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Heat conduction in porous materials 

M. HLAV.ACEK (PRAGUE) 

A CONTINUUM theory is developed for heat conduction in porous materials. The temperature 
field in the neighbourhood of a spherical pore is approximately described by three macroscopic 
scalar functions for which a variational principle yields a system of three differential equations 
of the second order. Propagation of plane harmonic thermal waves is studied. The method is 
applicable to other diffusion problems. 

Opracowano kontynualn~ teorie( przewodzenia ciepla w materialach porowatych. Pole tempera­
tury w otoczeniu pojedynczej pustki kulistej opisano w spos6b przyblii:ony za pom<>al trzech 
makroskopowycblfunkcji skalarnych, dla kt6rych, po zastosowaniu zasady wariacyjnej, otrzymuje 
siC( uklad trzech r6wnan r6Zniczkowych drugiego CZC(du. Przeanalizowano problem propagacji 
plaskich fal termicznych. Metode( te( zastosowac mozna r6wnie:i do innych problem6w dyfuzyj­
nych. 

Paapa6oTaHa KOHTHHYaJILHrui TeopiDI TermonpoBo,[UioCTH B rropHCTbiX MaTepHa.nax. Ilone 
TeMIIepaTyp B OKpeCTHOCTH eromwmoii: c<f>epW~eCKOH nyCTOTbl OIIHCaHO npH6JIH>KeHHbiM 
o6paaoM rrpH IIOMOIIUI TpeX Mal<pOCKOIIWieCKHx CKa..IDipHbiX $~, WUl KOTOpbiX, DOCJie 
rrpHMeHeHWI BapHai.lHOHHOI"' npHHinUia, nonyqaeTC.R CHCTeMa TpeX .z:tHlf><f>epeHIUiaJILHbiX 
ypaBHeHHH BTOporo IIOp.R.z:ti<a. IlpOaHa.JIH3HpOBaHa rrpo6JieMa pacrrpoCTpaHeHIDI WIOCKHX 
TepMWieCKHX BOJIH. 3roT MeTO.z:t MO>KHO TO>Ke npHMelUITL K ,rtpyrHM .rtH$$y3HbiM 3a,rta'tlaM. 

1. · Introduction 

THERE ARE several . continuum models of heat conduction in composite materials. The 
continuum mixture theory was developed for heat conduction in laminated materials 
[1-2] and in fiber-reinforced materials [3-4], while a certain variational method for heat 
~onduction in the composites of the inclusion matrix type are presented in [5]., 

The effective stiffness method was originally used for the continuum model of elastic 
deformation of laminated materials [6]. In the present work the method used in [6] is 
applied to heat conduction in a porous material. 

The porous material is idealized. Spherical pores of a constant radius are located at 
random so as to make the material macroscopically homogeneous and isotropic. The 
pores are void and do not conduct heat which propagates only through the material 
around the pores. The solution is limited to the macroscopically unidim~nsional problem. 
For this case the temperature in the vicinity of the pore is approximated in a certain way. 
In this approximation the temperature in . th.,e vicinity of a pore with a centre in any ar­
bitrary point is determined by the knowledge of three scalar functions. On the basis of 
a variational principle, differential equations are found for these three scalar fu~ctions­
Thus the heat conduction in a porous material is described by a system of three differential 
equantions of the second order. 
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492 M. HLAVA~BK 

Further propagation of plane thermal harmonic waves is investigated. If the circular 
frequency of these waves approaches zero, the effective thermal conductivity of the porous 
material is obtained. The values thus obtained do not differ practically from the values of 
effective thermal conductivity obtained by other methods [8]. This agreement of results 
is in favour of the present model. 

Further, a multivalent dependence of the complex wave number on the circular fre­
quency of the wave is found. The real part of the wave number describes the attenuation 
of the wave, while the imaginary part of the wave number is connected with the phase 
velocity and the wave length. 

