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BRIEF NOTES 

The stress-singularity situation for the high-frequency Reissner­
-Sagoci problem in a certain inhomogeneous medium 

1. Introduction 

0. D. GEORGE (CALABAR) 

AT ww frequency and also in the static case of the well-known Reissner-Sagoci 
problem, the surface stress just above the disc and close to the disc edge from within 
has the usual square-root singularity. At high frequency some earlier researchers 
found that this stress varies linearly from the centre of the disc and exhibits no spatial 
singularity at all at the disc edge, quite contrary to the results for the previous cases. 
Thus there is a discrepancy since the solution to the governing field equatioss must 
be a continuous function of the frequency factor on the whole half-line. This paper 
presents one way of resolving the discrepancy. 

THE REISSNER-SAGOCI problem [I] in a homogeneous elastic medium has received much 
attention in the literature, e.g. [2-10], just to mention a few. Some including [2, 10] and 
several others have obtained the exact solution to the corresponding static problem. For 
the dynamic problem approximate solutions have been obtained in [3, 4, 9] when the fre­
quency factor is low and in [5, 6, 7, 8] when the frequency factor is high. The above list 
of references is by no means exhaustive; for a fuller list see (7]. Attempts have also been 
made in [l] and [7], for example, to obtain a general solution that is valid for all values 
of the frequency factor. It is observed, however, that such general solutions are usually 
in the form of a very complicated infinite series of rather complicated higher transcendental 
functions which are not very useful for practical purposes. Probably this is one reason 
why interest in the problem continues-to be sustained long after Reissner and Sagoci have 
given the general solution of the problem in terms of series of spheroidal wave functions. 
Thus in cases where the frequency of oscillations is deemed high or low, the corresponding 
appropriate high or low frequency approximate solutions which yield simpler results 
are co.nsidered more useful provided, of course, such approximate solutions are sufficiently 
accurate. The results in [9] and [7, 8] are examples of such solutions in the low and high 
frequency regimes respectively. 

One important aspect of the problem to which inadequate attention has been devoied 
in the high-frequency factor studies of the problem, is the nature of shear stress, a8z, 

just above the disc and close to the disc edge from within. In the static case and also for 
the low frequency factor case, it is well documented that the stress is unbounded in the 
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sense that it has the usual spatial square-root singularity in the region. In the high-frequ­
ency factor range some attention. has been devoted to the stress singularity situation in [6]; 
approximate results show that the stress varies linearly from the centre of the disc and 
exhibits no spatial singularity at all at the disc edge, quite contrary to results for the low. 
frequency and static cases. . 

It is clear, however, that the solution of the governing field equations must be a contin­
uous function of the frequency factor ro, for all ro in [0, oo ). Hence if the high frequency 
solution in [6] and the low frequency solution are to be acceptable as part of the genera 
solution in their respective regions of validity, then, intuitively, one way in which the 
discrepancy of the existence and non-existence of the spatial -stress singularity at low and 
high frequencies respectively could be resolved, is to have a high frequency factor solution 
which possesses an additional expression, containing terms with the spatial square-root 

. singularity, whose terms vanish as the frequency factor gets very large or tends to infinity. 
Such an additional expression could be obtained only through a sufficientiy accurate 
approximate analysis of the problem. In this paper we present the quantitative result 
we have found and which supports the above assertion. 

In [8] we considered the usual Reissner-Sagoci Problem at high frequencies but more 
generally in an .(l),inhomogeneous medium occupying the region 0 ~ r < oo, 0 < z < oo, 
0 ~ 8 ~ 2n, and whose shear modulus, f-t, and density, e vary radially as (p, e) = (p,o, 
eo)r-s; (r, 8, z) are cylindrical coordinates, f-to, (!0 , e are constants with - oo < Re(e) ~ 0. 
The rigid disc occupies the region 0 ~ r < 1, z = 0, distances having been nondimensio­
nalised by dividing by the radius of the disc. We assumed a time dependence of e-iwt. 

An asympt<?tic ~ethod was used to reduce the resulting integral equation to the Wiener­
-Hopf type, which was then solved exactly. Physical quantities like the moment of the 
applied forces necessary to oscillate the disc were calculated as functions of the frequency 
factor and the inhomogeneity parameter, e. By setting e = 0 (homogeneous medium), 
the results were found to agree with those in [7] who~ results have been found to agree 
well with experimental ones. 

2. Shear stress just above the disc 

Employing the results in [8] we have 

(2.1) ~ (r < 1,0) = ~ a0 :z j d,[;: +r'''( {/ K,+ 1(/1)H j d.U''P(..t)K.(pj) 
0 l . 

