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Similarity analysis of wave propagation problems in nonlinear rods
R. SESHADRI (EDMONTON) and M. C. SINGH (CALGARY)

'SiMILARITY analysis of wave propagation problems in nonlinear rods are discussed from the
view point of continuous groups of transformations. For the governing nonlinear partial differ-
entia equations, the similarity variables and the characteristics of the equation are related
at the wave front. A procedure leading to a similarity-characteristic relationship is developed
which provides an additional condition at the wave front for the selution of the similarity re-
presentation. The similarity-characteristic relationship is derived for the problem of velocity
impact of an inelastic rod and solutions for the wave propagation problem are obtained.

Oméwiono analize podobiefistwa dla zagadnien propagacji fal w nieliniowych pretach z punktu
widzenia ciaglych grup przeksztalcen. Dla podstawowego nieliniowego rownania rozniczkowego
czastkowego zmienne podobiefistwa i charakterystyki rownarn zwigzane sg ze soba na froncie
fali. Opracowano procedur¢ prowadzaca do zwigzkéw miedzy podobiefistwem i charaktery-
stykami, stanowigcych dodatkowy warunek, ktéry na froncie fali spetniaé powinno rozwig-
zanie problemu podobiefistwa. Zwigzek migdzy zmiennymi podobieristwa a charakterystykami
wyprowadza sie z zagadnienia impulsu predkosci przylozonego do preta niesprezystego; otrzy-~
nuje si¢ rozwiazanie problemu propagacji fal.

O6cyxaen ananu3 nofolus A 3a[ay pPACIPOCTPAHEHHSA BOJH B HEJIHHEHHBIX CTEDIMKHAX
€ TOUKH 3PEHHA HENpPEPLIBHAIX rpymm npeobpasosanuii. A ocHoBHOro HesmueiiHoro audde-
PEHIMAILHOIO YPABHEHHS B YACTHBIX NMPOH3BOJHBIX NEPEMEHHBbIE MOAOOHA H XapaKTepH-
CTHKH YPaBHEHHH CBA3aHBI ¢ coboii Ha ¢dpoure Bomnl. Paspabotana npouenypa npusoasAman
K COOTHOILUECHMAM MEXIY MOM00HeM M XapaKTEePHCTHKAMH COCTABJIAIOIMMHE JOMOJHHTENIBHOE
YC/IOBHE, KOTOpPOMY Ha (pOHTE BOJHBI JO/DKHO YOOBJIETBODATE pellleHye 3aauy Nomobus.
CooTHOllIeHHe MEXKIY NEPEMEHHBIMH TOAOGHA M XapaKTePHCTHKAMH BBIBOJMTCA H3 3aJaul
HMIOTYJIBCA CKOPOCTH, IPHJIOMKEHHOIO K HEYIPYrOMY CTEDXKHIO; IIOJIYYaeTCA PellleHHe 3afadu
PacTIpOCTPaHEHUA BOJH.

Nomenclatures

x coordinate along the axis of the rod (this is a Lagrangian coordinate, where x
denotes the position of a particle in the initial unstrained state),
t time,
u(x,t) particle displacement,
o(x,t) nominal compressive stress, compressive stress is assumed positive,
v(x,t) particle velocity,
e(x,t) nominal compressive strain, compressive strain is assumed to be positive,
B, q material constants describing a nonlinear material,
U, B .column vectors,
A (nxn) square matrix,
A! eigenvalues or characteristics,
1, ¢ similarity variables,
& infinitesimal parameter,
U*, X, T infinitesimals of a continuous group of transformations,
D(¢) distance to the wave front from the origin,
Cw, w similarity coordinate at the wave front,
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v., d constants for the initial velocity condition,
&,, &2 the space variables obtained by integrating along the characteristics which
locate the discontinuity.

1. Introduction

SIMILARITY analysis is essentially a procedure for finding transformations of independent
variables, whereby a given system of partial differential equations and its associated auxil-
iary conditions are transformed into a system of ordinary differential equations and its
auxiliary conditions. The method is applicable to linear as well as nonlinear partial differ-
ential equations. Recent methods of analysis based on group-theoretic motivations [1, 2]
have placed similarity analysis on a former mathematical basis. However, the analysis
of hyperbolic type of partial differential equations arising from wave propagation problems
is complicated by the presence of the moving boundéry condition. In this connection,
SesHADRI and SINGH [3] suggested that invariance of a given system of partial differential
equations of hyperbolic type under a continuous group of transformations would lead
not only to a similarity variable but also to the characteristics along which a disturbance
propagates. This fact has been used to establish a relationship between a characteristic
and the similarity variable and to determine the numerical value of the similarity variable
at the wave front. Application of this relationship to the problem of nonhomogeneous
elastic rods was made by SINGH and BrAr [4].

