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Similarity analysis of wave propagation probleJBS in nonlinear rods 

R. SESHADRI (EDMONTON) and M. C. SINGH (CALGARY) 

· SIMILARITY analysis of wave propagation problems in nohlinear rods are discussed from the 
view point of continuous groups of transfofl1lAtions. For the governing nonlinear partial differ­
entia equations, the similarity variables and the characteristics of the equation are related 
at the wave front. A procedure leading to a similarity-characteristic relationship is developed 
which provides an additional condition at the wave front for the solution of the similarity re­
presentation. The similarity-characteristic relationship is derived for the problem of velocity 
impact of an inelas~ic rod and solutions for the wave propagation problem are obtained. 

Om6wiono anal~ podobienstwa dla zagadnien propagacji fat w nieliniowych pr~tach z punktu 
widzenia ci~glych grup przeksztalcen. Dla podstawowego nieliniowego r6wnania r6iniczkowego 
c~tkowego zmienne podobienstwa i charakterystyki r6wnan zwi~ne ~ .ze sob~ na froncie 
fali. Opracowano procedu~ prowadZ4~ do zwi!llk6w mi~zy podobienstwem i charaktery­
stykami, stanow~cych dodatkowy warunek, kt6ry na froncie fali spelniae powinno rozwi~­
zanie problemu podobieristwa. Zwi~k mi~dzy zmiennymi podobienstwa a charakterystykami 
wyprowadza si~ z zagadnienia impulsu p~ko8ci przylozonego do p~ta niesp~zystego; otrzy .. 
nuje si~ rozwi~nie problemu propagacji fal. 

06cy~eH 3Ha.JIH3 UO,I:(OOHJI .IVIJ1 3a.£(3'tl pacnpoCTpaHCHHJI BOJIH B HCJIIU{CHHbiX CTep>KHJIX 
C TO'll<ll 3peHWI HenpepbiBHblX rpynn npeo6paaoBamdi • .Jlml OCHOBHOro HCJnlHCHHOro ,I:(Il~­
peHUilaJILHOro ypaBHCIDUI B 'laCTHbiX UpoH3BO,I:(HbiX uepeMeHHbie UO,I:(OOHJI ll Xap8.KTepH­
C'l'HI<Il ypasHemUi CBHaaHbi c co6oit Ha $poHTe BOJIHbi. Paapa60Taaa npo~e,I:(ypa up~tBO,I:(JIInaH 
I( COOTHOWCIDUIM MC>K,lzy UO.l(061!CM ll xapaKTepllCTIU<aMH COCTaBJUllOIIUlMH ,I:(OUOJJHHTCJILHOC 
YCJIOBHC, KOTOpoMy Ha 4lpoHTe BOJIHbi ,I:(OJDKHO y.l(OBJieTBOpHTb pemeHilC 3a,I:(aqll UO,I:(OOHJI. 
CooTHOIIICHilC MC>K,lzy nepeMCHHhiMH UO,I:(OOHJI H xap8.KTepHCTIU<&Mil BbiBO.iun'cJI H3 aa,I:(S'tlH 

JWiiY1IbC3 CKOpocTH, UpHJIO>KCHliOro K HeynpyroMy CTep>KHIO; nonyqaeTCH peiiieHHe 33,I:(Q'DI 

pacnpOCTp3HeHM BOJIH. 

Nomeaclatures 

x coordinate along the axis of the rod (this is a Lagrangian coordinate, where x 
denotes the position of a particle in the initial unstrained state), 
time, 

u(x, t) particle displacement, 
a(x, t) nomin~l compressive stress, compressive stress is assumed positive, 
v(x, t) particle velocity, · 
e(x, t) nominal eompressive strain, compressive strain is assumed to be positive, 

p, q mat~rial constants describing a nonlinear material, 
U, B . column vectors, 

A (nx n) square matrix, 
A.' eigenvalues or characteristics, 

'1, C similarity ·variables, 
e infinitesimal parameter, 

U*, X, T infinitesimals of a continuous group of transformations, 
D(t) distance to the wave front from the origin, 

C., f/w similarity coordinate at the wave front, 
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vc, d constants for the initial velocity condition, 
~ 1 , ~2 the space variables obtained by integrating along the characteristics which 

locate the discontinuity. 