2. Model of a porous material 

Ut us consider a material with a large number of small spherical pores of indentical 
size distributed· in such a way that the material is macroscopically homogeneous and 
isotropic. We assume that the pores are void and that heat propagates through the material 
around the pores only. We can imagine the material as being divided into elements each 
of which consists of one pore and of a certain neighbourhood of thermally conductive 
material. Let us select these elements so that they have an equal volume and are not sub­
stantially different from a sphere. For the sake of simplicity we shall replace them by 
spherical elements with a spherical pore of a radius r1 in the centre, whQse external radius 
r 2 is determined by the relation 

where 7J3 means porosity, i.e. the volume of pores in a unit volume of the material. It is 
obvious that the adjacent spherical elements partly overlap and form gaps. However, 
for the construction of · a simple determiriistic model which does not require detailed 

---" 
', 

I 
I 
I 

'~ 

\ 
\ 
\ 

l 
I 

\ 
\ 

/ 
/ 

/ 

---.,;./ 

FIG. 1. Coordinate systems. 

http://rcin.org.pl



HEAT CONDUcnON IN POROUS MATERIALS 493 

knowledge of the position of the individual pores, it is necessary to accept some simpli­
fications. 

Let x1 denote the global Cartesian coordinates and let us consider a spherical element 
with a centre in the point Xoi (Fig. I). In the centre of the pore, in the point x 0, let us 
introduce local rectangular coordinates x1 and local spherical coordinates r, qJ, w, while 

x1 = x01 +i, i=. I, 2, 3; 

Xt *= TCOSqJSinw, x2 = rsinqJsinw, X3 = rcosw. 
Further on we shall confine our considerations to the cases of macroscopically unidi­

mensional heat conduction. This means that the functions describing macroscopic heat 
conduction will depend on ,x3 , t only and not on x1 , x2 • Let us consider now two adjacent 

FIG. 2. Two adjoining elements. 

spherical elements (Fig. 2), the element with a centre x 0 i (Point 1 in Fig. 2) touching the 
element with a centre in Point 3. The point of contact 2 is determined in the local spherical 
coordinates referred to Point 1, by the coordinates r2 , f/Jo, ·w0 • Let us assume that the 
temperature on the line segment 45 (Fig. 2), forming a part of the line connecting the 
centres I and 3 of the adjacent ele~ents, is defined by the relation 

(2.I) O(xo3, t;r, p0 ,w0 ) = 00b+cosw0 [C'lbsin~+/lb(cos2~-I)], 
where 

~ = n r-r2 • 

2 r2 -r1 

Dol2, al2, Pb are so far unknown functions of timet, defined for the time being in Points 2 
only, i.e. in the points of contact of adjacent elements. If we put in Eq. (2.I) 

we obtain 

Db= fob 

i.e. Dol2 represents the temperature at the boundary of the element in Point 2. The remain­
ing term on the right-hand side of Eq. (2.1) thus represents, for constant f/Jo, w0 , the change 
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of {} in the points of the line segment 4 5 in comparison with the value of {} in Point 2. 
In Point 4, for 

it follows from Eq. (2.1) that 

ofJ I = 0 or 4 

and similarly, for Point 5, if we put in Eq. (2.1) 

we obtain 
r = 2r2 -r1 , 

o{}l = 0. 
or 5 

From that it can be seen that the heat flux on the pore surface in Points 4 and 5 equals 
zero. 

Let us note' that, for the sake of simplicity, we have assumed that the adjacent spherical 
elements touch, i.e. that the distance between their centres is 2r2 • Actually, if the original 
non-spherical elements differed only little from the sphere, the distance of their centres 
would be slightly smaller than 2r2 • Thus, for example, in a plane case of a hexagonal 
layout of circles- pores of identical radius r1 with the distance of pore centres 2/, we 
can obtain by a simple calculation the radius r2 of an equivalent circular element 

Jl 2y3 
r2 = l --~ l.ll. 

n · 

In this particular plane case the actual distance of the centres of adjacent elements differs 
. from 2r2 by about 10%. 

The dependence of{} on r was selected in Eq. (2.1) in the form of simple goniometric 
functions satisfaying the condition of zero heat flux on the pore surface. The dependence 
of{} on ro0 according to the cosine of the angle ro0 satisfies the condition of the maximum 
change of{} in the element in the direction i 3 and the minimum (zero) change of{} in the 
directions perpendicular to the axis :X3 • 

{} in Eq. (2.1) depends on the continuous variables t and r for r e(r1, 2r2- r1) and, 
further, on the discrete variable x03 (the coordinate of the centres of all elements) and 
on the discrete variables f/Jo, ro0 which correspond to all points of contact of adjacent 
elements. The same applies to {}0 , a, fJ which, however, do not depend on r. To obtain 
a continuum theory, we shall replace, in Eq. (2.1), {}, {}0 , a, fJ with smooth functions 
defined for all x 3 , rp and ro. Consequently, every point can be considered as a centre of 
a certain element (or pore) and every point at the boundary of this element can be considered 
as the point of contact with . the adjacent element. For the case of heat conduction in the 
direction x3 we obtain now from Eq. (2.1) 

(2.2) f}(x3, t; r,ro) = {}0 (x3 +r2 cosw, t) 

+cosro[cx(x3 +r2 cosw, t)sin~ + {J(x3 +r2 cosro, t) (cos2~- I)]. 