In the present paper the relationship between similarity coordinate and character-
istics is elaborated with reference to invariance of the equations under an infinitesimal
group of transformations. Consequently, a method for determining the moving boundary
condition in terms of the similarity coordinate is presented. This procedure leads to the
similarity-characteristic relationship which is essential to the solution of the overall
problem. The proposed method is applied to the similarity solution of the problem of veloc-
ity impact of a nonlinear rod.

2. Relationship between similarity coordinates and characteristics, group-theoretic motivation

A common form of the equation representing wave propagation phenomena in a one-
dimensional rod is given by
@0 M(u) = p(x, t,u,uy, u )t —u, = 0,
where yp is a function of the arguments shown in the parenthesis, x is the Lagrangian coordi-
nate, ¢ is the time, u is the particle displacement and the variables in the subscript denote
differentiation. Equation (2.1) is a quasi-linear partial differential equation of the hyper-
bolic type.

Many problems in nonlinear wave propagation are expressed in terms of a system
of first-order quasi-linear equations [5], thereby limiting the solution to specific physical
situations. The quasi-linear form can be written as

22 U,+AU.+B = 0,
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where U and B are nx 1 column vectors and A is a (nx n) square matrix. The eigenvalues
A, 1=1,..,n, of the equation |4— AI| = 0, are real and distinct for totally hyperbolic
systems. The characteristics are given by

' dx
n. — I
(2.3) C¢ '(dr ){ A,

Equation (2.2) is invariant under a group of transformations:
(2.4) Gi:x-ax,t=at, U->U; (—0o<x<o0;t>0;a>0),

provided that both 4 and B are invariant under G,. A similarity solution can now be
written, as reported in an earlier work [6] as

(2.5 U=U@m, 7n=nx,1),

where 7 is a similarity variable, dependent on the indepedent variables x and ¢. The inva-
riant boundary condition at the wave front is u(n = 7,) = g(n.). Consequently, Eq. (2.3)
would also be invariant under G, since it defines the x—¢ locus of the wave front [5].
The solution described by Eq. (2.5) is usually limited to problems resulting from disturb-
ances that are suddenly initiated and uniformly sustained leading to a centered simple
wave situation. It may be remarked here that whenever a given nonlinear hyperbolic
partial differential equation of a wave propagation problem such as Eq. (2.1) is expressed
in terms of the first-order quasi-linear form, Eq. (2.2), the boundary conditions for which
the problem is solvable, becomes restricted. This is a definite disadvantage of the first-
order quasi-linear formulation. On the other hand, similarity analysis of the original
equation, (2.1), using invariance under a group of transformations, would lead to other
physical situations that cannot be obtained by solving the first-order quasi-linear equa-
tion (2.2).

In the solution of the similarity representation (the transformed system of ordinary
differential equation and the boundary conditions), the numerical value of the similarity
coordinate at the wave front is not readily known. A method is hereby proposed which
determines the similarity-characteristic relationship, and further, establishes the numerical
value of the similarity variable at the wave front.

Define a continuous group of infinitesimal transformations G, :

u = u+eU*(x, t,u)+0(e?),
(2.6) ‘ X = x+&eX(x, t,u)+0(e?),
t = t+&T(x, t,u)+0(e2),

where ¢ is an infinitesimal parameter, U*, X and T are known as infinitesimals. Let the
solution of Eq. (2.1) be u = 6(x, t). The solution satisfies the fixed auxiliary conditions

(2.7 By (ux,ui,u,x,1) =0,

on prescribed curves )

(2.7 We(x,t)=0, a=1,2..m,
and the condition at the moving boundary or the wave front
(2.8) u(x = D(1);t) = 0.

The displacement being zero ahead of the wave front, x = D(¢).
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Let the system of equations and auxiliary conditions, (2.1), (2.7) and (2.8), be invariant
under the one-parameter infinitesimal group of transformation, (2.6). This implies that

a) ' M(@) = M(u) = 0,

where M(#) is obtained by replacing (x, t,u) by (%, t, %).

b) : By(u;, i, %, %, 1) = 0,

for the invariance of the auxiliary conditions, and

c) - u(x=D(t);t)=0,

at the wave front.

