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Unsteady rectilinear gas flows with the velocity distribution 
of homentropic centered simple waves 

Notadoa 

J. A STEKETEE (DELFI) 

IN [1 0] IT IS found that homogeneous solutions of the Lagrangian «}uations of motion for the 
unsteady rectilinear motion ofa perfect gas all have the same velocity distribution and the same 
particle paths in the x, t-plane. When matching two different homogeneous solutions along 
a common particle path the velocity and pressure could be made continuous across the common 
path, but discontinuities in density, temperature and entropy had to be accepted. In this paper 
a more general class of solutions is constructed, which preserves the velocity distribution and 
contains the homogeneous solutions. It is shown that a generalized flow and a homogeneous 
flow can be matched along a common particle path without discontinuities in the parameters 
mentioned. 

W pracy [10] stwierdzono, ie wszystkie jednorodne rozwi~ r6wna6 ruchu Lagrange'a dla 
nieustalonych prostoliniowych ruch6w gazu doskonalego majll te same rozklady pr~ko§ci 
i te same tory ~teczek w plasiczytnie x, t. Dopasowuj~ do siebie dwa r6ine · rozwhtzania 
jednorodne wzdluZ wsp6lnej trajektorii ~tek moina by bylo UZyskaC l'ozklady pr~kojci 
i ci8nienia ci!lgle w kierunku poprzecznym, jednak funkcje ~to§ci, temperatury i entropii 
m\lsialyby by{: nieChtgle. W niniejszej pracy skonstruowano szel'S7Jl k~ rozwi~6 zachowujllCCl 
rozldad pr~~i i zawieraj'Cil rozwi~ia jednorodne. Pokazuje si~. ie przeplywy jednorodne 
i uog6Inione moma ,skleil:'" ·ze sobll wzdJui: wsp6lnej trajeklorii CZilStek bez naruszania 
ciulo8ci wspomnianych patametr6w. 

B paOOTe [10] KORcraTI(poBaHo, llTO Bee O,AHOpo~e pemeRIVI ypaBHemdi ~H>KeRWI Jlar­
pamKa .zum ueyCT&HoBHBIDilXCR up.JWOJIIUieAublx ~B>Kemdt ~eam.uoro raaa I!MCIOT Te 
>Ke caMhiC pacupeJteJieHRR CKOpocre:li H Te >Ke CaMhle TpaeKTOpHR ~ B UJIOCKOCTH X, t, 
CornacoabDWI ):q)yr K ):q)yry ~a P83Ub1X o,AHopo~a peiDeHWI o~om. o6umx TpaeKTOpd 
'18~, MO>KHa 6&IJIO DOnytlllTL pacnpe~CJICHWI CKOpoCTeA H ~aBJICIDUI HeupepbiB&IC B DO­
nepctmOM H&npaBJieHIIJ{, 0~0 f!l~ UJIOTHOCTil, TeMDepaT)'pbl H 3JITpOIIHH ~OJI>I<Hbl 
6biTL paapbiBRbi.MH. B H&cro~i pa6are noqpoeu 6onec IDHpoKIIA KJiacc pemeHBI, cox­
p8HJIIOuudt pacnpc~eneHHe CKOpocrel H CO,Aep>KaBIIIRit OAJIOPOAHbfC peiUeJIWI. ·J(oKa3bi­
B8eTC11, lfi'O OAJIOpo.Jnlble H o6o61I{eHHble Te'ICHWI MO>KHO ,,CIDH'l'b •• ):q)yr C ):q)yr<>M B~OJJJ. 
061I{eil Tp&eKTOpltH '18C'l'Hll 6e3 HapymeHWI HenpepbmHOCTH YDOJIUIHyn.IX napllMeTpOB. 

x Cartesian coordinate, 
t time, 
u velocity, 
a speed of sound, 
S entropy per unit mass, 
P pressure, 
Y specific volume, 
R gas constant per unit mass, 
h Lagrangian mass coordinate, 
" degree of h0Jil()8elleity, 

B(¥), b('l') entropy functiooa (a. :&~s. (1.1) and (4.1)), 
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r, s· Riemann invariants (Cf. Bqs. (3.S) and (3.6)), 
.A, c, c•, c2, 
U, U «~, uo, ao constants, 

n 
N = . · = constant (See Bq. (S.lO)). 

(l+H){n+H) 
c, . f --:A.. hea I' = -, constant ratio o s..-."""' ts, 
c. 
,....,.t 

H=--, 
y+l 

A= v-"...,-:-(ln-++_,"!~~,.--n:-"--:-) =constant (See Eq. (S.4)), 

'P Lapngian particle coordinate, constant along particle path, 
t1 entropy. function (See Sect. 7). · 

1. Introdadioa 

Tms PAPER deals with the unsteady, rectilinear motion of a perfect gas. The term "rectilin­
ear" is preferred to "one-dimensional" since flows with cylindrical or spherical symmetry 
are outside the scope of the paper. 