SIMILARITY analysis is essentially a procedure for finding transformations of independent 
variables, whereby a given system of partial differential equations and its · associated auxil­
iary conditions are transformed · into a system of ordinary differential equations and its 
auxiliary conditions. The method is applicable to linear as well as nonlinear .partial differ­
ential equations. Recent 'methods of analysis based on group-theoretic motivations [1, 2] 
have placed similarity analysis on a former mathematical b.asis. However, the analysis 
of hyperbolic type of partial differential equations arisin~ from wave propagation problems 
is complicated by the presence of the moving boundary condition. In this connection,. 
SESHADRI and SINGH [3] suggested that invariance of a given system of partial differential 
equations of hyperbolic type under a continuous gtoup of transformations would lead 
not only to a similarity, variable but also to the characteristics along which a disturbance 
propagates. This fact has been used to establish a relationship between a characteristic 
and the similarity variable and to determine the numerical value of the similarity variable 
at the wave front. Application of this relationship to the problem of nonhomogeneous 
elastic rods was made by SINGH and BRAR (4]. 

ln the present paper the relationship between similarity coordinate and character­
istics is elaborated with reference to invariance of the equations under an infinitesimal 
group of transformations. Consequently, a method for determining the moving boundary 
condition in terms of the similarity coordinate is presented. This procedu~e leads to the 
similarity-characteristic relationship which is essential to the solution of the overall 
problem. The proposed method is applied tp the similarity solution of the problem of veloc­
ity impact of a nonlinear rod. 

2. Relationship between simUarity coordinates and characteristics, grou,..tbe4)retic motivation 

A common form of the equation representing wave propagation phenomena in a one­
dimensional rod is given by 

(2.1) M(u) = 1p(x, l, U, Ux, Ut)Uxx-Utt = 0, 

where 1p is a function of the arguments shown in the parenthesis, xis the Lag~angian coordi­
nate, t is the time, u is the particle displacement and the variables in the subscript denote 
differentiation. Equation (2.1) is a quasi-linear partial differential equation of the hyper­
bolic type. 

Many problems in nonlineat wave propagation are expressed in terms of a system 
of first-order quasi-linear equations [5], thereby limiting the solution to specific physical 
situations. The quasi-linear form can be written as 

(2.2) Ur+AUx+B = 0, 
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where U and B are n x 1 column vectors and A is a (n x n) square matrix. The eigenvalues 
).1, I = 1 , ... , n, of the equation lA- ).JI = 0, are · real and distinct for totally hyperbolic 
systems. The characteristics are given by 

(2.3) C''':( ~~ ), = .1.'"· 
Equation (2.2) is invariant under a group of transformations: 

(2.4) G 1 : x ~ ax, t -+ at, U -+ U; (- oo < x < oo ; t > 0; a > 0), 

provided that both A and B are invariant under G J • A similarity solution can now be 
written, as reported in an earlier work [6] as 

(2.5) U = U(rJ), fJ = 1J(X, t ), 

where 'YJ is a similarity variable, dependent on the indepedent variables x and t. The inva­
riant boundary condition at the wave front is u('YJ = 'Y/w) = g('YJw). Consequently, Eq. (2.3) 
would also be invariant under G1 since it defines the x- t locus of the wave front [5]. 
The solution described by Eq. (2.5) is usually limited to problems resulting from disturb­
ances that are suddenly initiated and uniformly sustained leading to a centered simple 
wave situation. It may be remarked here that whenever a given nonlinear hyperbolic 
partial differential equation of a wave propagation problem such as Eq. (2.1) is expressed 
in terms of the first-order quasi-linear form, Eq. (2.2), the boundary conditions for which 
the problem is solvable, becomes restricted. This is a definite disadvantage of the first­
order quasi-linear formulation. On the other hand, similarity analysis of the original 
equation, (2.1), using invariance under a group of transformations, would lead to other 
physical sit~ations that cannot be obtained by solving the first-order quasi-linear equa­
tion (2.2). 

