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Crack problems in nonlocal elasticity

C. ATKINSON (PITTSBURGH)

THE RESULTS given in a recent paper [1] are extended to the cases of plane strain shear, tension
and anti-plane shear. It is found that non-existence results of a type proved in [1] also apply
to these plane problems. Solutions are, however, constructed for nonlocal moduli which have
a short range (delta function) component. These solutions exhibit square root singularities of
the type found in the classical elastic crack problem, the coefficient of this singularity will depend
in general on the particular nonlocal law assumed.

Wyniki uzyskane w poprzedniej pracy autora [1] uogblniono na przypadki plaskiego stanu

ia przy Scinaniu, rozcigganiu oraz na antyplaski stan odksztalcenia. Stwierdzono,
ie konkluzp dotyczace nieistnienia rozwigzan podobne do wnioskéw pracy [1] stosuja si¢ row-
niez do rozpatrzonych tutaj zagadniei dwuwymiarowych. Rozwiazania skonstruowano jednak
dla modutéw nielokalnych zawierajgcych skladnik blisko-zasiggowy typu funkcji deita. Roz-
wigzania zawieraja osobliwoéci pierwiastkowe tak samo jak klasyczne rozwigzania dla oSrodkow

sprezystych ze szczelinami, a wspdlczynniki wystepujace przy tych osobliwosciach zalezg w ogdl-
no$ci od postaci przyjetego prawa nielokalnego.

Pesynerarthi, nosydennnle B mpeasiayinet paGore aBropa [1], 06o6imens! Ha crydau MAOGCKOro
JiehOPMAIMOHHOTO COCTOAHMA NPH CABHTE, PACTHMEHHM, 3 TAIOKe Ha AHTHIUIOCKOe Hetop-
MAlHOHHOE COCTOfiHHe. KOHCTATHPOBaHO, YTO BHIBOJBI, KACAIIIMECH HECYIECTBOBAHMA
pelleHi, aHANOFHYHL! ClIeACTERAM paborsl [1] ¥ mpUMEHSIOTCA TOX<e K PacCMAaTPHBaeMbIM
37eCh ABYMEPHBIM 3afauam. Pememan mocTpoenkl OHAKO JJIA HENOKATMBEHBIX MOXYNeH, comep-
HABIIMX O/M3KofelicTBYIONIYIO COCTAB IAIONIYIO THna Aenbsra-dymramu. Pememns comepixar
0cODEHHOCTH THIIA PAAHKANA, AHAJNIHYEO KAK MNIACCHYUCCKHME PelleHMs IS YOPYTAX cpel

cO IenAMH, 8 KoaddHimenTr, BRICTyNAIOMMEe IPHA 3THX OCOBERHOCTAX, B O0lmeM 3aBMCAT
0T BH/A NPHHATOIO HEJMOHANLHONO 3aKOHA.

1. Introduction

IN A RECENT paper [1] we have discussed numerical calculations made by Eringen and co-
workers [2 and 3] to evaluate the crack tip stresses in a nonlocal elastic medium. We
showed (i) that an approximation scheme they suggested had a non-uniform character
and (i) that the problem formulated (a model problem) may in fact have no solution
with finite displacements. The purpose of the present paper is to investigate whether these
characteristics are also present in the cases of anti-plane strain, plane strain tension and
plane strain shear. Our results will show that the approximation scheme they suggest
i.e. approximate the crack face displacements by the classical elastic displacement and
then evaluate the stresses from this approximation, is non-uniform. We illustrate this non-
uniformity by solving, with the use of matched asymptotic expansions, the problem of
a specified crack displacement. These results can be compared with those given in [1].
Also, in reference [1] the non-existence of solutions to the model problem solved nu-
merically-in [2] was demonstrated. In Sect. 4 of this paper we give an elementary non-
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existence proof for the crack problem with finite displacements and a nonlocal modulus
as defined in reference [3). This proof applies to the cases of anti-plane strain, plane strain
shear and plane-strain tension. The plane strain shear case had previously been treated
by the approximation scheme described above. We discuss this in Sect. 3 and point out
why we believe it is in error.

If our results are to be believed, they suggest that the finite crack tip stress results
obtained in references [2] and [3] and earlier papers are not correct. This is a pity since
these papers do attempt a useful application of a nonlocal theory as a bridge between
the lattice theory and a continuum theory. It should be noted that there is no inherent
difficulty, of the non-existence kind discussed here, if situations such as stress fields around
dislocations are considered. Some of these have been considered by Eringen, (e.g. reference
[4] and earlier references). This problem can be represented in terms of a specified displace-
ment discontinuity and then the stresses computed from the nonlocal constitutive equa-
tions. No mixed boundary value problem is involved in such a calculation.