Unsteady rectilinear motions of a perfect gas have been studied extensively, both theoret­
ically and experimentally. It may be sufficient to mention the word "shock-tube" and 
books by IIADAMAIU> (1), CoURANT and Fium>JUCHS (2), STANIUKOVICH (3), Zm.DOVICH and 
RAIZml [4], Wm'OWI [5) and· LIGHTIDLL [6). . 

There exist, however, within this body of theory some weak patches where few results 
are available. One of these areas appears when non-homentropic flows are considered. 
These are flows where the entropy S ia no longer a constant, but varies from one ·element 
of gas to another. In that case the well-known homentropic-, isentropic- or Poisson- · 
relation 

(s-s) pe-v = pV7 = exp ~ = const, 

has to be replaced by 

(1.1) 11@-' = pV' = exp ( s~~)) = B(tp) = b(tp)', 

where 'P is a suitable Lagrangian particle- or mass-coordinate. 
The equivalent functions S('P), B('rp), and b('P) are arbitrary functions as far as the 

equations o~ motion are concerned. Since in actual experiments and other situations where 
non-homentropic floW& appear these functions cannot be arbitrary, it is of interest to 
ask how they should be determined. 

This question acquires further interest if one considers that . non-homentropic flows 
~ppear, amongst others, behind non-unifo~y travelling shock~waves . . By studying non­
homentropic flows, one may hope to be in a better position ·to. answer some questions 
about non-uniformly travelling shock:.waves. · 

Two simple ·configurations wi~ non-unifo~mly ~avelling shock-waves which .may 
serve as a guide are the problems originally studied by FIUBDIUCHS [1] and by GOULD [8], 
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UNSTEADY RECilLINEAR GAS FLOWS WITH TilE VELOCITY DISTRIBUTION 793 . . 
and which are illustrated in Figs. 1 and 2. l(is convenient to call them the F- and G-problem. 
The F-problem considers the overtaking of a shock-wave by. a rarefaction wave, the G­
problem the head-on collision of a shock-wave an.d a rarefaction wave. 

t 
/ 

FRIEDRICHS 
-1948-

X -----. 

FIG. 1. Shock-wave overtaken by rarefaction wave. S. W. - shock-wave trajectory, R. W. - rarefaction 
wave, C.R. - contact region. 

f 

GOULD 
-1952-

FIG. 2. Head-on collision of shockwave and rarefaction wave. S. W. -shock-wave trajectory, R. W. -
rarefaction wave, C.R.- contact region. 

Starting from (sectionally) homentropic initial-conditions, most of the segments in 
which the resulting flow may be decomposed are homentropic. Only the triangular domains 
ABC in the figures and the adjacent contact-regions ( CR) are non-homentropic. 

In their simplest form, when the rarefaction waves initiating the interaction are centered, 
both problems display some forms of similarity. Keeping this point in mind, I considered 
some time ago solutions of the Lagrangian equations of motion which are homogeneous 
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794 J. A. Sno'l'lt 

in the Lagrangian mass coordinate hand the timet. Th'( Poisson-relation for these flows 
takes the form 

p(!-y = pVY = B(h) = Bh"<Y+l>, 

with ii a constant and n the degree of homogeneity. 
A summary of these an(\ some other calculations was presented two years ago at the. 

Symposium in Olsztyn, and in Stockholm [9], while the detailed investigation is available 
as a report [1 0]. 

It came as a surprise that all these flows for different n have the same velocity distribu .. 
tion and the same particle paths in the physical x, t-plane. One finds that 

(1.2) u(x, t) = (1-x) ( X~Xo - u) + U, 

(1.3) ( 
X-Xo -u) t" = ~hii+H 

t 1-" ' 

with U the constant terminal velocity, x0 and u0 constants, while "= r-ll . (fhis corn .. . r+ 
bination of 'Y is denoted by p 2 in [2]). 

In particular, for n = 0, the homentropic center.ed simple wave of the classical theory 
appears. 

Considering that in the F- and G-problems one boundary of the triangular domain 
ABC is a particle path, one may consider the matc\ling of two homogeneous flows, with 
different n, along a colDfllon particle path. 

This problem was considered in some detail in [10]. It turns out to be possible to match 
two different homogeneous flows along a common particle path, say 'P = tp0 , with 1p 
a Lagrangian coordinate, not necessarily identical with h, while satisfying the continuity 
of velocity and pressure along 'Po, i.e. 

