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Studies on the motion of surface films in two-phase flows
J. SIEKMANN (ESSEN) and W. JOHANN (WERMELSKIRCHEN)

A FLumD interface (for example, liquid-gas) is generally not clean, that is the interface is a region
of variable composition owing to its thermodynamic attraction for many of the contaminants
present in the adjoining bulk fluid. So much surface-active material (surfactant) may be adsorbed
at the interface that the surfactant forms a layer (surface film) with a measurable surface elasticity
or surface viscosity of its own. These adsorbed impurities lower the surface tension. The present
paper deals with the investigation of the motion of a surface film in a two-phase flow. The theoret-
ical discussion is based on the hypothesis that the film flow is independent of the liquid motion.

Simple experimental arrangements (flow in a rotating spherical cavity and between rotating
discs) allow a comparison between the theoretical model and the physical reality and show that
agreement between theoretical results and experimental data is satisfactery.

Powierzchnia migdzyfazowa w plynach (np. ciecz-gaz) nie Jest mzwym czysta, to znaczy, ze
powierzchnia ta jest obszarem o zm.lcnnym skladzie z uwagi na jej termodynamiczne oddzialy-
wanie przyciagajace wiele zanieczyszczen znajdujacych si¢ w otaczajacym plynie. Na powierzchni
tej zaobserwowa¢ mozna tyle powierzchniowo czynnego materialu, Zze zanieczyszczenia te
utwom warstwg (blonke pow:erzchmowa) o mierzalnej sprezystosci lub lepkosci. Zaobserwo-

wane zanieczyszczenia zmniejszajg napiecie powierzchniowe. W pracy niniejszej rozwaza si¢
ruch takiej blonki powierzchniowej w przeplywie dwufazowym. Rozwazania teoretyczne opie-
rajq si¢ na hipotezie, ze przeplyw blonki jest niezalezny od ruchu samego plynu. Proste doéwiad-
czenia (przeplyw w obracajgcej si¢ pustce kulistej lub migdzy obracajacymi si¢ tarczami) pozwa-
laja por6wna¢ model teoretyczny z rzeczywistoscig fizyczng i pokazuja, Ze zgodno$é miedzy
wynikami teoretycznymi i do§wiadczalnymi jest zadowalajaca.

MexdasoBas noBepXHOCTh B MHAKOCTAX (HANPAMED JKHM/IKOCTE~Ta3) He ABJACTCA OBbIuHO
uHcTOf, T.3H., YTO 5TA NOBEPXHOCTh ABNACTCA 0OMACTEIO C MEPEMCHHLIM COCTABOM H3-3a €¢
TEPMOJHHAMHYCCKOTO BO3MEHCTBHA, NPHTATRBAIOLIETO MHOIO SArpA3IHCHMH, HAXOJAIIAXCA
B OKpyxatomedt »amxocti. Ha sroit nosepxsoctn moxker abcop6HpOBaTLCA TaK MHOTO mo-
BEPXAOCTHO AKTHBHOIO MATEpPHANAE, WTO ITH 3arpAsHeHMA obpasylor cnoit (moBepxXHOCTHEsM
IUICHKA) C M3MEPRMOMN yOpyrocThiO MM BASKOCTEIO. AGCOpPOMpOBaHHEIE SarpAHEHWSA YMCHEB-
IIAOT NOBEPXHOCTHBIE HanmpsowenuA. B macrommelt paGore paccmaTpHBaeTcs IOBIKEHME
TaKol NOBEPXHOCTHON MUIEHKH B AByxdasnom TeueHuH. TeEOPETHUCCKHE PACCY)HACHMA OMK-
paloTCA Ha THIIOTE3Y, YTO TEUCHHE IUICHKH HE 3ABHCHT OT JABHIKCHHA camoit »x»auixoctn. ITpo-
CThIe IKCTIEPAMEHTSI (Teuenye B Bpamaomieitca cepHUuecKoil MyCcToTe WM MEXXKAY BpAIaroLH-
MACA OHCKAMH) MOIBONAIOT CPABHHTH TEOPETHYECKYIO MOMenb ¢ u3muecKol neicTBHTCNSH-
HOCTBIO H NOKA3LIBAIOT, YTO COBMAJCHHE MEMKIY TECOPETHUECKHMHM H SKCIECPHMEHTAIBHBIMH
PC3YNLTATAMK YAOBJICTBOPHTCIIBHO.