Assuming that a unique solution of M(u) = 0 exists,

(2.9) u(x, t) = u(x, 1) = u(x,.t, 6(x, 1), €),

ihe invariant surface can be obtained by solving the following equation, obtainable from
Eq. (2.9):

(2.10) X(x,1, B) =4 T(x,t, 8)—— = U*(x,1t,0).
~ The characteristic equation corresponding to Eq.(2.10) obtained from invariance
of Eq. (2.1) under the transformations (2.6) is

dx dt _ do
X(x,1,0) T(x,t,0)  U*(x,t0) "

Solution of Eq. (2.11) gives the similarity transformations [2].

In the case of wave propagation in one-dimensional rods, the continuity of the rod
at the wave front must be preserved. This implies that at x = D(¢) there is zero displa-
cement, for there is no displacement ahead of the wave front. Therefore the condition

(2.8) _ u(x = D(t);1) = 0,

must hold at the wave front. Physically speaking, the path of thc wave front would be
described by a characteristic

(2.12) ¢(x = D(t);1) = C, where C is a constant.

For the wave propagation problem to be expressible in terms of a similarity repre-
sentation,

@2.11)

. ¢(x! r) = ¢'G, ?)
at the moving boundary, x = D(t), giving the expression

2.13)  X(x, t,u) ¢’+7tx 1, )a¢

The infinitesimals X(x, ¢, u) and T(x, ¢, u) are related by the following equation:

d« _ dat _d¢-
X(x,t,u) ~ T(x,t,u) - 0

(2.14)
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The solution of the subsystem (2.11) leads to the similarity transformation. Also,
solution of the subsystem (2.14) defines the moving boundary, x = D(#). In other words,
for a hyperbolic system of partial differential equations, the invariance of the governing
equations under a group of transformations identifies the characteristics in simple wave
regions for the class of wave propagation problems considered in this paper.

3. The similarity-characteristic relationship

Consider now the proposed procedure for determining the numerical value of the sim-
ilarity variable at the wave front.
With reference to Egs. (2.1) and (2.2), the characteristics can be determined from the
equation
|A—AI| = 0,
giving

3.1 C':(ﬁ) = K®P(x,t,u,u.,u,).
ar ), .

Being consistent with the physical problem under consideration (x > 0, ¢ > 0) and dropping
the other characteristics, two distinct cases for the determination of the similarity-char-
acteristic relationship are discussed.

Case (a):
G.1) % - K(x, 1).
Integrating along the characteristics,
(2.12) ¢y(x, 1) = C.
Also, from the equivalence of Egs. (2.11) and (2.14)
(3.2) n:(x, 1) = n,8,(x, 1),

where 7(x, ¢) is the similarity variable obtained by solving Eq. (2.11), n,, is its value at the
wave front and £,(x, ¢) is obtained by integrating Eq. (3.1).

Consider an example when y(x, ¢, u, ux, 4,) = A*x"t" where A*, m and n are con-
stants; the characteristic can be obtained by integrating

(3.3) %’:_ = YA* xmi2pi2,
2 2+n
e 2—m\2-m 2-m
. *
(3.4) x = (|/.4 -—-2+")

For the characteristic passing through the origin, the constant of integration vanishes.
From the invariance of Eq. (2.1) with y = 4*x™¢", the similarity variable can be written as

(35) N, 1) = -

ri—m
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Using Eq. (3.2)
2

_nmi_kagﬁ;
(3‘6) ‘q\" 25 El(x, ‘) = VA 2+n )
where 7,, is the value of the similarity variable at the wave front.
Case (b):
5 dx
(3.1") -EE-—-K(x,r,u,ux,u,).

Since the characteristic is dependent on u, u, and u,, an explicit relationship between x
and ¢ along the characteristics is not possible. The integration along the characteristics
can be carried out if the similarity transformation, which is the solution of Eq. (2.11),
is introduced in Eq. (3.1”). Let the similarity solution of Eq. (2.1) be expressed in the form

(3.7 u(x, t) = B(x, )F(n),

where 7 is the similarity variable. Equation (3.1”) can then be expressed as
dx -

(3.8) v i K(x,t,F(n), F'(n)).

At the wave front the similarity and characteristic relation assumes the form

(3.9 n(x, 1) = n,é:(x, 1).