(1.4) 
U(VJt, t) = U(VJo, t), 

p(VJt, t) = p(1p(), t). 

However, it is found also that discontinuities in density, temperature and entropy have 
to be accepted along VJ = VJo. The appearance of these discontinuities :makes it seem 
unlikely that these composite flows will appear in, for example, the F- and G-problem, 
where the shock-wave seems the only curve where discontinuities in the physical parameters 
themselves may be expected. 

The present investigation was started to find out whether this difficulty could be over­
come. Before going into details it may be stated that this is indeed the case. The homo­
geneous flows of Ref. [10] can be generalized while retaining their velocity (distribution, 

- particle paths and entropy. Also a homogeneous flow and a generalized flow can be matched 
along a particle path 1p = "Po in such a w,ay that continuity of velocity', pressure, density, 
temperature and entropy is preserved across 1p = "Po. 

Two points seem crucial for the analysis to be presented. First, the velocity distribution u 

is linear in x, the Cartesian roordinate. It follows that ~u , and from the continuity equation, 
uX . 
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UNSTEADY RBC'I1LINEAR. GAS FLOWS WITH niB VELOCITY DISTRmtmON 79S 

also the specific expansion rate are functions of the time only and uniform throughout 
the gas at each instant t. 

Secondly, we do not take the speed of sound a as a dependent variable, but its square, 
a2 = yRT. 

The two other dependent variables are the velocity u and the entropy S. 

2. The general solutions for the prescribed velocity 

The equations of motion which form the starting point are the conservation of mass, 
momentum and energy in the physical x, t-plane (x- Cartesian coordinate, t- time). 
Assuming that tli~· gas is an . ideal gas with constant specific heats, ·and omitting effects 
of viscosity and heat conduction, these equations may be put in the form 

oa2 oa2 Ou at +uax +(y-1)a2 Tx = 0, 

Ou ou 1 oa 2 a2 as 
(2.1) -+u-+----=--

ot a~, y-I ox yR ax ' 

as as 
Tt+u ox-= O. 

The velocity distribution u(x, t) is prescribed to be 

(2.2) 
X 

u = A-+C, 
t 

with A, C constants and including the velocity distribution (1.2) found for the homogeneous 
flows. 

Integration of the differential equation 

dx 
"(lt=U, 

yields the particle paths in the form 

(2.3) • t•-A(: +C*) = 'JI, 

with C = C*(A -1), and "P a constant along a particle path. Also one requires A :F 1. 
For A = 1 a special case appears, which is not to be discussed here. 

Selecting 'P as a Lagrangian particle coordinate and considering that the entropy S is 
constant along a particle path, we write 

S(x, t) = S('P)· 

Writing the velocity u in the Lagrangian coordinates {'P; t), one finds 

u = AVJt"- 1 -C*. 

Substitution of u(x, t) in Eq. (2.1)1 yields a linear partial differential equation for a2 of 
the form 

(2.4) iJa2 ( x ) 00 2 A -+ A-+C -+(y-1)-a 2 = 0. 
iJt t ox t 

12* 
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The characteristic equations are 

dt dx da 2 

- = ~--=- = - . ---:------:-7--:=-
t Ax+Ct A(y-l)a2 ' 

' and two independent solutions of this system are easily found. The first one is the expres-
sion (2.3) for tp and the second is 

(2.5) 

A general solution of Eq. (2.4) <;an then be written down. 

Since a2 is needed explicitly in Eq. (2.1 )2 , the general solution is taken in the form 

(2.6) 

-with /(tp) an arbittary function of tp. Taking stock of the situation u, S and a2 have been 
-determined, while Eqs. (2.1)1 and (2.1)3 are satisfied. It remains to satisfy the momentum 
equation (2.1)2 • Substitution of Eq. (2.2), of S(1p) and _of Eq. (2.6) into Eq. (2.1h shows 
that this equation can indeed be satisfied provided 

2 . 
A=--= 1-x 

y+l ' 
(2.7) 

. in agreement with Eq. (1.2) and provided further the following compatibility condition 
for /('tp) and S(tp) is satisfied: 

(2.8) 

with ~hes denoting derivatives to 'P· 

Substituting A from Eq. (2.7) in the appropriate places and collecting the results, we 
found the solutions 

a2 = r 2Hf(f/J), 

S = S(1p)~ 

"' ;., ,. ( ; .+ c•) , 
while f('P) and S('l') have to satisfy Eq. (2.8) and C = - xc•. , 