In the solution of the similarity representation (the transformed system of ordinary 
differential equation and the boundary conditions), the numerical value of the similarity 
coordinate at the wave front is not readily known. A method is hereby proposed which 
determines the similarity-characteristic relationship, and further, establishes the numerical 
value of the similarity variable at the wave front. 

Define a continuous group of infinitesimal transformations G2 : 

u = u+eU*(x, t,u)+O(e2
), 

(2.6) :X= x+ eX(x, t, u).f.O(e2
), 

t = t+ eT(x, t, u)+ O(e2), 

where e is an infinitesimal parameter, U*, X and Tare known as infinitesimals. Let the 
solution of Eq. (2.1) be u = 8(x, t). The solution satisfies the fixed auxiliary conditions 

(2.7) 

on prescribed curves 

(2.7') Wa:(x,t)=O, ex= 1,2 ... m, 

and the condition at the moving boundary or the wave front 

(2.8) u (x = D(t) ;t) = 0. 

The displacement being zero ahead of the wave front, x = D(t). 
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Let the system of equations and auxiliary conditions, (2.1 ), (2. 7) and (2.8), be invariant 
under the one-parameter infinitesimal group of transformation, (2.6). This implies that 

a) M(u) = M(u) ~ · o, 

where M(u) is obtained by replacing (x, t, u) by (i, t, u). 

b) 

for the invariance of the auxiliary conditions, and 

c) u(x = D(i); i) = o, 
at the wave front. 

Assuming that a unique solution of M(u) = 0 exists, 

(2.9) u(x, t) = u(X, t) = u(x, t, O(x, t), e), 

the invariant surface can be obtained by solving the following equation, obtainable from 
Eq. (2.9): 

(2.10) ao ao .;__ * X(x,t,O)ax+T(x,t,O)Tt- U (x,t,O). 

The characteristic equation corresponding to 
of Eq. (2.1) under the transformations (2.6) is 

Eq. (2.10) obtained from invariance 

dx dt 
X(x,t,O)- T(x,t,O) 

dO 
(2.11) 

U*(x, t, 0) · 

Solution of Eq. (2.11) gives the similarity transformations [2]. 
In the case of wave propagation in one-dimensional rods, the continuity of the rod 

at the wave front must be preserved. This implies that at x = D(t) there is zero displa­
cement, for there is no displacement ahead of the wave front. Therefore the condition 

(2.8) u(x = D(t); t) = 0, 

must hold at the wave front. Physically speaking, the path of the wave front would be 
described by a characteristic 

(2.12) cp(x = D(t); t) = C, where C is a constant. 

For the wave propagation problem to be expressible in terms of a similarity repre­
sentation, 

cp(x, t) = cp(X, t) 

at the moving boundary, x = D.(t), giving the expression 

(2.13) 
aq, aq, 

X(x, t, u) ox + T(x, t, u) 7ft= 0. 

The infinitesimals X(x, t, u) and T(x, t, u) are related by the following equation: · 

(2.14) 
dx dt dcp 

X(:X, t, u) = T(x, t, u) · ~ o· 
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The solution of the subsystem (2.11) leads to the similarity transformation. Also, 
solution of the subsystem (2.14) defines the moving boundary, x = D(l). In other words, 
for a hyperbolic system of partial differential equations, the invariance of the governing 
equations under a group of transformations identifies the characteristics in simple wave 
regions for the class of wave propagation problems considered in this paper. 