With regard to axial symmetry according to :X3 , {} in Eq. (2.2) is independe~t of fP· 
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{}in the form of Eqs. (2.1) or (2.2) satisfies the condition of zero heat flux on the P<)re 
surface and the condition of temperature smoothness in the points of contact of adjacent 
elements. {} in Eqs. (2.1) and (2.2), however, only approximates the actual temperature 
field in the vicinity of the pores. Equation (2.2) has a ·relatively simple form and compri~es 
only three unknown independent functions {}0 , a, {J for which we shall find further on, on 
the basis of a variational principle, three differential equations. 

3. Variational principle for heat concluction · 

In [10] several variational principles of dynamic coupled thermoelasticity for a non­
homogeneous material were deduced. Section 6 in [10] formulates a variational principle 
for independent displacement and temperature. For a nonhomogeneous material which 
conducts heat and does not undergo any deformation· (or the effect of tem:eerature and 
deformation can be separatt:d), this variational principle can be simplified into the form 
which we shall present in this section. 

Let us consider a regular bounded closed region R with a boundary S. Let S1 and 
s2 be parts of s, so that 

SI uS2 = S, sl,r.S2 = 0. 

Let the thermal properties of the · homogeneous material be determined by the specific 
heat per mass unit c and the thermal conductivity k. If f}(x1" t) denotes the temperature 
and f! the density of the material, the solution to the boundary -initial value problem 
of heat conduction is the sufficiently smooth function fJ(x~c, t) which satisfies the heat 
conduction equation . 

(3.1) k{},u-ec-0 = 0 on R x [0, oo); 

here the comma with an index following den9tes the partjal derivative with respect to 
the respective coordinate and the dot surmounting the quantity denotes the derivative 
with respect to timet; function f} satisfies the initial condition 

(3.2) 

as well the boundary condition 

(3.3) 

and the boundary condition 

(3.4) -kfJ,,(X~~;, t)nl = q(xb t) on S2 X [0, 00). 

:0, 0 and q are the prescribed functions. q represents the heat flux through a unit area of 
the surface S2, ni the external unit normal to the surface S2. 

The above mentioned variational principle reads: 
Let us define for every t ~· 0 the functional 

(3.5) F,(IJ) = 1 g (!CIJ•IJ+ ~ kg•IJ;1•fJ,,-ec6•fJ}dR+ 1 g•fJ•(}dS, 

... 
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where 

g(t) = l for t ~ 0 

and * means the convolution 

t 

f'•f" = J f'(x~c, t-T:)j"(x"' 1:)d1:. 
0 

The function fJ(x~c, t), sufficiently smooth and satisfying the boundary condition (3.3), 
represents the solution of the boundary-initial value problem of heat conduction if and 
only if it satisfies, for every t ~ 0, the condition 

(3.6) 

The variation in Eq. (3.6) is considered in the meaning explained in [10]. We shall not 
carry out the proof of the variational principle, it would be similar to the one in [10]. 

4. Equation of heat conduction in a porous material 

We shall apply the variational principle (3.5)-(3.6) to our model of porous material. 
· In Sect. 2 the porous material has been fictitiously divided _into hollow spherical elements. 
Let us consider a bounded closed region R consisting of a large number of spherical 
elements. Let S1 be a surface consisting of those points of the external surfaces of the 
elements which .. are the boundary points of the region R. The remaining points of the 
external surfaces of the elements are thus internal points of the region R. Let S2 be a set 
consisting of all points of the internal surfaces of elements. Consequently, S2 consists of 
the surface of the pores, i.e. a large number of spherical surfaces of the radius r 1 • 

If the temperature and the flux in all points of contact of adjacent elements are contin­
uous, the functional Ft(t) is of the form (3.5) also for our particular case of porous 
material: As the heat flux on the pore surface equals zero, the surface integral over S2 

in Eq. (3.5) equals zero. The volume integral over R can be written as a sum of the integrals 
over the individual elements. The actual course of temperature in the elements is unknown; 
for the purpose of heat conduction in the direction of x3 it can be replaced by the ap­
proximation (2.2) which satisfies both the condition of zero heat ftux at the pore boundary 
and the condition of temperature smoothness in the points of contact of adjacent elements. 
The fundamental assumption of the method described here will be the replacement of 
the sum of integrals over the individual elements by the integration in the form 

(4.1) 

- ecJ • .?) r 2 sin ru dr drud<p} dR . 