. • 

Inspection of the velocity u in the above expressions shows that for t -+ oo the velocity 
of all the fluid elements approaches the constant value - C *which is the constant terminal 
velocity. Thereis some advantage to consider the flow from a reference frame moving 
with the terminal velocity. Introduction of the required Galilei transformations leaves the 
equations of motion invariant, while it removes some of the constants from the solutions 
found. 
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Omitting the details, the solutions then take the final form 

X 
U = (J-H)t = (l-H)1pt-", 

(2.9) 0 2 = ,-2"/(tp), 

S = S(tp), 
'P ~ xt-<•-"), 

where /(tp) and S(tp) have to satisfy Eq. (2.8)~ . 
Eliminating t between u and a2, one finds that in the family of centered flows obtained 

the relation below e~ists: 

(2.10) 

In the foJiowing section the homentropic flows in the family wi11 be considered. 

3. Tbe bo~~~e~~tropic solutioas 

If the flow is homentropic, S(tp) is a constant and the compatibility condition (2.8) 
simplifies. One finds for /(tp) the expression 

(3.1) /(tp) = "211'2 + /(0), 

with /(0) a~ integration constant, and for a2 

(3.2) a2 = "2'1'2r2"+f(O)t-2• = "2 ( ~ r +/(O)t-2•. 

When /(0) is taken equal to zero, the solutions represent the two homentropic centered 
simple waves of the classical theory, but taken together in such a way that x = 0 and 
tp = 0, represent the vacuum-lines in the x, t-plane, respectively the Lagrangian tp, t-plane.' 

When /(0} is taken different from zero, the solutions are no longer simple waves. The 
solutions which appear wiJJ be called Von Mises' flows since they are mentioned in the 
book of V oN MJSES ([1 1], p. 78). Taking f(O) > 0, there is no vacuum-line and a vacuum 
only appears for t --+ oo. Taking /(0) < 0, the flow has physical significance only if 

(3.3) H
2 tp2 + /(0) ~ 0' 

and we have essentially two flows, separated by a strip with negative temperatures and 
so without physical significance, in the tp, t-plane. 

To verify these statements we consider in succession the three cases (i) /(0} = 0, (ii) 
f(O) = H

2«2 and (iii) f(O) = - H 2«2 where a:2 is a positive constant. 

Case (i), /(0) = 0 

This is the flow with 

(3.4) 
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798 J. A. STEIO!TBB 

Since a, the speed of sound, cannot be negative, it follows that the +sign in Eq. (3.4h 
applies in the positive halves of the x, t- and 'P, t-plates, while the negative sign applies 
in the negative half-planes, x < 0 and tp < 0. Also the lines x = 0 and 'P = 0 are the 
vacuumlines where a = 0. 

Considering the positive half-planes, one deduces from Eq. (3.4) 

1-" 2 . 
u---a = u---a = 0, 

" ,y-1 

indicating that this flow is the classical simple wave with-

2 
(3.5) s = u---a = 0. 

y-d 

In the same way one deduces that the negative half-planes represent the simple wave with 

(3.6) 
2 

r=u+--a=O, 
y-1 

where the Riemann invariants have been denoted by letters rand s. 
The above conclusions also easily follow from Eq. (2.10) if it is kept in mind that _ 

a cannot be negative, while u > 0 in the positive half-planes and u < 0 in the negative 
half-planes. Also the form of the characteristics and other properties of the centered simple 
waves are easily retrieved. 

~twill also be clear that in the application of centered simple waves, say in shock-tube 
flow, only segments of the flows constructed here are needed. 

Consider for example the flow in an infinitely long straight tube generated by the 
instantaneous removal (at t = 0) of a membrane (located at x = 0) separating a vacuum 
part (x > 0) and a section (x ~ 0) filled with a uniform gas (a = a0 ) at rest. 

Taking the appropriate Galilei transformation into account (the terminal velocity is 

:~·1 ) , this flow corresponds with the segment of the solution (3.4) in the interval 

ao x 
-- ~- ~ 0, 

" t 
which may easily be verified. 

Case (ii), /(0) = at2x2 

This V on Mises' flow is determined by 

I (3,7) 

a>= ,., ( ~ r +,.,,.,,_,. = ,.2,-l•(tpl+<Xl). 