3. The simUarity-characteristic relationship 

Consider now the proposed procedure for determining the numerical valll;e of the sim­
ilarity variable at the wave front. 

With reference to Eqs. (2.1) and (2.2), the characteristics can be determined from the 
equation 

IA-lll = 0, 
giving 

(3.l) 1• ( dx ) _ K<'>( · ) C · dt 
1

.- . X~ t,U,Uz,Ut. 

Being consistent with the physical problem under consideration (x ~ 0, t ~ 0) and dropping 
the other characteristics, two distinct cases for the determination of the similarity-char­
acteristic relationship are discussed. 

Case (a): 

(3.1') 
dx dt= K(x, t). 

Integrating along the c;:haracteristics, 

(2.12') t/Ji(X, t) = C. 

Also, from the equivalence of Eqs. (2.11) and (2.14) 

(3.2) 1]1(X, t) = 1Jw~1 (x, t), 

where 1J(X, t) is the similarity variable obtained by solving Eq. (2.11), 1/w is its value at the 
wave front and ~1 (x, I) is obtained by integrating Eq. (3.1'). 

Consider an example when 1p(x, 1, u, Uz, u,) = A*x"'t" where A*, m and n are con­
stants; the characteristic can be obtained by integrating 

(3.3) 

2 2+n 

(3.4) (
,;-.-:- 2-m }2-'m 2-m" 

X = V A* -2-- t . +n 
For the characteristic passing through the origin, the cons~nt of integration vanishes. 
From the invariance of Eq. (2.1) with 1p = A*xmt", the similarity variable can be written as 

(3.5) X 
1J(X, t) = 2+/1' 

12:.;,-

http://rcin.org.pl
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Using Eq. (3.2) 
2 

(3.6) 
'fJ(X, t) ( ,_ 2-m) 2-m 

'fJw = ~1 (x, t) = Y A* l+n ' 

where 'f/w is the value of the similarity variable at the wave front. 
Case (b): 

(3.1 ") 
dx 
dt = K(x, t, u, Ux, u,). 

Since the characteristic is dependent on u, ux and u~, an explicit relationship between x 
and t along the characteristics is not possible. The integration along the characteristics 
can be carried out if the similarity transformation, which is the solution of Eq. (2.11), 
is introduced in Eq. (3.1"). Let the similarity solution of Eq. (2.1) be expressed in the form 

(3.7) u(x, t) = {J(x, t)F('fJ), 

where 'fJ is the similarity variable. Equation (3.1") can then be expressed as 

(3.8) 
dx -
dt = K(x, t,F('fJ),F'('fJ)). 

At the wave front t~e similarity and characteristic relation assumes the form 

(3.9) 'fJ(X, t) = 'f/w~ix, t). 

Equations (3.6) and (3.9) are the similarity characteristic relationships required for the 
two cases of 1p(x, t, u, u, ux). The similarity characteristic relationship must be satisfied 
along with the rest of the similarity representation for the solution of the wave-propagation 
problem. It should be understood that at the wave· front 'fJ = 'f/w, and that Eq. (3.9) must 
be satisfied. 

4. Impact on a rod with a nonlinear stress-strain relationship 

The governing equations for small deformations, within the framework of the uniaxial . 
theory of thin rods, are [7] 

0(] OV 
ax = -eat' 

(4.1) 
oe Ov 
ac= --ax, 

where p., {!, q are material constants; x is the Lagrangian space coordinate, t is time, 
cJ and e are nominal compressive stress and nominal compressive strain, respectively. 
u is the displacement of a point, and v its velocity. AJso 

(4.2) 
ou ou 

e = - ox ' v = Tt · 
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The auxiliary conditions are given by the following equations: 
The condition at the origin, x = 0, is 

(4.3) 
ou . 

v(O, t) = Tt (0, t) = Vcr', (vc > 0; d is a parameter). 

