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Crack problems in nouloeal elasticity 

C. ATK.INSON (PITI'SBUROH) 

THE RESULTS giyen in a recent paper [l] are extended to the cases of plane strain shear, tension 
and anti-plane shear. It is foun4 that non-existence results of a type proved in [1] also apply 
to these plane problems. Solutions are, however, constructed for nonlocal moduli which have 
a short range (delta function) component. These solutions exhibit square root singularities of 
the type found in the classical elastic crack problem, the coefficient of this singularity will depend 
in general on the particular noolocal law assumed. 

Wyniki uzyskane w poprzedniej pracy autora [l] uog6lniono oa przypadki plaskiego stanu 
odksztalceoia przy 8cioaniu, r~pniu oraz na antyplaski stao odksztalcenia. Stwierdzono, 
ie konkluzje dotyC7JlCe nieistnieoia rozwUtza{l podoboe do wniosk6w pracy [1] stosujQ, si~ r6w­
oiei; do rozpatrzonych tutaj zagadniefl dwuwymiarowych. RozwiQ,Zania skonstruowano jedoak 
dla modul6w oieJokalnych zawierajl&cych sldadnik blisko-zasi"owy typu funkcji delta. Roz­
wiQ,zaDia zawierajQ, osobliwo§cl pierwiastkowe tak samo jak klasyczne rozwiQ,zaDia d1a o8rodk6w 
spr~zystych ze szczelinami, a wsp61czynniki wyst~pUjQ,ce przy tych osobliwoSciach zalezQ, w og61-
nosci od postaci przyj~tego prawa nielokalnego. 

Pe3ymTaTbi, no.nyqeHHble B npe~eii pa6ore aBropa [1], o6o6meHbi Ha cnytlaH nnoCKoro 
~eci>opM~OHHOI'O COCTOHHWI DpH C,ABHI'e, paCTJDKeHHH, a T~e H8 aHTHIIJiocKOe ~$p­
MaiUIOHHoe COCTOHHHe. KoHcrampoBaao, 'ITO Bhmo~I, I<&CaiOIIUiecs: HecymecTBOBil!IWl 
pememdi, 8HBJIOnAHhl CJie~CTBHJIM pa6on.J [lJ H npHMeHmOTC.R TO>Ke K paCCM8TPHB8C.MhiM 
3~eCI> ~yMepKbiM ~attaM. Pememm· nocrpoellhl O.IUiaKO wm Henoi<aJn.HbiX Mo~neit~ co~ep­
>KaBI.IIQX 6JIH3KO~eikrByronzyiO cocral,mmomyro nina ~emTa-~~H. PemeHHH co~ep>KaT 
oco6eHHOCTH · nma paAHK8Jia, llB8JlOI'H1IBO K8K )(JIBCCJAeCKHe pemeiDUI AJI.R ynpyna cpe~ 
CO ~eJVIMII, 8 KO~HltHCHThl, B:WCTyi1810IIUie DpH 3THX OC06eHHOCT.SIX, B o6meM 38BHCRT 
OT B~a DpHWITOI'O HCJIOHB.JlltHOI'O 38J(OH8. 

1. Introduction 

IN A RECENT paper [1] we have discussed numerical calculations made by Eringen and eo­
workers [2 and 3] to evaluate the crack tip stresses in a nonlocal elastic medium. We 
showed (i) that an approximation scheme they suggested had a non-uniform character 
and (ii) that the problem formulated (a model problem) may in fact have no solution 
with finite displacements. The purpose of the present" paper is to investigate whether these 
characteristiCs are also present in the cases of anti-plane strain, plane strain tension and 
plane strain shear. Our results will show that the apprpximation scheme they suggest 
i.e. approximate the crack face displacements by the classical elastic displacement and 
then evaluate the stresses from this approximation, is non-uniform. We illustrate this non- . 
uniformity by solVing, with the use of matched · asymptotic expansions, the problem of 
a specified crack displacement. These results can be compared with those given in [1]. 

·Also, in reference [1] the non-existence of solutions to the model problem solved nu­
merically-in (2] was demonstrated. ·In Sect. 4 of this paper we give an elementary non-
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598 C. ATKINSON 

existence proof for the crack problem with finite displacements and a nonlocal modulus 
as defined in reference [3]. This proof applies to the cases of anti-plane strain, plane strain 
shear and plane-strain tension. The plane strain shear case had previously been treate4 
by the · approximation scheme described above. We discuss this in Sect. 3 and point out 
why we believe it is in error. 

If our results are to be believed, they suggest that the finite crack tip stress results 
obtained in references [2] and [3] and earlier papers are not ·correct. This is a pity since 
these papers do attempt a useful application of a nonlocal theory as a bridge between 
the lattice theory and a continuum theory. It should be noted that there is no inherent 
difficulty, of the non-existence kind discussed here, if situations such as stress fields around 
dislocations are considered. Some of these have been considered by Eringen, (e.g. reference 
[4] and earlier references). This problem can be represented in terms of a specified displace­
ment discontinuity and then the stresses computed from the nonlocal constitutive equa­
tions. No mixed boundary value problem is involved in such a calculation. 