The velocity distribution and the particle paths are the same as those in the simple waves 
of Case (i) but a 2 and hence the temperature has been raised with a part depending on 
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UNSTEADY 1U!CI1LINl!AR. GAS FLOWS Winl THE vm.ocirY DISTIUBtmON 799 

the time only. As a consequence a temperature zero and the associated vacuum are reached 
only for t -+ oo, but a vacuum-line as in Case (t) is absent. Also the characteristics have 
changed form and the simple wave property, that one of the Riemann-invariants r (as 
defined in Eq. (3.6)) or s (as defined in Eq. (3.5)) is constant throughout the flow no longer 
applies. Something like it is retained if one considers Eq. (2.10), which takes the form 

(1-H)21p2a2-H2(1J'2+cx2)u2 = 0 

and yields in the positive half-plane, where u > 0, 

.. /~ 2a 
(3.8) u V 1 + ~ - "_ 1 = o 
and in the negative half-plane 

(3.9) V----ci2 2a 
u 1+-+--=0. 1p2 y-1 

The possibility to extend a2 with a term depending on the time only is due to the simple 

form of the velocity distribution. Since :: and the specific expansion rate depend on 

the time only, the coefficients of a2 in the third term of Eqs. (2.1)1 and (2.4) no longer 
contain x and a solution for a2 depe~ding on t can be superposed without difficulty. In 
the momentum equation (2.1 h the R.H.S. remains equal to zero a,nd the L.H.S. is not 

. affected by the change in a2 since only the x-derivative of a2 is required. 
It should be noted that the first part of the preceding argument applies equally well 

if Eqs. (2.1)1 and (2.4) are reduced to equations for a instead of a2 • In the momentum 
equation (2.1 )2 , however, the nonlinear term 

2a oa 
y-1 Tx 

then appears and here the argument fails. It suggests that the point is a bit subtle and 
may not be trivial. It also explains why a2 was taken as one of the variables and not the 
speed of sound a itself. 

It is of interest to note that several details of the flow can be calculated exactly and 
in [12] these have been considered. The characteristics have been computed in _detail and 
it is verified that the Riemann invariants r and s (defined by Eqs. (3.6) and (3.5)) are 
constant along the appropriate characteristics. Since the solution is a general homentropic 
flow, one also verifies that the expression for a2 in Eq. (3.7) can be converted tol the· form 

(3.10) 2, 2cx 1 
( )

2 

t = - y+1 T:s' 
which is a solution of the appropriate Euler-Poisson-Darboux equation 

o2
, 1 1 ( at at ) 

<3·11> iJros + 2,;. r-s as- Tr = o. 
The generation of this flow, or part of it, in an experiment can be achieved by producing 
the appropriate boundary conditions (for example by moving pistons) and initial eon­
ditions. However, they seem _artificial and neither simple nor obvious. It is possibly due 
to these circumstances that the V on Mises' solutions have not been considered further. 
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This is the second kind of V on Mises• flow detormined by 

(3.12) 

a 2 = 1<
2 
(: r -"2«2

1-
2

" = 0<
2r 2"(9'1 -0E

2
). 

Since a2 = yRT can not be negative, the flow has physical relevance only for 1'1'1 ~- a:. 

The vacuum-lines are the particle paths 'P = ±a: and in 'the x, t- and 'P• t-planes we have 
essentially tWo distinct flows. One with u < 0 in the negative half-plane for - oo ~- 'P ~ -a:, 
the other in the positive half-plane with u > 0 for a: ~ tp ~ + oo. 

. Compared to the simple wave flows of Case-(i), the flow takes place at a reduced tem­
perature level and as a consequence the vacuum situation with T = 0 already appears 

' at 'P = ±a:, instead of at " = 0. Similar reD:tarks as in Case (ii) apply . here and in [12] 
a number of details are worked out 

We next turn to non-homentropic cases and . therefore first consider the compatibility 
condition (2.8). 

4. The compatibi6ty cOndition 

In the solutions (2.9) the two arbitrary functionsf(tp) and S(1p) appear which have to 
satisfy the compatibility condition (2~8). Thi~ condition may be considered as a non­
homogeneous linear differential equation forthe determination of /('tp). The general solution 
of this· differential equation is composed of two parts; the general solution of the homo­
geneous equation (with R.H.S. equal to zero) and a particular solution of the non-ho­
mogeneous equation. 

In this light " 2tp2 in the preceding section is the particular solution, while the constants 
± " 2«2 represent the general solution of the homogeneous equation 

f'(tp) = 0. 

Taking only the particular solution, the homentropic centered simple waves were obtained. 
Admitting also the general solution of· the homogeneous equation, the V on Mises' ftows 
were obtained. 