The condition at the wave front is 

(4.3') u(x = D(t,); t) = 0, 

where x = D(t) gives the location of the wave front. 
The initial conditions are 

(4.3") 
ou 

u(x,t=0)=Tx(x,t=0)=0, x>O. 

Combining Eqs. (4.1) and (4.2), the equation of motion assumes the form . 
(4.4) 

939 

Using the similarity proc~dure [6], the similarity representation can be determined as 

(4.5) u(x, t) = vcr'+ 1F(C), 

where F(C) is the similarity-function and 

(4.5') 

is the similarity-variable, wherein, 
q l-q 

(4.5") k = ( ~ )q+t (-~J~+<. 
and 

(4.5'") 
d+ I +q(l- d) 

m= . 
q+l 

Using the transformation equations (4.5), the equation of motion (4.4) is transformed 
into the ordinary differential equation 

1-q 

(4.6) ( -F')_q_F" = m2C2F" +m(m-2<5- I)CF' + d(d+ I)F. 

The auxiliary conditions, under similarity tr~nsformations, assume the form 

(4.6') 

(4.6") 

) 
I . 

F(O = l+d' 

F(Cw) = 0, 

where Cw, the value of the similarity variable at the wave front, is as yet unknown. From 
Eq. (4.5') the location of the wave front x = D(t) can be written as 

(4.7) 
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Also, the characteristics of Eq. (4.4) ~n be expressed as 

1-q 

(4.8) ~~=±)I~(-::) ... 

lt. SlsRADtu AND M. c. SINOH 

As discussed in the case (b) of the previous section, by substituting Eq. (4.5) into Eq. (4.8) 
and integrating along the positive characteristic, the following relationship is obtained: 

(4.9) { 
1-q} 

D(t) = !:_ t -F'(Cw)]_lf"_ . 
k 1 <5{1-q) 

+ (I +q) 

From the equivalence of Eqs. (4.7) and (4.9), the similarity characteristic relationship 
can now be written as 

1-q 

(4.10) 
[ -F'(Cw)12q 

Cw = ----=--:-:--~-
1 <5(1-q) . 
+ (l+q) 

For a linear elastic material, q = l, p = E (Young's Modulus), we get 

Cw = 1 and D(t) =V: t. 

(i) For the case when q = 1, and ~ > ~ l 

(4.ll) 

SIMILARITY VARIABLE, 

FCt> vs C. q•O, 8> -1 
FIO. 1. 
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satisfies Eqs. (4.6) and (4.10), so that 

(4.12) u(x, t) = 1 ~" [t- ;;)'+', 
where Ce = velocity of propagation of this elastic wave. Plot between C and F(C) for differ­
ent values of q is shown in Fig. 1. 
(ii) For the case (j = 0, q i= 0, Eq. (4.6) becomes 

(4.13) [(-F') •;q -C2]F" = 0. 

Two cases arising out of Eq. (4.13) are considered. The first is for 0 < q < I and the 
second for q > 1. 

Consider the first case, 0 < q < 1. On the basis of Eq. (4.13) we can write 

1-q 

(4.13') < -F')_q_ = c2. 
Integrating Eq. (4.13') with respect to C 

l+q 

(4.14) F('") = - (C)t="i c 
~ 1 +q + 2' 

1-q 

where C2 is a constant of integration. 
The boundary conditions on the basis of Eqs. (4.6') and (4.6") become 

(4.15) F(O) = 1 and F(C~1>) = 0. 
The solution that satisfies the similarity-characteristic relationship along with the bound­
ary conditions ( 4.15) is 

(4.14') 

and 

(4.16) 

l+q 

c•-q 
F(C) = 1---, 

1+q 
1-q 

l-q 

l-q ( 1+ )l+q C~0 = [ -F'(C~U)]2q = __ q . 
1-q, 

Equation ( 4.16) is t~e first particular solution of the first case. The second particular 
solution of this case is obtained from Eq. (4.13"), given subSequently, as 

(4.14") F(C) = 1-C. 

