——,
(4.5) i o (@) oo
where c,, denotes the ultrasonic velocity. Taking into account Eq. (3.7), we arrive at
(4.6) U =¢c} = 2 lim (2w,u"(w)+go fj—"l)

@0 w-o a@

If H(0) = H'(c0) denotes the instantaneous extension modulus (initial value of the stress
relaxation function), Eq. (4.6) leads to the following final result:

2H(0) dp
4.7 U2 e el i,
4.1 f = + %

The speed of propagation U, (called the speed of sound in acoustics) is finite only for
the Maxwell-like behaviour at short times, 1.e. for fluids for which there exists finite in-
stantaneous extension modulus H(0). It can easily be seen that one-dimensional longi-
tudinal waves propagate with a finite speed even in such ideal fluids for which H(0) = 0.

At the end of the present considerations let us briefly summarize the most important
properties of viscoelastic waves as compared with those in purely viscous compressible
fluids.

In the case of the Kelvin-like behaviour at short times the damping effects are much
weaker than in purely viscous fluids and sometimes may be neglected for sufficiently high
frequencies. The corresponding maximum amounts of extension or compression tend
to constant values when frequency increases. Such fluids are less deformable than purely
viscous fluids subjected to the same harmonic disturbances. Finite speeds of propagation
do not exist at all.

In the case of the Maxwell-like behaviour at short times the damping effects are weaker
than those in purely viscous fluids but not so small as in the previous case. The correspond-
ing maximum amounts of extension or compression may increase unlimitedly with in-
creasing frequencies, and such fluids are more deformable as compared with purely viscous
fluids subjected to similar initial disturbances. There exist finite speeds of propagation
(speeds of sound), and because of weaker damping any disturbances can propagate at
longer distances than in purely viscous fluids.
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