Other workers on nonlocal theories of elasticity have also discussed integral constitutive 
equations such as those given in Eq. (2.2) of. the text (e.g. references [5], [6] and [7]). 
However, in [6] Kroner suggests that the nonlocal moduli should consist of a short range 
and a long range part. The short range part has a delta tunction dependence on position 
and thus gives rise to a term like the classical elastic situation plus a nonlocal term. We 
do not anticipate any difficulties concerning the existence of solutions in this case (although 
we have not yet attempted an existence proof) and in Sect. 5 we attempt to analyze the 
crak problem in such a case. We consider the' case where constants in the nonlocal moduli 
(e.g. the lattice parametr)-are small compared to the crack length. We ·make the assumption 
that when this small parameter (aft say, a -lattice . parameter, /-half-crack length) ' ·. . 
tends to z~ro, the problem has a singular perturbation character. Exploiting this, a so-
lution is obtained using a combination of the method of matched asymptotic expansions 
and the Wiener-Hopf technique. This solution which holds, in the limit afl-+ 0, for fairly 
general nonlocal moduli exhibits the usual square root stress singularity of classical elasti­
city. The coefficient of this stress-singularity (c.f. Eq. (5.16)) depends on the proportion of 
,short-range'' modulus in the constitutive relation. As this proportion tends to zero, the stress 
tends to zero (implying no stress singularity) but the corresponding displacement tends to in­
finity, the product of the two, however, remaining constant. This lends support to our non-ex­
istence result discussed earlier, i.e. that there is no solution to. the corresponding boundary 
value problem if the nonlocal moduli have only a long .range part and only finite displace~ 
ments are allowed. Multiplying . th~ crack tip ,stress and displacement fields does give 
the classical elastic result in the limit afl-+ 0 even though separately they differ from 
their classical elastic counterparts. This is reminisc~nt ~f the result (reference [8] ) for 
couple-stress elasticity. In [8] it is proved. that fora Jlledium with couple stresses the energy­
release rate does tend to the classipal elastic result. (as the couple stress length parameter 
tends to zero) even though the stress intensity factors do not tend to their classical elastic 
counterparts. 

To complete this introduction we. wo~ldJike: to admit that in [9l it was stated that it 
was not s~rprising a nonlocal theory: of elasticity .could :get rid of tb.e ·stress singularity 
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CRACK PROBLEMS IN NONLOCAL 'ELASTICITY 599 

at a crack tip. If non-existence results such as those described here, in Sect. 4, are correct, 
perhaps this statement should be changed to "it is surprising that a nonlocal theory cannot 
get rid of the stress singularity at a crack tip''. 

2. Basic equations of nonlocal elasticity 

The equations of linear, homogeneous, isotropic, nonlocal elasticity with vanishing 
body and inertia forces can be written as , 

(2.1) tlc,llc = 0, 

(2.2) tkl = J { .V(Ix -x1 Derr(X1
) ~"' +2,u1 (1x -x1 De~c1 (x1) }dV(x1

) 
y 

with 

(2.3) 

From Eq. (2.2) the stress t11(x) at a point x depends on the strains e~c 1 (x1) at all points 
of the body. The integral in Eq. (2.2) is over the volume V of the body enclosed within 
a surface av. 

ERINGEN and eo-workers [1, 3] consider two possible forms for the nonlocal elastic 
moduli .P and pt, i.e. 

with 

(2.4) cx(lx1 -xl) = a:0 (a -lx1 -xl), lx1 -xl ~ a= 0, lx1 -xl > a, 

where a is the lattice parameter, A., ,u are Lame constants and cx0 is a normalisation constant 
determined from 

(2.5) J cx(lx1 -xl)dV(x1
) = 1. 

y 

In [3] an alternative expression for oc(lx1 -xl) is used to simplify the subsequent analysis, 
this is 

(2.6) «(lx'-xD = «oexp{- (! r N -x,) <x: -x.>} 

(the summation convention applies to the index k), where pis a constant. Each of these· 
expressions is shown to reaso~ably approximate the dispersion curves of lattice dynamics 
(c.f. [2], [3] and the references therein). 