Plot of F(C) and C for the case as given by Eq. (4.14') is shown in Fig. 2 for different values 
of q. Furthermore, the relation between q and C~1 > is shown in Fig. 3. The second particular 
solution of the first case as given by Eq. (4.14") is also plotted in Fig. 2. 

It can be seen that in this case fo_r q < 1, Eq. (4.16) gives physically meaningful results. 
Materials such as rubbers and even certain metals exhibit the constitutive law (q < 1). 

8 Arch. Mech. Stos. nr 6180 
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For such materials a ~:: > 0 for any e. In this case the distance between wave front . 

decreases during propagation and there is a tendency to form shock waves. 
The solution of the second case, q > 1, arising out of the Eq. (4.13) is the one due 

to, VoN KAR.MA.N and OuwEz [8]. 
Most metals can be described by the stress-strain law with q > 1. For these consti-

tutive relationships (J ~:~ < 0 and as the stress at the end of the rod increases continu­

ously, the waves generated successively at the end of the rod will propagate continually 
with decreasing velocities. Also, for such materials the distance between the wave fronts 
will increase during. their propagation. . 

If we consider Eq. (4.13) again, this equation is satisfied for 

(4.13") F"(C) = 0. 

The solution of the above equation under the boundary conditions (4.15) gives 

(4.17) ' F(C) = 1- C~>, 

where, according to Eq. (4.10), ~2> = 1, and on the basis of Eq. (4.5) 

(4.17') 

8* 

• 
z 
c( 
er ... 
(/) 

1 

_I = [-1 ]::: [~]t!q 
~2) Vc p ' 

STRAIN, e, vs INDEPENDENT VARIABLE, x ( q ~I, 8 =0) 
AT t & t 1 

I 
I ... , 

~I 
a:t 
lLI 
~I 
til 
c(l 

it 
I 

-· 

_____ L _____________ r-
t u 
l t=l~ 
I (/)Jo 
I :31~ 

IIJ 
(2) 
~w t, ). o t I 

-INDEPENDENT VARIABLE, 1t . 
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,t~> is the velocity of propagation of the plastic wave. The strain, emu = - ~; = - ;;;> , 
is propagated along the wave front. The· complete solution for the problem of constant 
velocitr is made up of the following components: 

(a) e(x, t) = 0, for x > l 0 t, lo =elastic wave velocity for q = 1, 

(4.18) 
'Vc 

(b) . e(x, t) = To at 

(c) 
f1c 

e(x, t) = emu: = ~2) 

X= lc,t, 

for 

The strain profile is shown in Fig. 4. The characteristic curves for d = 0 and q > 1 are 
shown in Fig. 5. 

x- t CURVES FOR q ~I, 8 = 0 

CONSTANT VELOCITY IMPACT 

r 

FIG. S. 

(iii) For the most. general impact problem ·q #: . 0, and any d, ( ~ #: - 1 ), Eqs. ( 4.6) and the 
similarity-characteristic relationship, ·equation (4.9), can be solved by a numer.a1l pro­
cedure. 

5. Discassion 

For the analysis of nonlinear wave propagation problems, the traditional methods 
using first-order formulation lead to solutions for- which the boundary and tle initial 
cond~tions are somewhat restrictive. Based on group-theoretic motivation, a relltionship 
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between similarity variables and characteristics is derived using the concept of invariance 
of the governing equations under a transformation group. The procedure is applied to the 
proble~ of velocity impact of a semi-infinite inelastic rod and some useful closed form 
solutions are derived. There are some extensions of the proposed similarity-character­
istic relationship and the associated theory; possible applications can be made to hyper­
bolic equations which are invariant under ~ general group of -transformations in contrast 
to the dimensional group applied in the paper. Also, extensions could be made to two- or· 
three-dimensional problems. 
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