The construction of thc ·~ral solution of Eq. (2.8) for arbitrary S(tp) is not difficult, 
~ • . 0 

but may be simplified further by replacing S(VJ) by another function. Therefore, consider 
the isentropic relation in the form (1.1). 1his yields 

(4.1) 

and substituting S(tp) in terms of b(tp), the condition (2.8) may be put in the form 

(~.2) d (f(tp)) 2 'P 
dtp b(VJ) = 2" b(tp) . 
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The general solution of f('rp) now requires a quadrature only and one obtains 

(4.3) 

with C an integration constant. 
To express b(tp) and hence the entropy in terms ~f f(,), Eq. (4.2) may be rewritten in 

the form 

(4.4) 

yielding upon integration 

(4.5) b('l') = /('l')ei<p{ -2><2 J /~) d'l'+c}. 
and 

(4.6) 

with C again an integration constant. 
Since the present investigation was undertaken to see whether discontinuities could be 

removed, which appear when two of the homogeneous solutions studied in [10] are matched, 
the homogeneous ftows will be considered in the next section. It will be shown that the 
homogeneous solutions of [10] are similar to the homentropic simple waves in this sense, 
that they will appear when for the appropriate entropy. distribution S('rp) only the particular 
solution for /(rp) in the compatibility condition is used. By adding to /(tp) the solution of 
the homogeneous equation, one has more scope enabling us to remove the discontinuities. 

5. ne homogeneous solutions 

In· [10] solutions of the Lagrangian equations of motion are considered, which are 
homogeneous functions of the Lagrangian mass coordinate h and the time t. 

Let us start with the assumption that hand tare positive (0 ~ h ~ +eo, 0 ~ t ~ +eo). 
For the velocity u, the speed of sound a, and the Cartesian coordinate x the following 
expressions were obtained: 

(5.1) 

u(h, t) = Uoh"+"t-"+Ucn, 

a(h, t) = a0 hn+"r", 

(
X-Xo ~ U ) = , Uo h'l+" 

t . CO t" I ..,;_ " . 

In these expressions u0 , a0 , U co, x0 and n are constants. The constant U co is the constant 
terminal velocity of all the fluid elements when t ~ eo, x0 is the point where the entire 
mass is concentrated at t = 0 and n is the degree of homogeneity. Transferring to a ref-
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erenceframe moving with the terminal velocity UIX) and origin in x0 , the formulae (5.1) 
simplify after the proper Galilei transformation to 

(5.2) 

u = u0 h"+Ht-", 

a = aoh"+"t-H' 

'<~• Xt-(1-H) = ~hrt+H• 
. .. 1-" 

The constants u0 and a0 are related by 

(5.3) ± ~-. / "(1 +") (n+") = ± Au0 , 
00 = 1 - " Jl n + 1 + " 1-" 

with the constant ). clearly 

(5.4) ). = .. / "(1 +") (n+"). 
V n+l+" 

It was found that not all values of n were admissible. For n in the interval 

(5.5) 

the pressure p and the specific folume V appeared with opposite signs, . which is physically 
unacceptable. 

As a consequence the solutions separate naturally in two classes, those with . n > -" 
and those with n < - (1 + ")· For n > -" the constant ,u0 is positive and the +sign in 
Eq. (5.3) has to be taken. For n < -(1 +") the constant u0 is negative and the -sign 
in Eq. (5.3) applies. Also it was found that the interval 0 ~ h ~ + oo corresponds with 
0 ~ x ~ + oo for n > -" and with - oo ~ x ~ 0 for n < - (1 + ")· 

It was ·possible to extend the solutions to negative values of h in such a way that the 
interval - oo ~ h < 0 corresponds with flows obtained from the previous ones i.e., Eqs . 
. (5.2), by reflection with respect to the line x = 0 in the x, t-plane, and implying ..reversing 
the direction of the velocity. 

Introducing h* = - h(- oo ~ h ~ 0), these solutions may be written as 

(5.6) 

u = -u0 (h*)'s+Ht-H, 

a = a0 (h*)'s+Ht-H, 

-xt-(1-H) = ~ (h*)rt+H• 
1-" 

In the following discussion attention will be largely restricted to solutions with positive h. 
Comparison of the expressions (2.9) and (5.2) yields 

(5.7) 

(5.8) 
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Substitution of Eq. (5.8) into the compatibility condition (2.8) then yields 

(5.9) _1 S'( ) = 2(J.
2
-x

2
). _!__ = 2N 

Cp 1p ).2 1p "P ' 

where a new constant N is introduced by 

x2 n 
(5.10) N = 1-12 = (1 +x) (n+x) · 

One may verify that in theN, n-plane Eq. (5.10) represents a hyperbola and further that N 
cannot exceed the value + 1 for all admissible values of n. 

Integration of Eq. (5~9) yields 

(5.11) -
1 

S(1p)'= 2Nin'f/J+ -
1 

S(l), 
cl' ~ c, 

with S(1) an integration constant. Employing Eqs. (1.1) and (4.1) one may write also 

(5.12) b('f/J) = b{l)VJ2~. 