Equation (2.2) is rewritten as 

(2.7) 

where 

(2.8) 

t~cz = J cx(lx1 -xDa~c1(x1)dV(x1), 
y 
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600 CATIINSON 

with eiJ = 1/2 (u1,1+u1,,). Substituting for Eq. (2.7) in Eq. (2.1) and using Gauss's theorem 
gives 

(2.9) J «(lx1 -XI)O'A:z,t(x1)dV(x1)- J «(lx1 -xl)a11(x1)da1(x1) = 0, 
Y ay 

where oV is the boundary surface o.f V. 
For plane strain conditions and a crack on lx11 ~ 1, x2 = 0, Eq. (2.9) becotres 

l 

{2.10) J «(lx1 -xl)a"'·"(x~, x1)dx~dx1- J «(lxl-x1 1) {a21(xl, O)}dx~ = 0, 
R -1 

where the integral with a slash over the two-dimensional infinite space excluding the crack 
line (lx11 ~ 1, x2 = 0) {a2,(xL 0)} indicates the jump in 0'21 at the crack line. The con­
tribution from the boundary surface oV at infinity is zero if the displacement fields are 
assumed to tend to zero there. Such a situation is considered in [2] and [3] where tractions 
are applied to the crack surface. Superposition is used to go from these cases to that of 
a stress free crack with stresses applied at infinity. 

Furthermore, arguments are given in [2] and [3] to show that the solution of Eq. (2.10) 
is equivalent to the solution of the equations 

(2.11) with 

·z:- aa2J o 
-1~0'1}+-d = ' x2 

j = 1, 2 

where the bar denotes the Fourier transform over x1 , i.e. 

00 

(2.12) a(E, x2) = f e1e"1a(x1 , x2)dx1 • 

-eo 

The boundary conditions become: 
(i) for a crack with a shear t0 applied to the crack surface, 

0'22(x1 , 0) = 0 for all xu 

t21(Xu 0) = -to(Xt)lxtl < l, 
U 1(X1 , 0) = 0, lx1 1 > l, 

(2.13) 

·(ii) for a crack with a pressure t0 applied on the crack surface, 

O't2(xt, 0) = 0 for all x1 , 

t22(x1, 0) = -to(xt), lxtl < l, 
u2(x1, 0) = 0 lx11 ~ l, 

(2.14) 

(u U ) __.. 0 as r __.. oo r2 :-- (x2
1 +x2

2) 1, 2 ---, . . ---, ' (c.f. [2]). 

As a third and slightly simpler example consider the anti-plane strain (mode 3 problem 
in which the only non-zero stresses are t13 and t23 and the only non-zero displacemen 
component is u3 in the third direction. 
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In this case the boundary conditions are: 

(2.I5) 
h3(X1, 0) = -to(xl), 

and 

u 3 -+ 0 as r -+ oo . 

The Fourier transform of the equilibrium equation in terms of displacements is then 

(2.16) 

In [2] and [3] approximate solutions are given of problems (i) and (ii) with t0 constant. 
The approximation consists of replacing the unknown crack face displacernents by the 
classical elastic displacement (i.e. that displacement obtained for the same problem but 
in an elastic medium) and then calculating the resultant stress field from Eq. (2.7). Nu­
merical evidence is given in [2] and [3] to suggest that this approximation agrees more 
and more closely with the original boundary conditions (2.14) or (2.13) as afl tends to 
zero (a is the lattice parameter). However, we shall show in the next section that this agree­
ment is illusory and hence that the conclusions drawn in [2] and (3] may be misleadhig. 

3. The finite crack problem (specified displacements) 

If ~(lxl) in Eq. (2.7) is replaced by b(ixl), then the problem specified by the boundary 
conditions (2.13) with t 0 (x) = t0 (a constant) gives for the jump in displacement across 
the crack: 

(3.I) 

The subscripts i = I, 2, and 3 apply to the problems (i), (ii) and (iii), respectively. A-i is 
a constant: 

(3~2) 

In this section we consider the problems (i), (ii) and (iii) but with the boundary condition 
on t2 ;(x1 , 0) lx11 ~ 1 replaced by 

(3.3) u1(x1 , 0) = A;(f2 -xi)1'2
• lx1l ~ l 

the subscript i = I, 2 or 3 applying to boundary conditions (2.13), (2.14) and {2.15), 
respectively. . 

In [I] we have considered different expressions for oc(lxl) in the analysis of a model 
problem. For the sake of brevity, details are given here only for the modulus defined in 
Eq. (2.6). Further, note that for reasonable crack lengths the ratio a/{31 should be much 
less than unity (cf. [I] and [3]). 

Hence we define 
(3.4) e = af{Jl ~ 1 

11 Arch. Mech. Stos. 4/80 
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and to investigate behavior near the crack tip · x1 = I define new coordinates (X1 , X2) by 

(3.5) 

where 

~}1 = 1, j = 1' 

= 0, j #=-I. 

New displacement and stress fields are defined by 

(3.6) u, = (8l)112U1, t,J = (8l)- 112TIJ. 