Other workers on nonlocal theories of elasticity have also discussed integral constitutive
equations such as those given in Eq. (2.2) of the text (e.g. references [5], [6] and [7]).
However, in [6] Kroner suggests that the nonlocal moduli should consist of a short range
and a long range part. The short range part has a delta tunction dependence on position
and thus gives rise to a term like the classical elastic situation plus a nonlocal term. We
do not anticipate any difficulties concerning the existence of solutions in this case (although
we have not yet attempted an existence proof) and in Sect. 5 we attempt to analyze the
crak problem in such a case. We consider the case where constants in the nonlocal moduli
(e.g. the lattice parametr)-are small compared to the crack length. We make the assumption
that when this small parameter (a/l say, a — lattice parameter, /— half-crack length)
tends to zero, the problem has a singular perturbation character. Exploiting this, a so-
lution is obtained using a combination of the method of matched asymptotic expansions
and the Wiener-Hopf technique. This solution which holds, in the limit a/l — 0, for fairly
general nonlocal moduli exhibits the usual square root stress singularity of classical elasti-
city. The coefficient of this stress-singularity (c.f. Eq. (5.16) ) depends on the proportion of
,,short-range’” modulus in the constitutive relation. As this proportion tends to zero, the stress
tends to zero (implying no stress singularity) but the corresponding displacement tends to in-
finity, the product of the two, however, remaining constant. This lends support to our non-ex-
istence result discussed earlier, i.e. that there is no solution to the corresponding boundary
value problem if the nonlocal moduli have only a long range part and only finite displace-
ments are allowed. Multiplying the crack tip stress and displacement fields does give
the classical elastic result in the limit @/l — 0 even though separately they differ from
their classical elastic counterparts. This is reminiscent of the result (reference [8] ) for
couple-stress elasticity. In [8] it is proved that for a medium with couple stresses the energy-
release rate does tend to the classical elastic result (as the couple stress length parameter

tends to zero) even though the stress intensity factors do not tend to their classical elastic
counterparts.

To complete this introduction we would,like to admit that in [9] it was stated that it
was not surprising a nonlocal theory of elasticity could ‘get rid of the stress singularity
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at a crack tip. If non-existence results such as those described here, in Sect. 4, are correct,
perhaps this statement should be changed to “it is surprising that a nonlocal theory cannot
getrid of the stress singularity at a crack tip”.

2. Basic equations of nonlocal elasticity

The equations of linear, homogeneous, isotropic, nonlocal elasticity with vanishing
body and inertia forces can be written as.

@2.1) tu =0,

(2.2) e = [ {2 (1x—X") e (1) Bua + 20" (IX — X" ey (x') }aV (1)
with ’

(2.3) ey = -;— (g, 1 Fup,0)-

From Eq. (2.2) the stress #,;(x) at a point x depends on the strains e, (x') at all points

of the body. The integral in Eq. (2.2) is over the volume ¥ of the body enclosed within
a surface V.

ERINGEN and co-workers [1, 3] consider two possible forms for the nonlocal elastic
moduli A* and 4!, i.e.
@4 p) = (4, wa(lx* —x])
with
2.4 a(|x! —x|) = ap(a—|x'—x|), [x! -x| < a=0, [x'-Xx|>a,

where ais the lattice parameter, 4, u are Lamé constants and &, is a normalisation constant
determined from

(2.5) [ a(lxt —xpavx) = 1.
| 4

In [3] an alternative expression for «(|x*—x|) is used to simplify the subsequent analysis,
this is

ﬁ 2
(2.6) a(]x! —x|) = aoexp{— (7) (xk =) (xi —xa)}
(the summation convention applies to the index k), where B is a constant. Each of these'
expressions is shown to reasonably approximate the dispersion curves of lattice dynamics

(c.f. [2], [3] and the references therein).
Equation (2.2) is rewritten as

@7 tu = [ a(ix! —x]) o (x")dV (x"),
| 4

where

(2.8) ou(x') = Ae,(x*) O+ 2uen(x'),
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with e;; = 1/2 (u;,;+u;,;). Substituting for Eq. (2.7) in Eq. (2.1) and using Gauss’stheorem
gives
2.9) [ aixt ~x) o, wx)aVx) = [ a(lx! —x|)op(xt)day(x!) = 0,
vV a¥
where ¥ is the boundary surface of V.
For plane strain conditions and a crack on |x,| < [, x; = 0, Eq. (2.9) becomes
]
@10) [ a(ix* =x]) oy, u(c}, xDdxidxi — [ a(lxi—x,]) {ou(xi, 0)}dxi = 0,
R =
where the integral with a slash over the two-dimensional infinite space excluding the crack
line (1x;] < I, x, = 0) {o,,(x}, 0)} indicates the jump in o5 at the crack line. The con-
tribution from the boundary surface 2V at infinity is zero if the displacement fields are
assumed to tend to zero there. Such a situation is considered in [2] and [3] where tractions
are applied to the crack surface. Superposition is used to go from these cases to that of
a stress free crack with stresses applied at infinity.
Furthermore, arguments are given in [2] and [3] to show that the solution of Eq. (2.10)
is equivalent to the solution of the equations