1. Introduction

IN GENERAL, fluid interfaces (for example, liquid-gas) are not clean, that is the interface
is a region of variable composition owing to its thermodynamic attraction for many
of the contaminants present in the adjoining bulk fluid. So much surface-active material
may be a dsorbed atthe (liquid-gas) interface that the surfactant forms a layer (surface
film) with a measurable surface elasticity or surface viscosity of its own. These adsorbed
impurities lower the surface tension [1, 2, 3, 4]. The present study deals with the theoretical
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and experimental investigation of the motion of a surface film in a two-phase flow (water-
air). The basic features of the observed phenomena can be described as follows: Liquid-
wetted walls are withdrawn from a liquid the surface of which is coated with an incom-
pressible and insoluble surface film of constant monomolecular thickness. The thickness
of this film layer is of the order of about 50 A. A negligible amount of liquid sticks to
the wall and carries on its part the surface film. This thin liquid layer, together with the
film, is taken along by the wall. Practically one can ignore the existence of the thin liquid
layer and assume that the surface film adheres directly to the solid. According to this
model, the film is lifted from the liquid if the wall is taken out of the liquid. Conversely,
if the film-coated wall is dipped into the liquid, the film is delivered again to the liquid
surface. This flow model has been applied to a fluid enclosed in a rotating spherical cavity
and between closely-spaced plane discs which are made to rotate in their own planes
with steady angular velocity. The fluid (water) occupies about half of the cavity. Further-
more, stearic acid has been added to the fluid. A simple theoretical model, where the
influence of the liquid flow on the (slow) film motion has not been taken into account
and where a plane, horizontal surface film has been assumed, leads to the biharmonic
equation for the stream function of the film flow. This differential equation allows a so-
lution in closed form. Agreement between theoretical and experimental data and ob-
servations is satisfactory. '

2. Film motion in closed rotating tanks

In what follows we discuss the motion of a surface film caused by the rotation of a closed
tank, half of which is filled by a liquid (water), the rest by a gas (air). Due to contami-
nation and the presence of surface active agents (stearic acid), a surface film appears at
the gas-liquid interface. Two tank geometries are considered: the spherical one and the
cylindrical one, the latter having a circular cross section and the bases very close together.
The axes of symmetry are chosen as the axes of rotation. They are perpendicular to the
direction of gravity. In both cases the steady rotation of the tank (angular speed Q) causes
a movement of the film on the gas-liquid interface and on the tank wall in contact with
the gas.

In order to determine the motion of the film, the following idealized assumptions
are made:

(i) the influence of the liquid flow on the film motion is negligible,

(ii) the surface of the film covering the liquid is plane and positioned horizontally,

(iii) the surface film is insoluble, incompressible, and of constant thickness and surface
viscosity,

(iv) the steady tank rotation causes the movement of the surface film on the gas-
liquid interface and on the tank wall in contact with the gas,

(v) the motion of the surface film is slow (creeping flow).

In connection with first assumption it should be pointed out that this postulate is
indeed a very strong restriction. Actually the motion of the film and the bulk fluid should be
treated simultaneously. This leads to a rather complex flow problem since both flow
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fields are coupled. The underlying liquid exerts shear stresses on the film. This effect,
however, has not been taken into account in the present analysis. Neglecting this effect
results, of course, in a noticeable difference between theoretical and experimental data.
Nevertheless, the elementary theory describes the observed phenomena qualitatively
correct; quantitative agreement between theoretical predictions and test results is satis-
factory. _ '

Assuming the film to be a Newtonian liquid, and because of the assumptions (ii),
(iii) and (iv), we note that the film motion is governed by the Stokes equations of plane
flow in circular or rectangular cross sections, respectively. Since the gas-liquid interface
is exactly at the equatorial or axial cross section, respectively, the film does not deform
or break at the wall. Introducing a film stream function (r, #) or y(x, y), respectively,
the solution of the problem under consideration is reduced to the solution of the biharmonic
equation
(2.1) Véy = V2V3p = 0,
where V2 denotes the Laplacian in polar or Cartesian coordinates, respectively. Solutions
of the basic equation (2.1), subject to appropriate boundary conditions, are discussed
in the following section.