The derivatives in Eq; (4.1) are taken with respect to the local coordinates x1• Let us note 
that the functional (4.1) originated from the functional (3.5) by the replacement of the 
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integrand with its volume average over the volume of the spherical element. In Eq. (4.1) 

i(x1) = 1?(x1 , 0). 

The functional ( 4.1) depends on three scalar functions {}0 , ex, {1 and defines the homo­
geneous continuum of a higher order, which approximates the original porous material. 
The sought equation of heat conduction in a porous material, i.e. the differential 
equation for {}0 , ex, {1, can be obtained from the condition analogous to Eq. (3.6), viz. 
from the condition 

(4.2) 

·Using Taylor's expansion, it is possible to write in Eq. (2.2) 

(4.3) 

where 

00 

{}0 (x3 +r2cosw, t) = '\"" J,r~cos"wDg•>(x3 , t), L; n. 
n=O 

.a.<n> _ o"Do _ {) 
vo -~- - o,33···3 

uX3 --,. 
and similarly for ex(x3 +r2 cosw, t), {1(x3 +r2 cosw, t). The substitution of Eqs. (2.2) 
and (4.3) into Eq. (4.1) yields, after further calculations and integration, the functional 
JF,(D0 , ex, {1) in the form of an integral over the region R, whose integrand is a sum of 
infinite series. The terms of these series contain the convolutions 

D~">*p<m>, rx<">*p<m>, (n,m = 0, 1,2, 3, ... ) 

and then, analogously, the convolutions of the functions D~">, ;.<">, p<n> . ex<">, p<n> are defined 

analogously to D~"> · D~">, ;_en>, p<n> are the values of D~">, ex<">, p<n> in time t= 0, n, m acquir­
ing the values of all non-negative integers. For ·the sake of brevity we do not present here 
the complicated form of 't(fJ0 , ex, {1). As we shall not be concerned with the formulation of 
boundary conditions, we shall consider, in th~ calculation of ~9Ft, the quantities ~0, 

~ex and ~{1 on S1 as equal to zero. The condition (4.2) results in the sought system of 
differential equations for the functions {)0 , ex, {1 in the form 

(4.4) k(c1 iJo,33 -c2 rx.,3 -c3{3,3) -ecdl Do = 0, 

k( -c2{)0,3 +c4rt. -Cs rt.,33 +c6{3 -c,{3,33)+(!c(d2 ex+d3iJ) = 0, 

k( -c38o,3+c6rx.-c,rx,33+csf3-c9{3,33)+ec(d3ex+d4.{3) = 0 

where 
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(4.5) 

1]' 
Cs = S' 

16 1]1 

c, = 15-n' 

3 I 

c9 = s1J' 

r1 
1J = r;' 1J' = 1-f}. 

In the system of Eq. (4.4) we have the first derivatives of D0 , ex, {J with respect to time 
and maximally the second derivatives of {}0 , ex, {J with respect to x3 • The coefficients of 
derivatives of D0 , ex, {J with respect to x3 of orders higher than 2 were found to be equal 
to zero. Thus we have obtained for D0 , ex, {J a system of differential equations of the second 
order. 

5. 'l1lenul wave propagation in a poro111 material 

Let us examine now the propagation of plane harmonic thermal waves in a porous 
material. Let us seek the solution of the system of Eq. (4.4) in the form 

(5.1) 

{}o = Te-Axs+'-', 

a = Ae-Axs+'-', 

{J = Be-_Ax,+iott, 

where T, A, B are constants, w is the circular frequency and A the complex wave number 

A= A1 +il2. 

At > 0 describes the attenuation of the wave. The wave length is 

and the phase velocity of the wave 

(JJ 

C=~· 

Let us introduce Eq. (5.1) into Eq. (4.4). We obtain a linear homogeneous system of 
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equations for T, A, B which has a non trivial solution if and only if the determimant of 
the system equals zero. This condition has the form 

(5.2) 

).2kc1 -icoecd1 , 

).kc2 , 

).kc3 , 

kc4-A2kc5 +icoecd2 , kc6-A2kc1 +iwecd3 = 0. 
kc6 -). 