In these new coordinates it is straightforward to see that Eq. (2.7) becomes 

(3.7) 

with 

(3.8) 

and 

(3.9) 

for the function defined in Eq. (2.6). 
The displacement boundary conditions become 

U,(Xt, 0) = 0, X1 > 0, 
(3.10) 

-2 
Xt<-, 

8 

-2 
-<X1 <0, 

8 

whe~e i ~ 1 (denotes plane strain shear), i = 2 (plane strain tension) and i = 3 (anti­
plane strain). In addition to Eq. (3.10), we have the boundary conditions 

(3.11) 

(from Eq. (2.13)) for the problem (i) (plane strain shear) and 

(3.12) C21 (X, 0) = 0 for all X1 

(from Eq. (2.14)) for the problem (ii) (plane strain tension). 
Transforming the field equations (2.11) back into (x1 , x2) space and changing to the 

new coordinates (X1 , X2) leads to 

(3.13) 

where C., is defined in Eq. (3.8). It is thus straightforward to solve Eq. (3.13) in terms 

of displacement&, this is done in Appendix I to give 
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Problem (l) 

(3.14) 

Problem (ii) 

(3.15) 

Problem (iti) 

(3.16) 

(the over-bars denote the Fourier transform with respect to X1) where 

eo eo 

(3.17) F1 (E) = f (1-IEIXDe-!llx:dx~ f 2«(IX0 I, IX~I)e-•u·odX0 , 
0 -oo 

eo eo 

(3.18) F2(E) = f (1 +IEIX})e-lllx: f 2cx(IX0 I, IX~I)e-•exodX0 
0 -CIO 

and 
eo CIO 

(3.19) F3(E) = j exp( -IEIX~I)dX! j 2cx(fX0 J, IX!I)e-•ezodX0 • 

0 -CIO 

Letting£-+ 0 in the boundary conditions (3JO) and taking a Fourier transform over 
xl give 

(3.20) 

Substituing for this e:xpresion into Eqa. (3.14), (3.15) or (3.16) gives in each case relations 
of the form 

(3.21) 

where 

B = 1112
( ; )"\ •• 

Applying the Fourier inversion theorem to Eq_. (3.21) one can write 

(3.22) T..,(X,, 0) = ~ j dX~ . j «(JX0 J, IX~J)tlX0G1(X},Xo), 
where 

0 -eo 

eo 

GJ(X, X0) = f (l-SJEXl)E- 1'·2e~f.rl{cosE(X0+X1)+sinE(X0 +Xt) }dE 
0 
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and 

sl = 1, s1 = -1, s3 = o. 
To obtain Eq. (3.22) we have evaluated the complex inversion path along the real E axis 
(ImE = 0) and interchanged the orders of integration. These formal steps in the analysis 
can presumably be justified if the resulting integrals in Eq. (3.22) converge. Such is th~ 
case for the ex;1mples discussed in references [1], [2] and [3]. For these cases it can be easily 
seen from Eq. (3.22) that T2 j(X1 , 0) is a continuous function of X1 and is finite as X1 

tends to zero. Thus t2l0, 0) tends·to in'finity like (el)- 112 as e tends to zero for x1 tending 
to zero through positive or negative values of x 1 • Hence the stress concentration predicted 
in references [2] and [3] is present also in the boundary values of t2i and thus is probably 
a function of the (non-uniform) approximation rather than of the original problem itself. 
The reader is referred to reference [llfor more illuminating examples in the simpler model 
problem considered. there. 

4. Non-existence results 

Having established in the last section the non-uniformity of the app~;oximation scheme 
used in references [2] and [3], we discuss .here characteristics of the original problems 
specified by boundary conditions in the problems (i), (ii) and (iii) of Sect. 2. To do this 
we rephrase the problem as an integral equation. 

For the problem (i) we use as a G~n's f\inction the field of an edge .dislocation with 
its Burgers vector in the x 1 djrection. Superposing the fields of a continuous distribution 
of. such dislocations lying on x2 =. ·0, 1x11 < .!lead£ to the result 

(4.1) 

with the jump in-displacement across the line x1 = 0 given as 

I 

(4.2) Aut = J ft(TI,)d'tf 
Xt 

and 
I 

f f(TJ)dTJ = 0 . 
..-I 

Using Eq. (2.7) one can then write 

(4.3) tn(Xu x2) = J a(lx11)0'zt.(x1 +xL x1 +x1)dV(x1
), 

y 

where u21 is given in Eq. (4.1). It is fairly straightforward to check that the Fourier trans­
form of Eq. (4.3) using Eqs. (4.1) and (4.2) leads to an equation identical in form to Eq. 
(3.14). The stress and displacement fields (4.1) and (4.2) satisfy all the boundary conditions 
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in Eq. (2.13) ex~pt the one involving t21 (x1 , 0). In addition the stress field of a dislocation 
satisfies the equilibrium euqations aiJ,J = 0 (see [10] for example). 

Changing the order of integration in Eq. (4.3) gives on x 2 = 0 the expression 

(4.4) 

where 

(4.5) 

Thus the boundary condition 121 (x1 , 0) = -10 , lx1 1 ~ i together with Eq. (4.4) leads 
to an integral equation for the unknown dislocation density / 1 (rJ). 