2.1. Film flow in a rotating spherical cavity

Let us consider the film flow in a rotating spherical cavity of radius R as shown schema-
tically in Fig. 1. Thus, if (r, ¥, z) are cylindrical polar coordinates with origin at the center 0
of the cavity, we have for the radial velocity component u, and the azimuthal velocity
component v, of the film flow in the equational plane of the sphere

1
(2.2) Up = —7%» Yo = ¥r,s

where a subscript denotes partial differentiation. The boundary conditions to be imposed
on Eq. (2.1) are

(2.3) ug(R, 9) = RQ2sind®, vo(R,¥)=0.

Next we introduce dimensionless quantities by making lengths and velocities dimensionless
by R and R, respectively. For the sake of simplicity no special notation will be employed.
The solution of the biharmonic equation (2.1) can be written as [5]

e v =y, +ry,,

where y, and y, are harmonic functions. Since the determination of the solution is straight-
forward, details will be omitted. A few standard manipulations yield

- 3 r3
2.5 Y i (r - ~3—) cos?
for the stream function, and
3 rt\ . 3 5 -
(2.6) Uy = T(iH_f) sind, o= ?(l—r Jcos?

for the velocity components.
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Fic. 1. Film flow in a rotating spherical cavity, geometry and notation.

Streamlines having from the origin the distance 7, (for # = 0 and & = =, respestively)
are given by

3ro—r3

3Ir—rd’

2.7) #(r) = arccos

experiment

F1G. 2. Streamlines of film flow in a half-filled rotating spherical cavity.
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Computations based on Eq. (2.7) are presented in Fig. 2. One observes that the experi-
mentally-determined streamline exhibits a weaker curvature than the theoretically-cal-
culated curve. This deviation which is more pronounced for points close to the equator
is to some extent due to the simplifying assumptions (in particular (i)). A rigorous analysis
should begin with the simultaneous solution of the (coupled) equations of motion for
film and fluid flow.

For the mean velocity u3, of film particles on the streamline passing through the origin
of the coordinate system, we obtain

1
4
2.8) ul = J’ uo(,, _’21) ar= %,
or, in dimensional form, _
2.9) B -}m ~ 133 RQ.

Time measurements for particles moving on the mean film streamline yield. for the mean
film velocity approximately #%,, ~ 1.15 RQ. Thus the experimental value is somewhat
smaller than the theoretically predicted result. However, it should be pointed out that
in view of the assumptions made agreement is very satisfactory. Figure 3 shows the test

FiG. 3. Test apparatus.

apparatus designed by the junior author [6]. The connecting-piece of a glass-piston (radius
60 mm) is mounted on the driving shaft (diameter 12 mm) of a small gearing as seen
schematically in Fig. 4. Film streamlines (Fig. 2) were determined experimentally by
means of aluminium particles on the upper surface of the contaminant.
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Fi1G. 4. Sketch of apparatus.

2.2, Flow phenomena between closely-spaced rotating discs

The test set-up described in detail by JoHANN [6] is shown in Fig. 5. The surface
film, enclosing the upper half-space between the rotating discs, is delivered to the liquid
in the long and narrow canal between the discs by the walls in the region of the advancing

F1G. 5. Test apparatus.

meniscus and is taken up again by the walls in the region of the receding meniscus. Since
the ratio R/ (R — radius of the discs, # — half-width of the gap between the discs) is
rather large, there occur, in virtue of the continuity of the flow of the surface-active agent

- (film), considerable film speeds in the central range of the canal.
The theoretical treatment of the film movement within the canal is based on the flow

pattern displayed in Fig. 6. In addition to the assumptions (i) -(v), we suppose that .
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FiG. 6. Model of idealized film flow, geometry and notation — — — streamlines of film flow (not true
to scale).