; doyy _ .
—15&,,+R—0, j=1,2
@11)  with
. {azi(xl’o)} =0, j= 1323

where the bar denotes the Fourier transform over xy, i.e.
L]
@.12) 5, x;) = [ emolxy, x2)dx,.
-

The boundary conditions become:
(i) for a crack with a shear f, applied to the crack surface,
032(%,,0) =0 for all x,,
t21 (%1, 0) = —to(xy)lx4e| < 1,
u(x,0) =0, [x]>1,
(ug,u) =0 as r—-oo (cf[3]),

(2.13)

(ii) for a crack with a pressure #, applied on the crack surface,
0y2(%;,0) =0 forall x,,
1a(%y,0) = —to(x1), Ix| <1,
uy(x,,0) =0 x| >1,
(ux,ﬂzl) -0 a r—-o, r*=(x{+x3) (cf [2]).

(2.14)

As a third and slightly simpler example consider the anti-plane strain (mode 3 problem
in which the only non-zero stresses are #,; and 1,5 and the only non-zero displacemen
component is u; in the third direction.
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In this case the boundary conditions are:

(2.15) taa(x,0) = —to(x1), Ix] <1,
| u3(x1,0) =0, Ix,| > 1
and

u; =0 as r— .
The Fourier transform of the equilibrium equation in terms of displacements is then

_ a4,
—E2 o N e
(2.16) izt 7 =0,

In [2] and [3] approximate solutions are given of problems (i) and (ii) with #, constant.
The approximation consists of replacing the unknown crack face displacements by the
classical elastic displacement (i.e. that displacement obtained for the same problem but
in an elastic medium) and then calculating the resultant stress field from Eq. (2.7). Nu-
merical evidence is given in [2] and [3] to suggest that this approximation agrees more
and more closely with the original boundary conditions (2.14) or (2.13) as a/l tends to
zero (a is the lattice parameter). However, we shall show in the next section that this agree-
ment is illusory and hence that the conclusions drawn in [2] and [3] may be misleading.

3. The finite crack problem (specified displacements)

If «(|x]) in Eq. (2.7) is replaced by d(|x|), then the problem specified by the boundary
conditions (2.13) with #,(x) = f, (a constant) gives for the jump in displacement across
the crack:

[&B)) du(x;, 0) = 24, =x)2,  |x,| < I.

The subscripts i = 1,2, and 3 apply to the problems (i), (ii) and (iii), respectively. 4; is
a constant:

t,
(32) A =4,=(1 -—r);“ and A3 = =

In this section we consider the problems (i), (ii) and (iii) but with the boundary condition
on ;4(x;, 0) [x;| < I replaced by

(3.3) uy(x;,0) = AP -xD2 |xl <1

the subscript i = 1, 2 or 3 applying to boundary conditions (2.13), (2.14) and (2.15),
respectively.

In [1] we have considered different expressions for «(|x|) in the analysis of a model
problem. For the sake of brevity, details are given here only for the modulus defined in
Eq. (2.6). Further, note that for reasonable crack lengths the ratio a/p! should be much
less than unity (cf. [1] and [3]).

Hence we define
(34 e=alfl <1

11 Arch. Mech. Stos. 4/80
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and to investigate behavior near the crack tip x, = / define new coordinates (X, X;) by
3.5 x; =18, +¢elX;, x}=10,+eX}, j=1,2,

where
611 = 1, j= l,

=0, j#l.
New displacement and stress fields are defined by
(3.6) u = (e)'2U;, 1, = (e))"'T,,.

In these new coordinates it is straightforward to see that Eq. (2.7) becomes

G.7) T = J (X! — X]) Co(X1)dV(X?)
with
Cu(X") = AE,(X")+2uE,(X"),

(.8) 1 (ou, av,
B9 = 1 (5 + 52
and
(9) (X! —X]) = % exp(—{X1—X,)*+ (X} -X,)?})

for the function defined in Eq. (2.6).
The displacement boundary conditions become

U, 0=0, X>0, X< =,

(3.10 D)
Ul(X;, 0) = A;( —Xl)”’ (2"{' le,)“’z, _8_ <X; < 0,

where i = 1 (denotes plane strain shear), i = 2 (plane strain tension) and i = 3 (anti-
plane strain). In addition to Eq. (3.10), we have the boundary conditions
(3.11) C,,(X;,0)=0 for all X,

(from Eq. (2.13)) for the problem (i) (plane strain shear) and
(3.12) C,(X,00=0 forall X,
(from Eq. (2.14)) for the problem (ii) (plane strain tension).