S.imilarly, for the prbblem (ii) we use a continuous distribution of edge dislocations 
on x2 = 0, lx1 1 < 1 with the Burgers vector in the x2 direction. This gives a21 (x1, , 0) = 0 
and 

(4.6) 

and 
I 

u2(xt, 0±) ~ ± J f2(1J) d1J 
X1 

with 
i 

f f2(1J)d1J = 0. 
-I 

This leads to the expression 

(4.7) 

with 

Thus, together with the boundary condition t22 (x1 ,0) = -t0 , lx1 1 < 1 Eq. (4.7) gives 
an integral equation for the unknown density /2(1}) for the problem (ii). 

Finally, for the problem (iii) using the field of a screw dislocation leads to the expression 

(4.9) 

I 

.t23(x, 0) = ;: f f3(1J)d'Y}K3(xt -f}), 
-I 
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where 
00 00 

(4.10) K () _ 2J d 1 J <tlxfl, lxll) (xf+t)dxf 
3 t - X1 (xl + t)l+x12 · 

0 -oo 1 2 

Taking Fourier transforms of Eqs. (4.7) and (4.10) and noting the expression for the 
displacement given by Eq. (4.6) leadS to equations identical in form with Eqs. (3.15) 
and (3.16). 

From the above we see that each of our problems has been reduced to an integral 
equation of the first kind for the unknown dislocation density./(1J). Moreover, for finite 
displacement& u, f('YJ) is integrable. Whether · or not the above integral equations will have 
solutions depends therefore on the kernels K1(t-1J) (i = 1, 2, 3). Clearly, if (X(Ix~l, lx~l) = 

= 6(1xfl)6(1x~l), then K3 (t) =_!_and Eq. (4.7) leads to a Cauchy integral equation which 
t 

gives the classical elastic solution. However, for other expressions it is not clear whether 
the above integral equations will have solutions. Suppose, for example, 

Integral equation with this kernel occur in [1] wher~ arguments are given to show that 

the problem when tz(lxll) = a~"' exp {- ( ~ r xl'}· a "' 0 has I'll) solution with integrable 

/{'TJ) for the case when the applied stress is constant. If no solution exists for this problem, 

we expect I'll) solution for the caseot(lxl) = «oex4- ( ~ r X • x} by comparison. We 

attempt to prove this below. 
The case 

(4.11) «(lxl) = <Xoexp{ -Pf(xf+xi)}, 
p Pt =-. a 

We need to investigate the properties of the kernels, K1 , K1 and K3. To do this sub­
stitute for Eq. (4.11) and change the xf integration to a new integration variable u = xi+ t. 
The result is 

with similar results for K2(t) and K3{t). The .inner integral in Eq. (4.12) is convergent 
for all values of t. The only possible neighborhood in which the integral might not con­
verge is in the vicinity of x~ = 0, u = 0, and . that it is in fact convergent there can be 
easily checked. Similar remarks apply also to K2 and K3 • 

Hence, if / 1 (1J) is integrable in ( -1, 1), (i.e. finite displacement& of the crack faces), 
.then the right hand side of Eq. (4.4) is an analytic function of x 1 for all real x1 • If we replace 
X1 by z = x1 +iy (y real), then the right hand side of Eq. (4.4) is an analytic function of 
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z (the analytic continuation of Eq. (4.4) on -I< x 1 < /). Moreover, from Eq. (4.12) 
·with t = Z-TJ we see that K(t) has growth properties like exp (p~y2) as y-+ ± oo. However, 
the boundary condition t21 (x1 , 0) = -t0 , lx1 l ~ I says that the left hand side of Eq. (4.4) 
is a constant for lx1 1 ~I and the analytic continuation of this into the complex z plane. is 
simply - t0 (i.e. constant everywhere). This contradicts the equality sign of Eq. (4.4) 
and hence no solution with integrable / 1 (YJ) exists for the boundary condition t21 (x1 , 0) = 
= - t0 (constant), lxtl ~ I. 

Of course, solutions for special loadings may still exist. For example, the solution 

/ 1 (1J) = d(1J) is consistent with the loading t21 (x1 , 0) = :Ci;.: ~) K1 (x1), lxl ~ I. Note, 

however, that this loading has precisely those growth characteristics in the complex z plane 
that our argument above says are necessary. 

Similar conclusions apply also to the plane strain tension and anti-plane strain cases. 

5. The finite crack problem in a solid whose nonlocal moduli consist of both short-range 
and long-range behavior 

KRoNER [5, 6] has suggested that the nonlocal moduli should have both a short range 
and a long range part. We adopt such a constitutive relation here and investigate its con­
sequences. Only an outline of the analysis will be given. It should apply to any nonlocal 
law of the general form given below. Further work is necessary to justify any particular 
law, by reference to lattice theory, for example, before calculating the numerical coefficients. 
The nonlocal moduli (A.l, p 1) are now written as 

(5.1) 

where b is a constant (b < 1). The expression cx1 (lxl) is normalized as in Eq. (2.5) and may 
be defined, for example, by the definitions (2.4) or (2.6). 