(a) the cross section of the interface has the shape of a semicircle over the entire length
of the canal; by means of stretching there results a plane film surface of breadth 2x, =hn.
A Cartesian coordinate system (0; x, y) is located in this plane;

(b) the surface film sticks to the walls of the discs (+x,, »). At the boundaries (x, +y,),
the film flow has to fulfill the inflow, or outflow condition, respectively,

(2.10) | [ vole, £y0)dx| = n-2x0302,
=Xg

where n = 1 corresponds to a t_:losed hollow cylinder without reverse flow in the corners,
while n = 0 corresponds to the case of an open canal between rotating discs dipping into
a liquid which is covered by a surface-active agent.

First of all it can be shown that the integral condition (b) is satisfied by a parabolic
velocity distribution:

3 x?

(2.11) |‘vo(x, iyo)l = -j-non l"? .

(]

Next, we have to solve the biharmonic equation (2.1) for the film stream function under
appropriate boundary conditions. The velocity components are given by

(2.12) Ug = —¥,, Yo = Y.

Making all lengths dimensionless by y, = R, all velocities by yo{2, we obtain for the
boundary conditions, taking into account (b) and Eq. (2.11), the following expressions
(again, no special notation for dimensionless quantities will be employed)

Uo(Xo,¥) = to(=X%o, =y) = y,
uo(—Xo,y) = o(Xo, —=yo) = =Y,
(2.13) vo(Xo, ¥) = Uo(—Xo,y) = 0,

3 2
IooCx, £1)] = —Z-n(l-% .
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The solution of the governing equation (2.1) is posed in the form [7]
(2.14) y = Axy?+ Bx+axcos Axcosh Ay+bxcos Aycosh Ax,

where A, B, a and b are integration constants (to be determined from the boundary con-
ditions), and A is a parameter. The solution of this boundary value problem requires
elementary but laborious operations only. In order to obtain simple analytical expressions,
we develop the trigonometric and hyperbolic functions in series form and neglect terms
of higher than the second order. Dropping terms of higher order is suggested by the fact
that the free parameter A can be chosen as a small quantity. With

(2.15) v = dx,
we obtain for the unknowns 4, B, g and b

. Az l
’ 1—— —ni»
(2.16) A= mte (P43 20B), G e
- 4v? ’ 223 .
s
I+i Pv2+in).v3 l+—)'—+n).r
2.1 B 2 pe - 2
. a iv? e D

The streamlines are calculated from the simplified stream function
22 22 12 12
(2.18) = Axy*+Bx+ax (l -5 x’) (l + Ty’) +bx(! ¥5 x’)(l - Ty’),

where the cosine and hyperbolic cosine functions of Eq. (2.14)' are replaced by their
corresponding series expansions (up to the quadratic terms). Denoting points on the
boundary of the rectangular film domain by X and y, introducing the constants 4, B, a, b
as given by Eq. (2.17), recalling Eq. (2.16), and setting

x . X0 x
2-19 X=-—, Y: ’ m...—._-—-, e:—-’
L ’ Xo x Yo Xo

it is only a matter of algebra to work out the equation of the streamlines

1
X3-3x
Plots of streamlines, according to Eq. (2.20), are shown in Fig. 7. We note in passing
that these streamlines are qualitatively in good agreement with observed trajectories of
particles. To compare theoretical and experimental data we calculate the mean film ve-
locity Dom in the range —ry < ¥ S ry, i.e. within a test section of length 2r,,.
Defining vom by

20 r= /T [(3+6nm) (X — &) — (1 +2nm) (X* - &)+ Y(X> - 3§)]2.

™M

= 1
@21) bom = 5y | %a(0, )y
M

and making use of Eqgs. (2.12), (2.14) and (2.17), we obtain

= 1 Xo rg" 3
(2.22) Uom = yOQ T;;—(S" yg + -2—n .
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F1G. 7. Streamlines of film flow in the long and narrow canal between rotating discs.