Equations (3.6) and (3.9) are the similarity characteristic relationships required for the
two cases of y(x, ¢, u, u,, u;). The similarity characteristic relationship must be satisfied
along with the rest of the similarity representation for the solution of the wave-propagation

problem. It should be understood that at the wave.front 5 = 7,, and that Eq. (3.9) must
be satisfied.

4. Impact on a rod with a nonlinear stress-strain relationship

The governing equations for small deformations, within the framework of the uniaxial
theory of thin rods, are [7]

Go
x - %
e

@.1

o ox’
a q
- _] ,
7’
where p, 0, q are material constants, x is the Lagrangian space coordinate, ¢ is time,
¢ and e are nominal compressive stress and nominal compressive strain, respectively.
u is the displacement of a point, and v its velocity. Also
du du
v

(4.2) e = '——a'—'x—, = -—a—t'.
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The auxiliary conditions are given by the following equations:
The condition at the origin, x = 0, is

4.3) (0, 1) = %% ©,0) =0, (v.>0;8isa parameter).

The condition at the wave front is
(4.3) u(x = D();1) = 0,

where x = D(t) gives the location of the wave front.
The initial conditions are

3" u(x,t=0)=—g%(x,t= 0)=0, x>0.
Combining Egs. (4.1) and (4.2), the equation of motion assumes the form
A-q
i ou\ 7 0w *u
4. ot | PO ot il (OO
@9 0q [( ax) W] ar?
Using the similarity procedure [6], the similarity representation can be determined as
4.5) u(x, t) = 4LHF(0),
where F({) is the similarity-function and
kx
4.5') L=
is the similarity-variable, wherein,
ol sy N
+1 1+g
(4.5") k= (ﬁ)‘ (‘_) ,
@ Ve
and

q+1
Using the transformation equations (4.5), the equation of motion (4.4) is transformed
into the ordinary differential equation

1-g
(4.6) (=F) ¢ F" = m*t*F" +m(m—28—1)(F’'+0(6+ 1)F.
The auxiliary conditions, under similarity transformations, assume the form
; . 1 .
4.6) FO) = 15
(467 F(.) =0,

where {,, the value of the similarity variable at the wave front, is as yet unknown. From
Eq. (4.5") the location of the wave front x = D(¢) can be written as

(4.7) D(t) = ¢, %.
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Also, the characteristics of Eq. (4.4) can be expressed as
—_— 1-q
dx : U ou\ %
8 =% a("a :
As discussed in the case (b) of the previous section, by substituting Eq. (4.5) into Eq. (4.8)
and integrating along the positive characteristic, the following relationship is obtained:

1-¢
-
@ o -  [EEI
14—
(1+9)

From the equivalence of Egs. (4.7) and (4.9), the similarity characteristic relationship
can now be written as

1-¢
[-FC)N 2=
o(1-gq) °
(I+q)

For a linear elastic material, ¢ = 1, g = E (Young’s Modulus), we get

£l and D(t)=]/§:.

(i) For the case when g =1, and 8 > —1

(4.10) lw=
1+

@.11) FO) = 135 A=,

(1+83) F (L) —»

0.2

0.0 0.2 oJ.T; 06 0.8 1.0 .2 L4
' SIMILARITY VARIABLE, { —e
F() vs §, q=0, 8> -I

Fig. 1.
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satisfies Egs. (4.6) and (4.10), so that

d+1
(4.12) u(x, t) = 1:}:3 [:—_;‘z) .

where ¢, = velocity of propagation of this elastic wave. Plot between £ and F({) for differ-
ent values of ¢ is shown in Fig. 1.
(ii) For the case 4 = 0, g # 0, Eq. (4.6) becomes

1-q
(4.13) [(—F') a -C’]F" = 0.
Two cases arising out of Eq. (4.13) are considered. The first is for 0 < ¢ < 1 and the

second for ¢ > 1. :
Consider the first case, 0 < g < 1. On the basis of Eq. (4.13) we can write

d=a
(4.13") (—=F) ¢« =C%
Integrating Eq. (4.13") with respect to {
' dte
- - __©r
(4.14) F() ey +Ca,
l-¢

where C, is a constant of integration.
The boundary conditions on the basis of Egs. (4.6) and (4.6"") become

(4.15) F0)=1 and F(@®)=0.

The solution that satisfies the similarity-characteristic relationship along with the bound-
ary conditions (4.15) is

1+a
1A - . Cl—ﬂ'
(4.14) FO =1 Taa
1-¢
and
1-q 1 ':%:T
416 0w = (el = (124
_Q.