We consider the finite crack problem specified by the boundary conditions (2.13), 
(2.14) and (2.15) for the problems (i), (ii) and (iii), respectively. Also, we assume that 
the crack length to the lattice parameter ratio is such that e = af {JI ~ 1 as in Sect. 3. 
Strictly speaking, this applies to cx1 as defined in Eq. (2.6). For the definition (2.4) replace 
{J by unity in what follows. 

If the limit a-+ 0 is taken in Eqs. (2.4) or (2.6), then cx1 (lxl) -+ d(lxl) and in Eq. (5.1) 

(5.2) 

The problems (i), (ii) and (iii), with the moduli (5.2), become the classical elastic crack 
problems. The solution to these problems is well known, in particular the behavior near 
the crack tip x2 = 0, x 1 = I is . 

(5.3) 
( 

K ) ( g )
1

/

2 

L1U, = (1-xt)t/2 M: n ' 
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(when t0 is oonstant in Eqs. (2.13), (2.14) or (2.15), then K1 = (nl)1
'
2 t0), M 1 = M 2 = 

= JJ/(1-v), M3 = p with v = J..f2(J..+ p) and as before the index 1, 2 or 3 refers to the 
problems (i), (ii) or (iii). 

Clearly, if a :1: 0, then the solution (5.3) will probably not be a correct solution to the 
non local problem since, in this case, to give the stress field the ,strain" field is integrated 
over the whole body. Nevertheless, we might expect that the classical elastic solution. is 
valid throughout the body if a is small enough, except perhaps near the crack tips where 
the full nonlocal character of the medium should be important. To investigate the field in 
this region we define inner coordinates (X1 , X2) as in Section 3, i.e. 

(5.4) 

with e = a/{31. 
We assume that the ,outer solution" obtained by letting e-+ 0 in the original problem 

is valid at distances ~ ~ e from each tip. The influence of these features is then transmitted 
to the ,inner" solution through matching conditions near each tip where e ~ ~ < 1. Since 
both inner and outer approximatio11:s are valid in these regions, they must be asymptotically 
equivalent there. 

The inner problem 

Making the change of variables outlined in Eq. (3.5) and (3.6), the inner problem has 
boundary ·conditions derived from Eqs. (2.13), (2.14) or (2.15) as 

c,2(X1 , O) = o v X1, 

(5.5) 
-2 --< X1 < o, 
e 

U1(X1 , 0) = 0 
-2 

- oo < X1 < --, o < X1 < oo. 
e 

The subscript i in these equations takes the value 1, 2 or 3 for the problems (i) (ii) or (iii), 
respectively, with the exception of the first equation which is not relevant when i = 3. 

If we now let e -+ 0, the last two of the above equations become 

T2,(X1, 0) = 0, . -oo < X1 < 0, 

= T+(Xt, 0), 0 < X1 < oo, 

(5.6) U,(Xt, 0) = 0, 0 < X1 < oo, 

= U_(Xt, 0), -oo < X1 < 0, 

where the functions T+(X1 , 0), U_(X1 , 0) are unknown and the index i has been dropped 
for convenienc(. Taking the Fourier transform over X1 as in Sect. 3 then leads to equations 
similar in form to those given in Eqs. (3.14), (3.15) and (3.16). Hence we get 

(5.7 

where F, is given in Eqs. (3.17), (3.18) or (3.19), the index i = 1, 2, 3 again referring 
to the problems (i), (ii) and (iii). M1 is a constant depending on J.. and p, compare Eqs. 
(3.14), (3.15) and (3.16) and Eq. (5.3). 
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To specify the ,inner problem" further we need conditions at infinity. These are obtained· 
by matching the inner and outer solutions. Rewriting the outer solution in inner coordi­
nates and taking the appropriate limit gives from Eq. (5.3) the conditions 

( 
2 )1/2 K 

U,(X1 , 0) "' - --1 
( -X1 )

1
'

2 as X1 -+ - oo 
n M 1 

(5.8) and 

T (X 0) Ki x-1!2 X 
21 1, "' (2n)112 1 as 1 -+ oo. 

The transformed variables should thus have the behavior 

T ,.._ __&_ e"if4t-tf2 
+ 21/2 ~+ as 

(5.9) and 

as ~-+ 0. 