It is obvious to neglect the inflow or outflow, respectively, of the film at the narrow wall
of the hollow cylinder (2k € R). Furthermore, we introduce the actual dimensions of
the canal. This leads to the following approximate formula for the mean film velocity:

(2.23) Bom = m[i(}— i)]

ks 2hn R?
For frosted glass discs the expression for v, should be multiplied by a roughness factor
% > 1,

Figure 8 shows a-plot of the mean film velocity (vo.) as a function of the angular speed
(£2). The experimentally-determined curve Uon(f2)., denotes the mean film velocity over
the entire test range L, = 2r,, which extends symmetrically with respect to the
center of the disc. Furthermore, vy, = 0o4(£2)L.. is the mean velocity over half of the
test range (Ly,) in the region of the advancing meniscus, while Tor = Tor(2)L,s is the
corresponding velocity in the region of the rccedmg meniscus. Since tiny particles scattered
on the upper part of the film surface travel with the film flow, the mean film velocity
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Fic. 8. Plot of vgm vs. 2; R = 140 mm, 2k = 3.6 mm, Ly = 100 mm, disc material: frosted glass.

Uom(2)u = Vom,exp = Lu/ T is found easily by timing (7,) of the distance (L,;) covered
by the aluminum chips placed on the surfactant. The discrepancy between experimental
results and the theoretically (Eq.'2.23) predicted linear behavior of om(£2) is very probably
due to the compressibility of the surface film and a reverse flow in the corners of the
hollow cylinder. After stopping of the discs one observes a flow of the surface from the
advancing to the receding meniscus until the film pressure gradient vanishes. Finally,
the complicated flow phenomena in the region of the advancing and receding me-
niscus give rise to a visible deviation of the real interface from the equilibrium
interface. The real interface is inclided towards the horizontal (Fig. 9). Test results
of the interface displacement AH vs. £, and vs. the normal film velocity U, are dis-
played in Figure 10. Experiments were carried out by tilting the (vertical) axis of
the discs towards the horizontal («—angle of inclination). We note that AH is
approximately proportional to the effective gravitational acceleration g* = gsine. The



FiG. 9. View of surface film level, g* =g, 2 =0.5s"1,
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FiG. 10. Plot of AH vs. Q and vs. U,; R = 140 mm, 24 = 3 mm, 2ry = 100 mm, disc material: frosted
glass.

7891
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degressive trend of AH(2) may be explained by the effect of the thicknes of the
water-film on the frosted glass of the discs. In case of small wall speeds and thus small
film thicknesses it is conjectured that the material properties of the frosted glss plates
play a decisive role. However, a detailed comprehension of these properties 8 beyond
the control of the experimenter. The remarkable influence of the water film thickness
on the displacement of the interface can be demonstrated easily. If the angular speed is
decreased suddenly, one observes that in the first instant the deviation of the interface
from the equilibrium position is smaller than at the steady final state with the same angular
speed but smaller film thickness. Experiments were made also with pure water. It was
noticed that in' this case AH is considerably smaller than in the case of a liquid coated
by a surface active agent. For an uncontaminated liquid the flow pattern in the neigh-
bourhood of the interface is basically different from the corresponding pattern of a fluid
which is contaminated by lmpuntles

3. Conclusions

In the preceding section the motion of a surface film in a two-phase flow has been
dealt with under the very restrictive hypothesis that in a first approximation the film. motion
is independent _qf the liquid motion, the remaining gas being at rest. In reality both motions
are coupled since shear stresses are exerted from the supporting liquid on the surface .
film, where the film is supposed to be a very thin, prestressed, elastic (or viscoelastic,
respectively), insoluble and incompressible material layer of constant thickness and large’
surface (shear) viscosity, carried by a viscous homogeneous and incompressible Newtonian
liquid. In spite of the restrictive assumptions, it has been shown that the simple theoretical
model yields reasonable results. The very careful experimental investigations carried out
by the junior author have provided test data which may serve to develop a more rigorous
hydrodynamic theory. The problem under consideration is a problem with a free boundary.
The latter is a boundary which is not prescribed, but which must be found as part of the
solution of the problem. The surface of a moving interface in contact with vacuum, air
or another fluid is, however, such a boundary.
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