Since all the homogeneous flows have the same velocity distribution and the same particle 
paths in the x, t-plane, two flows with different values of n can in general be matched 
along a common particle path. To begin with, it is found that this matching is possible 
only for two flows with degrees of homogeneity n, both exceeding - x, or both less than 
- (1 + x). By using the extensions to negative values of h mentioned before this restriction 
on then can be dropped. 

Along the common particle path the conditions (1.4), assuring continuity of velocity 
and pressure can be satisfied. It was also found in [10] and [12] and has been! mentioned 
already that discontinuities in density, temperature and entropy, however, have to be 
accepted. 

It is shown in [12] that the discontinuities are of the form 

e<2)( V'o' t) = ( ).(1) )2 
(P>( V'o' t) ).<2> . ' 

1 ).(2) c {S<2 >('f/J0)- S<1>(1p0 )} = 2ln ;.<1> , 
p 

(5.13) 

T<2>(1po, t) = { a<2>(VJo, t) }2 = ().<2> )2 
T<1>(VJo, t) a<1>('f/Jo, t) ).<1> ' 

with ).<1> and ).<2> the values of ;. belonging to the degrees of homogeneity n1 and n2 of 
the two flows joined along 'P = VJo. 

Before continuing with the generalized flows one may note that between u and a in 
the homogeneous flows the linear relations exist 

Uo for 0 E;; hE;; +oo, u--a = 0, 

(5.14) 
ao 

Uo for -00 E;; h < 0, u+-a = 0, 
ao 
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reminding one of the homentropic simple WaVes. For n = 0 the relations (5.14) reduce to 
the classical Riemann invariants (3.5) and (3.6). It was also ahown in [10] that for n~ = 
= -(1 +2x) the relation (5.14)1 reduces to · 

I 
u+-a=O, 

f 

a relation which had appeared before in a tlow problem with a Ludford·Martin·Staniu­
kovich gas. 

6. 1'he gneralized lows 

The flows to be considered here have the same velocity distribution and particle paths 
as before. The entropy distribution has the form (5.11) obtained for the homogeneous 
flows. Substitution of- this value in the compatibility condition (2.8) yields by means of 
Eqs. (5.12) and (4.3) or, otherwise, for f(tp) the solution 

(6.1) /(tp) = All12+C'P2N. 

For C = 0 this reduces to the form (5.8) of the homogeneous ftows and the Second term,­
in Eq. (6.1) is clearly the geqeral solution of the homogeneous equation obtained from 
Eq. (2.8) by putting the R.H.S. equal to zero. 

Collecting the results we now have 

(6.2) 

(5.11') 

X 
u = (1-x)- = (1-x)tpt-", 

t -

0 :z = t-.:z"(Aztp:z+C'f':zN), 

_I S(VJ) =_I S{l)+2Nln'P, 
c, c, 

with Can arbitrary constant, A. defined by Eq. (5.4) and N defined by Eq._ (5.10). 
H a homogeneous flow is matched along a common particle path tp = tp0 to a gener· 

alized tlow, the matching can be done in such a way that in addition to pressure and 
velocity, also the other parameters density, temperature and entropy are continuous 
across 'P = 'Po . 

Consider for example the homentropic centered simple wave (homogeneous flow with 
n = 0) with 

u = (I- x)tpt-", 

(6.3) 0 2 = ":z1-:z,1p:z, 

S = S11 = const, 

to be present in the interval 0 ~ 'P ~ tp0 , while for 'P > tp0 the generalized flow given 
by E<is. (6.2) and (5.11) is' present. It is clear that the velocities are continuous across 
the path tp = 'Po. . 
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Making the entropy continuous requires the constants S,, S(t) and N to be selected 
in such a way that 

(6.4) 
l l 

-S, = -S(l)+2NlnVJ0 , 
c, c, 

while the continuity of a2 requires C to satisfy 

(6.5) N1'~ ~ A1tpa+Cl'~N. 

The continuity of a1 implies the continuity of the temperature, while the relations 

(6.6) 

(6.7) 

I 
(y-l)lne = lna1

--S-lny, 
·c., 

y-1 I 
--lnp = lna 2

-- S-lny, 
y c~ 

obtained from the thermodynamic relations indicate that also the continuity of density 
and pressure ·are nQw assured. One may also verify that a homogeneous, non-homentropic 
ftow (with C = 0), can be matched to Eq. (6.3) along 'P = VJo in such a way that p in 
Eq. (6.7) is continuous across 'P = 'Po but it is then impossible to satisfy also the continuity 
of S, (!and a2 = yRT and the relations (5.13) appear. 