It remains to solve the functional equation (5.7) subject to the matching conditions (5.9). 
To do this note that Eq. (5.7) is defined on the real line Im~ = 0, the transforms T+ and 
fl_ being (unknown) analytic functions for Im~ > 0 and Im~ < 0, respectively. The 
function 1~1 is defined in the complex~ plane so as to have a positive real part; it is factorized 
into the product of a plus and minus function as 1~1 = ~!}2 ~~_!2. The expressions ~!}2 , 

and ~ :!2 have cuts from iO- to - ioo and from iO + to + ioo, respectively. The next step 
in the standard approach to functional equations such as Eq. (5.7) is to factorize F(~) 
into the product of plus and minus functions each of which is regular and non-zero in 
its respective half plane. If we assume that such a factorization, F = F+ F_, has been 
accomplished, then Eq. (5.7) can be rearranged as 

(5.10) J = T+(~, 0) - -M E1f2 (T:)U- (E 0) ~!f2F+(~) - ~~- F_ ~ - ~, . 

Recall now the expressions (3.17), (3.18) or (3.19) for F(~). For the nonlocal moduli 
considered in this section (Eq. (5.1)) these expressions apply with oc(IXI) replaced by 
b~(IXI)+ (1-b)oc1(1XI). The function oc1(1XI) as described above can be derived from 
Eqs. (2.4) or (2.6) for example. Consider the situation when oc1 (lXI) is defined as in Eq. 
(3.9), i.e. 

(5.11) «1(IXI) = !__exp( -X[-Xi). 
n 

Then, with oc(IXI) as defined above, Eqs. (3.17), (3.18) and (3.19) give 

(5.12) 
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and 

( IEI) F 3 (E) = b+(1-b)Erfc T , 

where 

00 

Erfc(z) = n712 J exp( -t2)dt. 
z 

For all real~ each of F1 , F2 and F3 have one sign and tend to b a 1~1 .-. oo on the real 
line. The factorization F = F+F- can then be done in a standard way by taking logs and 
using Cauchy's theorem giving 

(5.13) 

with lm~ > 0 for F+ and lm~ < 0 for F_, thus the integral is indented below the real 
axis for F+(~) and above the real axis for F_.(~) (~real). From Eq. (5.13) it is follows 
that ~F(~)--. b112 as 1~1 --. oo in their respective half-planes of regularity, and also that 
F+(O) = F_(O) = I. This last result can be seen by evaluating the integral in Eq. (5.13) 
for F + (0) and F_ (0) by Integrating along the real axis and noting that F(s) is an even func­
tion of s; the contribution from s = 0 leads to the result. 

The function J defined jointly by both sides of Eq. ( 5.1 0) is analytic in the whole complex 
plane, except possibly at~= 0. Now, if U(X1 , 0) is to be bounded as X1 --. 0, then each 
side of Eq. (5.10) will tend to 'Zero for large 1~1, also the requirements (5.9) at ~ = 0 
imply the existence of a simple pole at this point. Liouville's theorem then leads to the 
result 

(5.14) 

From Eq. (5.10) the behavior of the stress and displacement at the crack tip can now be 
deduced as 

(5.15) 

Tu(Xt' 0) "' btt2 (2!)1/2 X11J2 as 

Note again that the subscript i in Eq. (5.15) takes the values 1, 2 and 3 and refers to the 
problems (i), (ii) and (iii), respectively. In the original variables Eqs. (5.15) become, for 
the crack tip x 1 = I, 

(5.16) 
u1{x1 , 0) ~ (1-x,Yi>b-•t> ( :;, ) (! )"'. 

t21(x1 , 0) "' b112K1(2n)- 112(x1 -l)- 112 , 0 < lx1 -ll ~ l. 
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In other words, the solution for the crack tip stress and displacement field becomes, 
in the limit e = af PI -+ 0, the classical crack tip elastic displacement field multiplied by 
b- 112 and the classical crack tip stress field multiplied by b112• 

Although Eq. (5.16) has been derived for the particular case where a 1 (lXI) is defined 
as in Eq. (5.11), it seems to be much more generally true. In fact this will be true for any 
a1 (lxl) transforming to a function a1 (lXI), in the scaled variables, which leads to an F1(~) 
with the properties that (i) F1(~) > 0 for all real ~; (ii) F1( oo) = b, F1(0) = 1; (iii) F1(~) = 

= F1(- ~). Property {i) is obviously true for F2 and F3 (compare Eqs. (3.18) and (3.19)). 
Property (ii) will hold provided the contribution from a1 to F1(~) is a function which tends 
to zero as 1~1 -+ oo. This is not true if a1 = t5(1XI) but seems to be so for functions which 
tend to zero more Slowly than this. Properties (ii)2 and (iii) hold for all a( lXI). From prop­
erty (iii) it follows that if F(~) = F+(~)F~(~), then F+( -~)is equal to F_(~) apart from 

lim 

a multiplicative constant. If we choose this constant to be unity, then 1~1-+ ooF±(~) = 
= b112 and F+(O) = F_(O) = 1, the limits being taken in the respective half-planes of 
regularity. The result (5.16) then follows without the ne~d for the specific factorization 
(5.13), although this would be required, of course, to find other information besides the 
singular cracJc tip stresses. It is worth noting that the product of the crack tip stress and 
displacement given in Eq. (5.16) reproduces the classical elastic result; this implies the 
continuity of the energy release rate as e -+ 0 (compare ref. [8] for a proof of a correspond­
ing result in couple-stress and micropolar elasticity). 