2 kc1 + iwecd 3 , kc8 -). 
2 kc9 + iwecd4 

We shall replace A., w by the dimensionless variables f, w 

(5.3) 

where 

(.() 

(.() = -::--, 
" 

k 
"=-. ec . 

Further, we shall denote 

(5.4) z = iw. 
By developing the determinant in Eq. (5.2), we obtain, using the dimensionless variables 
I, z, the condition (5.2) in the form 

(5.5) l6a~+I4(a~+zb~)+f2(a~+zb~+z2c~)+(zb~+z2c~+z3tfo) = 0,. 

where 

a~ = clgg, 

a~= -(Clgl +csg,+c,g6+c9g8), 

b~ = -(Clg2+dtgg), 

(5.6) a~ = ctg3+c4g,+c6g6+caga, 

b~ = ctgs+dtKt +d2g,+d3g6+d4ga, 

ci = -clg4+dtg2, 

b~1 = -d1 g3 , c0 = -d1 gs, d0 = d1 g4 • 

In Eq. (5.6) we have introduced 

Kt= csca+c4c9 -2c6c7 , 

(5.7) 

. -2 Ka = -c2, 

In Eqs. (5.6) and (5.7) 
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(5.8) 
- 'TJI 
cs =s, 
- 16 '1]

1 

c,=--
15 n' 

- 3 I 

Cg = Sf}' 

d1, d2, d3 , d4 ; fJ, 1}
1 having been defined in Eq. (4.5). 

M. HI.Av;{anc 

Equation (5.5) defines the multivalent dependence of I on z or on ro. The left-hand 
side of Eq. (5.5) is an even polynomial of the sixth order in I Thus, for every real w there 
are three values of P and, consequently, three values of I, for which Re1;?; 0. For the 
given frequency ro, consequently, there are, in the material, three waves of different wave 
lengths and different attenuation. We shall investigate the multivalent function I{W) 
numerically in the next section. 

Let us investigate now 12(~ for small z. Let us develop 12 (z) into a power series with 
respect to z and consider the first three terms only, viz. 

(5.9) l 2(z) = A 0 +A1 z+A2 z 2 • 

The substitution of Eq. (5.9) into Eq. (5.5) yields for A0 , A 1 , A 2 the equations 

A 1 = - ~ (A5b~+A0 b;+b~), 
(5.10) 

A 2 = - ~ (Ai(3A0a~+a~)+A1 (2A0 b~+b;)+c~), 
C = 3A5a~+2A0a~+a;. 

From Eq. (5.10)1 we obtain three roots.Jor A0 , viz. 

A~= 0, 

(5.11) A ll 1 < i .. I I 2 4al I > o = 2a6 -a4 ...... f a4 - 2 a6 , 

A lii I < I .. I 12 4al I> o = 2a6 -a4 + f a4 - 2 a6 • 

It can be proved that for 1J e (0, 1) the following inequalities hold: 

(5.12) 
a6 > 0, a~ < 0, a; > 0, 

a~2 -4a;a6 > 0. 

It follows that A~, A~, A~' are real and it holds that 

A~' > A~ > A~ = 0. 
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Consequently, also the respective A~, A~, A~', A;, A~, A~' which we obtain from Eqs. 
(5.10h and (5.10h are real. 

If we consider, apart from Eq. (5.9), also the three-term expansion 

(5.13) 

we obtain the real B0 , B1 , B2 in the form 

(5.14) 

If we write the equation of heat conduction in the direction of x3 in a certain homo­
geneous (non-porous) material in the form 

k.rD,33 -(ec).rlJ = 0, 

we obtain for the thermal wave 

the relation 

(5.15) 

Let us write Eq. (5.9) for A~, A~, A; and neglect the term with z2
• The substitution of 

A., w instead of 1, w in Eq. (5.9) yields 

(5.16) 'l2 • (!CA' 
A =JWk 1• 

From Eqs. (5.11)1 , (5.10)2 and (5.6)-(5.7) it follows that 

(5.17) 

If we put 

(5.18) 

(5.19) 

Eq. (5.16) acquires the form of Eq. (5.15). 
Consequently, for very small ro, it is possible to obtain approximately that branch of 

I 2 (z) for which 

A~= 0, 

i.e. for which the implication applies that 

w-+ 0 ~ l-+ 0, 

by the investigation of waves propagating in a homogeneous (non-porous) material with 
the so-called effective characteristics kch (ec).r, defined in Eqs. (5.18) and (5.19). The 
other branches, however, cannot be obtained in this way. 
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6. Numerical results 

To check the suitability of the assumption (2.2) for the temperature field in the vicinity 
of the pore, we shall compare ker from Eq. (5.19) with the effective thermal conductivity 
obtained by other methods. 