Equation (4.16) is the first particular solution of the first case. The second particular
solution of this case is obtained from Eq. (4.13"), given subsequently, as

(4.14') F() = 1-¢.

Plot of F({) and ¢ for the case as given by Eq. (4.14") is shown in Fig. 2 for different values
of ¢. Furthermore, the relation between ¢ and ¢!’ is shown in Fig. 3. The second particular
solution of the first case as given by Eq. (4.14") is also plotted in Fig. 2.

It can be seen that in this case for ¢ < 1, Eq. (4.16) gives physically meaningful results.
Materials such as rubbers and even certain metals exhibit the constitutive law (g < 1).

8 Arch. Mech. Stos. nr 6/80
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i O8I s cono parTICULAR s
SOLYTION FOR 0<q<I
04—
o
o2l !
| | | | | ]
0.0 0.2 0.4 0.6 [oX: ] 1.0 1.2 1.4 .6
SIMILARITY VARIABLE, { —»
F(L) vs. L, CONSTANT VELOCITY IMPACT (0<q<|,8=0)
Fig. 2.
I.5— ‘0<q<1; 8:0

CONSTANT VELOCITY IMPACT

] | | l | I | | |

0.0 0.1 o2 03 0.4 0.5 0.6 o7 0.8 -0.9
q—
SIMILARITY COORDINATE AT WAVEFRONT, L', vs q
FiG. 3.

[942)
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2 ;
For such materials o‘% > 0 for any e. In this case the distance between wave front
decreases during propagation and there is a tendency to form shock waves.
The solution of the second case, g > 1, arising out of the Eq. (4.13) is the one due
to. Von KARMAN and Duwez [8].
Most metals can be described by the stress-strain law with ¢ > 1. For these consti-

2
tutive relationships o %;‘;1 < 0 and as the stress at the end of the rod increases continu-

ously, the waves generated successively at the end of the rod will propagate continually
with decreasing velocities. Also, for such materials the distance between the wave fronts
will increase during their propagation.

If we consider Eq. (4.13) again, this equation is satisfied for

4.13") F"({) = 0.
The solution of the above equation under the boundary conditions (4.15) gives
¢

.17 FO) = 1- 555
where, according to Eq. (4.10), A’ = 1, and on the basis of Eq. (4.5)
1-q _a_
x 1 1 |1+9 oq 1+¢
e ] ol -
STRAIN, e, vs INDEPENDENT VARIABLE, x (q21, 5 =0)
AT 1t "|
I
I
Lt |
° al
- x|
x 1
= 2|
: 5l
N
|
e | e . " r~
| 9
| Flz
| @[5
| i
\I:IH At

——» INDEPENDENT VARIABLE, x
FiG. 4.

g
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A2 is the velocity of propagation of the plastic wave. The strain, ey, = —% = ——1%,

is propagated along the wave front. The complete solution for the problem of constant
velocity is made up of the following components:

(@ e(x,t)=0, for x> At, A, = elastic wave velocity for g = 1,
@18) (b) e(x, )= ;’— at  x= Ao,
) 0

© €%, 1) = e = ;;’;, for 0<x< A1,

The strain profile is shown in Fig. 4. The characteristic curves for 3 = 0 and ¢ > | are
shown in Fig. 5.

x-t CURVES FOR q3zI,8:0

CONSTANT VELOCITY IMPACT

FiG. 5.

(iii) For the most. general impact problem g # 0, and any 4, (8 # —1), Eqgs. (4.6) and the
similarity-characteristic relationship, ‘equation (4.9), can be solved by a numercal pro-
cedure.

5. Discussion

For the analysis of nonlinear wave propagation problems, the traditional methods
using first-order formulation lead to solutions for which the boundary and tle initial
conditions are somewhat restrictive. Based on group-theoretic motivation, a relitionship
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between similarity variables and characteristics is derived using the concept of invariance
of the governing equations under a transformation group. The procedure is applied to the
problem of velocity impact of a semi-infinite inelastic rod and some useful closed form
solutions are derived. There are some extensions of the proposed similarity-character-
istic relationship and the associated theory; possible applications can be made to hyper-
bolic equations which are invariant under a general group of transformations in contrast
to 'the dimensional group applied in the paper. Also, extensions could be made to two- or
three-dimensional problems.
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