Appendix 1 

(I) Plane-strain shear 

In this case the Fourier transform of Eq. (3.13) with respect of X1 gives the equation 

(A .I) 
. - dC21 

-I~Cu + dX 
2 

= 0, l = 1 , 2. 

Now, substituting for the X1' Fourier transform of Eq. (3.8) gives 

.(A.2) 
!-'ut.22-(.i.+2ft)~2 Ut -i~(.i.+ft)U2.2 = 0, 

-i~(.i.+!-')Ut.2+(.i.+2ft)U2.22-E2ftU2 = o, 
and we remind the reader that the definition (2.12) of the Fourier transform is being used 

CX) 

(i.e. U(~, X2) = J U(X1 ; X2)e1ex,dX1 • Also, in Eq. (A.2) a comma denotes differentia-
-eo 

tion. 

The solution of these equations in X2 > 0, with U1 and U2 both tending to zero as 
x2 -+ + 00 can be written 

(A.3) ff, = - ! {l~W~)+ (l~IXz- ;.;.:
3
:) B(~)}exp( -J~IX2), 

U2 = i {A(~)+X2B(~)}exp( -~IX2), 
where A and Bare arbitrary functions of~. 
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Hence, to satisfy the boundary condition C22 (X1, 0) = 0 for all X1, the condition 

(5.4) 

is required. 

B(E) = (A+ p,) IEIA(E) , 
For the shear problem the following symmetry relations hold: 

Ut(Xt, -X2) = -Ut(Xt,X2), 

Uz(Xt, -Xz) = U2(XbX2). 

Using these in Eq. (3. 7) gives 
CO CO 

(A.6) T12(Xt,Xz) = j dX~ j C12(Xo+Xt,X}}{ct(IXoi,IX~-X2 1) 
0 -eo 

+ct(IXol, IX~+Xzl)}dXo, 

where the change of variable X0 = X}-X1 has been made in the inner integral. Now, 
taking the Fourier transform with respect to X1 leads to the relation 

CO 

(A.7) l;iE,Xz) = f (\z(E,X})G(XLXz)dXL 
0 

where 
CO 

G(XLXz) = f e-iexo{cx(IXoi,IX~-Xzl)+cx(IXoi,IX~+Xzl)}dXo. 
-eo 

Finally, the Fourier transform of Eq. (3.8) gives 

( aut . - ) 
C12(E,Xz) = p, oXz -1EUz 

and using Eqs. (A.3) and (A.4), then substituting in Eq. (A.6) leads to the relation 

(A.7)t 1tz(E, 0) = 2(A+ p,)EA(e)Ft (E), 

where 
CO CO 

(A.8) Ft(E) = j (-l+IEIXDe-J!JX}dX~ f 2ct(IX0 I,IX~I)e- 1exodX0 • 
0 -eo 

Since 

(A.9) 

from Eqs. (A.3) and (A.4), Eq. (3.14) of the main text follows from Eq. (A.7). 

(H) Plane strain temJioa 

For this case there are such symmetry relations: 

(A.IO) 
Ut(Xt, -X2) = Ut(Xt,Xz), 
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and the boundary condition u12 (X1 , 0) = 0 for all X1 is satisfied by the relation 

(A.ll) B(~) = (l+ ,u)I~IA(~)/(l+2,u). 

Operations similar to those above give 
00 

(A.l2) T22(~,X2) = J ~z(~,XDG(X},Xz)dXl, 
0 

where G(Xl, X2) is as defined in Eq. (A.7). Finally, substituting for C22 (~, Xj) derived 
from Eq. (3.8) leads to the expression 

(A.l3} 

where 
00 00 

(A.l4) F2(~) = J (I+ I~IXDe-ii~IX~sdXl J 2a(IX0 I,IXll)e-iEXodX0 • 

0 -00 

Since 

U2(~,0) = iA(~), 

Eq. (3.15) of the main text follows from Eq. (A.l3). 

(iii) Anti-plane strain shear 

In this case the symmetry of the problem gives 

(A.l5) U3(X1 , -X2 ) = -UJ(Xt, Xz) 

and steps similar to those above lead to 
00 

T23(~,X2) = J ~3(~,Xl}G(X},X2)dX~ 
0 

(G(X1, X2) is defined in Eq. (A.7)) and 

UJ(~,X2) = Bt(~)exp( -I~IX2), x2 > 0. 

This leads to the relation 

(A.l6) 

where 
00 00 

F3(~) = f exp( -I~IXDdXl f 2a(IX0 !, IX}I)e-iEXodX0 
0 -oo 

and hence to Eq. (3.16) of the text. 
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