Substitution of C from Eq. !6.5) in /('I') yields 

(6.8) 

In [12] some details of this flow are worked out 
In particular, the characteristics can again be calculated in detail. 

7. Some related investigations 

The literature on non-homentropic ftow~ is not very extensive and a few papers may 
be singled out that are close to the work reported here. 

NAYWR [13] studies non-homentropic flows by employing a modified Crocco stream-
function 'P defined by -

Also he finds 

(7.1) 

'Px = a re , _ 'Pt = -UQ H 

1-H -,--
x., =a x, = u. 

At some stage in the analysis Naylor considers "degenerate" solutions of the equation for 
X('f', t) 

(7 2) y+l S('rp) 0 . x" x,-x.,.,-x" yR = , 

by applying Poisson's ~ethod~ This implies that there e~ists also a relation 

f(x,, x") = 0, 
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or in terpts of Eq. (7.1) ~relation between the speed of sound a and the velocity u. On this 
basis he deduces the following theorems: · 

1. Unsteady "simple wave" solutions, for which the fluid speed and the acoustic speed 
are functionally related, of the Lagrangian equation of unsteady rectilinear gas flow with 
non-constant entropy existing only when the distribution of entropy is of . the form 
S(tp) = Clntp, C being some constant. 

2. In the x, t-p/ane the curves of constant 3peed and acoustic speed comprise a system 
of straight lines concurren_t through the origin, that is, the flows obtained are simple centered 
waves. 

ARDAVAN'-RHAD [14] studied the Friedrichs problem mentioned in the Introduction. 
His analysis begins with the construction of an unsteady, rectilinear, non-homentropic 
flow, which is such that throughout. the flow 

(7.3) 
2 

u = --
1 

ah(u)+const, 
y-

where h(u) represents an arbitrary f~nction of the entropy o 

I S-S0 S-So 
C1 = - -,......,...(,---1-:--) • ~ = -:--yR. 

The solution found takes the form 

x = {u+ah(u)}t, 
Y+l 

(7.4) t = a-.,._ 1 f(u), 

f = (~'-1)- .;;,:_~l exp ["~I J h•d~ I]. 
One may verify that this solution coincides with Eq. (2.9) by putting 

"'P 
h(u) = y' f(tp). 

The expression (7.4)3 is the analogue of Eqs. (4.3) and (4.5). 
GUNDERSEN [15] develops a systematic perturbation analysis for non-homentropic 

flows, assuming that the zero-order flow is homentropic. Applying this analysis to the 
homentropic centered simple wave, it is found that entropy perturbations in the first 
approach leave the velocity field unchanged. This clearly agrees with the properties of 
the solutions constnJcted here. 

8. Concluding remarks 

The problem of the non~homentropic flow comes down first to the determination 
of the entropy disiribution. Since there exists little information on this point, it is common 
to assume some form for the entropy distribution consider and the 'resulting fiows. As 
a consequence several investigations, and the present one is no exception, have the character 
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of "solutions looking for a problem", instead of the more usual situation of "a problem 
looking for its solution". 

It is, however, thought that by confronting some of these "solutions looking for a prob­
lem" with sufficiently simple actual flows as for example the F- and G-problem, this situation 
may in due course be changed. 

In·the present paper special attention has been given to the matching of a homentropic 
and a non-homentropic centered wave along a common particle path. It is found that 
continuity of the parameters across the common path is assured provided one of the 
two flows is generalized. Either the (non-homentropic) homogeneous flow is generalized 
as indicated in Sect. 6, or what is equally well possible, the homentropic centered simple 
wave is generalized to a Von Mises flow (Sect. 3) and matched to a homogeneous flow 
(Sect. 5). In terms of the earlier remarks the situations considered may provide the problems 
the solutions were looking for. 

Considering that in the present class o( flows the velocity distribution and the particle 
paths remain invariant, while S(tp) and/(tp) may be modified in,accordance with Eq. (2.8), 
there is clearly some link with the more general mathematical investigations on "Similarity 
and Group Analysis" associated with the names of Ovsjannikov and Ibragimov in the 
USSR and Bluman, Cole and Ames in Canada and the USA. 

Finally, it may be mentioned that the class of solutions (2.9) is not yet sufficiently 
flexible to provioe a complete solution for the triangular domains ABC in either the F­
or G-problem in its simplest configuration. Along BC, the boundary with the contact 
region, one needs constant velocity and constant pressure, while JjJC should also be a cha­
racteristic. These conditions cannot be satisfied within the class of solutions (2.9). Some 
extension seems necessary. 
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