In [8] the accurate value of the effective dielectric constant for the arrangement of 
spherical inclusions in the matrix, called in literature the composite sphere assemblage, 
was obtained. The problem of fining the effective dielectric constant is mathematically 
identical with the problem of finding the effective thermal conductivity. 

If the inclusions are pores with zero thermal conductivity, the accurate effective thermal 
conductivity ker for this special pore arrangement according to [8], is determined by the 
formula 

(6.1) 

where k is the thermal conductivity of the matrix and ·fJ3 is the volume porosity. The table 
below shows the values of ker from Eq. (6.1) and ker from Eq. (5.19) for various fJ3

• The 
table shows that ker are only slightly higher than ker· Let us note that ker from Eq. (6.1) 
represents the upper bound of the effective thermal conductivity of a macroscopically 
homogeneous and isotropic porous material of any shape and microscopic arrangement 
of pores (see [9], concerned with effective magnetic premeability, which is, once again, 
a mathematically identical problem). 

The practical identification of ker according to Eq. (5.19) and k.r according to Eq. 
(6.1) is in favour of the presented model. 
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FIG. 3. Thermal waves. Wave number versus 

frequency. TJ3 = 0.1. 
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frequency. TJ3 = 0.5. 
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The multivalent dependence of I on w defined in Eq. (5.5) was calculated numerically 
for the porosities of 'YJ 3 = 0.1 and 0.5. Figures 3-4 show in solid lines the values of Re 1 
plotted against ro. Figure 3 shows all three branches, Fig. 4 the two lowest branches only. 
The dashed curves in Figs. 3-4 were calculated from Eqs. (5.15), (5.18) and (6.1) and 
correspond to the homogeneous (non-porous) material of effective thermal conductivity 
ker from Eq. (6.1). These effective curves correspond with the lowest branches calculated 
from Eq. (5.5) and are always higher than these lowest branches. The difference increases 
with the growing porosity 'YJ 3 for a constant w and with the growing w for a constant 'YJ3 • 

7. Conclusion 

The work presents a continuum model for heat conduction in porous materials. For 
the macroscopically unidimensional problem the temperature field is approximated by 
three scalar functions for which, on the basis of a variational principle, three differential 
equations of the second order were obtained. The influence of the microstructure is con-

Table 1. 

k.r in (6.1) . k.r in (5.19) 

0 1.0000 k 1.0086 k 

0.1 8.5714. tO-l k 8.5786 . 10-1 k 

0.2 7.2727. 10-1 k 7.2745. to-1 k 

0.3 6.0870 · to-1 k 6.0874 · to-• k 

0.4 S.OOOO·to-• k 5.0002 · to-• k 

0.5 4.0000 · to-• k 4.000t· 10-1 k 

0.6 3.0769. t0- 1 k 3.0769. to- 1 k 

0.7 2.2222 · to-• k 2.2222 · to-• k 

0.8 1.4286 · to-• k 1.4286 · to-• k 

0.9 6.8966 · to-2 k 6.8966 · to-2 k 

· t.o 0 0 

sidered in the model by making the coefficients of these equations depend on the pore 
size and porosity. In the classical approach, when the porous material is replaced with 
a homogeneous material of effective thermal conductivity, ~nly porosity is taken into 
account, while the influence of the pore size is not considered. 
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When applied to the propagation of plane harmonic thermal waves, the model with 
the effective thermal conductivity yields only one (effective) branch of the dependence 
of the complex wave number with the positive real part (wave attenuation) on frequency. 
The continuum model presented in this work yields three approximate branches of the 
dependence of the complex wave number on frequency. The effective branch corresponds 
to the lowest branch (i.e. the branch with the lowest real part of the wave number). 
The mutual distance between two corresponding branches grows with the growing fre­
quency and porosity. If the frequency approaches zero, both branches for a fixed porosity 
coincide. 

The present continuum model can be considered as a more accurate version of the 
classical homogeneous model with effective thermal conductivity. In the application to 
propagation of thermal harmonic waves, the classical model can be used for very low fre­
quencies only, while the present model is applicable to higher frequencies as well. 
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