~ > c.o, 

E < c.o, 

(l) In the references (8, 10, 11] the inhomogeneous behaviour should be taken to be siven by the power 
law (~. e) = (~to. eo)r-•,- oo <Re( e) < 0, rather than the exponential law erroneously written therein. 
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and u(r, z) is the circumferential displacement, 

A"VJ(A) = A1t2q,(w(l-l)), , = 1-e/2, 

.;- (P+ 1/2) (-. j--:::fX · -) (2.1') 4J(x) = erfc J' -ix- w V -n e'x+ixerfcJI -ix 

+ .. J ei<2(l)-vn+nf4> ( .. j -2ix eix -1/2e-'xerf y' -2ix) + 0 ( !/2)' 
J' 2n (2w+x)3/ 2 Jl n w . 

w is the frequency factor, erf, erfc are the error and complementary error functions given by 

. 2 00 

erfcx ·= 1-erfx = y'n· J e-'2dt, 
. X 

1, K, are the modified Bessel functions of order P. Eq. (2.1) may be written as 

00 

(2.2) : (r < I, 0) =' a0[iwr+ ~ r'l2 f eF(fl) 1.(/lr)d~ l 
0 

00 . 

= a.[ iwr + ! r'/2 J {J y' {J 2 +w2 F ({J) I, (fir )d{J]. 
-lW 

a0 is a constant, the amplitude of oscillation applied on the rigid disc given by u ·:=1 G0 r, 
O~r~l,z=O 

1 

F(/J) = .;_K•+t (/J)- j )."'P().)K,(Pl)d)., 
00 

where the path of the P-integration is from - iw to the origin along the imagimary axis, 
and from the origin to infinity along the real axis. Thus following the analysis in [8], the 
E-integration in Eq. (2.1) is converted to a p-integration whose path of integration can be 
deformed to a path on which Ret/1) > 0, 1/11 is large throughout the range of integration, 
so ·long as ro is large. 

Using the formula 

00 00 

(2.3) -; K,+ 1(P)+ f 1112K,(pl)d). = -(P;l/2
) f l- 112K,+ 1(pl)dl 

1 1 

to simplify and then replacing the Bessel functions occurring by their asymptotic forms 
for the large argument, noting that interest is in the field in the region r -+ 1-, we find that . 
(2.4) 

00 00 ' 

[ 
-(P+l/2) (t-~(Jt- e-xfJ d (t-~)!!!_J e-x~ .dx 

x p2 p x+I x+ p p (l+x)2 
. 0 ' 0 
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00 

·~ -1 J. dx(1 + !J2 )erfy -imx e-xfl(t-1:!..) fJ {J(x+ l) . · fJ 
0 

00 . 

+ ~(I - 1:!..) J dx(~ - !J2 
) (-. / - imx eifPX + imx erfc y-imx ) e-xfJ], 

f3 {J m m( x + 1) Jl n 
0 

where 

1J=l-r, 
4v2 -l 

#2 = --8-. ' 

Doing the calculations, it is finally found that for m ~ l, we have 

(2.5) ... ,(r ~ I~, 0) ~ a0 p0 r-+wr+ ,:• R(ot; w) J. w l!> I, r ~ 1-, 

where 

V-
n . -/1 = -:- e-•«-nerfc yi~, 
~~ 

/ 2 = (P + 1/2) I (niot- Y niot )e- '• + ~ erfc Y iot ] 

+(P+ lf2) ( ~; [V 2':a e-"•-nerfcy'2ia] 

+ ni(H~"(ot) + 2ot(iH~"(ot)- H\."(ot)))), 

; .. ;-;- '(«+lm- J:a +~·) _ 
/3 = 2 Jl 2 e 4 2 erfc . JI'2i~, 

~ = m(r--1), H~2>, Hi2>, 

are, respectively, the zero-th and first-order Hankel functions of the second kind. 
It is thus seen that if the first term on the right hand side of the expression (2.5) were 

the only term obtained for the stress, the stress would exhibit no spatial singularity at all 
and would vary linearly as some earlier researchers · have previously obtained. However, 
it is seen that the additionai terms R(~; m) that are obtained in this paper are also impor­
tant especially when m is .large but finite, because for any large but finite m, R( ~; ro) exhib­
its a spatial singularity whose highest order is of the usual square-root type as r -+ 1-
(i.e. ~ -+ o-). 

The spatial stress singularity as r -+ 1- will not be there if 
(i) the repeated _limits · 

Lim Lim R(ct; m), 
,. .... 1- (1)-+00 

or (ii) the double limit 
Lim · R(~; m) 

(0, r)-+( oo, 1-) 

are takell. 
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The cases (i) and (ii) are not physically very meaningful, since one insists that w though 
large, should be finite-in which case the spatial square-root singularity exists via R(«; w). 
Our conclusion is that a spatial stress singularity whose dominant part is o( the square­
-root type does exist at the disc edge (r-+ 1-) in the stress, u8z, even when the frequency 
factor is high but kept finite. But as the frequency factor gets too large or tends to infinity, 
the first term of the expression for a6z as given by Eq. (2.5) may be deemed to be the dom­
inant part of the sire ss. 
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