Transforming the field equations (2.11) back into (x,, x,) space and changing to the
new coordinates (X;, X,) leads to

(3.13) Cunx =0,

where C,; is defined in Eq. (3.8). It is thus straightforward to solve Eq. (3.13) in terms
of displacements, this is done in Appendix 1 to give
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Problem (i)
= —2pu(A+p) =

(3-14) Tz;(‘f, 0) = W lf'FL(f)Ul (5, 0)-

Problem (ii)
= _ —2pA+p) =

(3.15) T22(4,0) = TG+ |EIF2(§)U,(£, 0).

Problem (iii)

(3.16) Tz3(§,0) = —pléIF3(§)Us(€,0)

(the over-bars denote the Fourier transform with respect to X,) where

(3.17) F,(¢) = f (1 ]| X1)e-1Mdx} f 2a()Xol, 1 X3|) e~ *%edX,,
[] - 00

(3.18) Fa = [ a+18xpewn [ 2a(X,), 1X3)e %X,
0 -0

and

(3.19) Fy(@) = [ exp(~161X3DaX} [ 2a(Xol, |X3D)e-"%odX,.
0 -0

Letting £ — 0 in the boundary conditions (3.10) and taking a Fourier transform over
X, give

12
(3.20) U,¢,0) = -—A;l‘”(%) MIE=312,

Substituing for this expresion into Egs. (3.14), (3.15) or (3.16) gives in each case relations
of the form

(3.21) T,, = Be"§;3F(§), j=1,20r3,
where
- 1/2
B = 1113(7) t.’

Applying the Fourier inversion theorem to Eq. (3.21) one can write

12 f
62 T,0=2"[ax [ Xl IXiDaxe6,x8 X0,
L]

where

Gy(X,X,) = f (1—8;EX3)&~2e-i{cos £(Xo+X,) +8inE(Xo +X,) } dE
]

11*
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and
Sl=l, Sz=""l, S;;——-O.

To obtain Eq. (3.22) we have evaluated the complex inversion path along the real & axis
(Im¢ = 0) and interchanged the orders of integration. These formal steps in the analysis
can presumably be justified if the resulting integrals in Eq. (3.22) converge. Such is the
case for the examples discussed in references [1], [2] and [3]. For these cases it can be easily
seen from Eq. (3.22) that T,;(X,,0) is a continuous function of X; and is finite as X,
tends to zero. Thus 7,;(0, 0) tends to infinity like (el)~*/* as & tends to zero for x, tending
to zero through positive or negative values of x,. Hence the stress concentration predicted
in references [2] and [3] is present also in the boundary values of t,; and thus is probably
a function of the (non-uniform) approximation rather than of the original problem itself.
The reader is referred to reference [1] for more illuminating examples in the simpler model
problem considered. there.

4. Non-existence results

Having established in the last section the non-uniformity of the approximation scheme
used in references [2] and [3], we discuss here characteristics of the original problems
specified by boundary conditions in the problems (i), (ii) and (iii) of Sect. 2. To do this
we rephrase the problem as an integral equation.

For the problem (i) we use as a Green’s function the field of an edge dislocation with
its Burgers vector in the x, direction. Superposing the fields of a continuous distribution
of.such dislocations lying on x; =0, |x;| < / leads to the result

1
- _ BQ+@ [ =) {(xe =) —x3} fi()dn
(4.1) 021(%1, X3) = A+ 2u) :[ (G~ +x1)
with the junip in-displacement across the line x, = 0 given as
!
@2 duy = [ fi(m)dy
and

!
J fadn =o.
]

Using Eq. (2.7) one can then write

“3) fan (e, %) = [ (X! )00 (%, +x}, X2 4 x)dV(xY),

| 4
where ¢,, is given in Eq. (4.1). It is fairly straightforward to check that the Fourier trans-
form of Eq. (4.3) using Eqgs. (4.1) and (4.2) leads to an equation identical in form to Eq.
(3.14). The stress and displacement fields (4.1) and (4.2) satisfy all the boundary conditions



CRACK PROBLEMS IN NONLOCAL ELASTICITY 605

in Eq. (2.13) except the one involving #,,(x; , 0). In addition the stress field of a dislocation
satisfies the equilibrium euqations o;;,; = 0 (see [10] for example).
Changing the order of integration in Eq. (4.3) gives on x, = 0 the expression

1
A
44 161, 0) = L [ 1 pani e, =),
]
where
o aen [l k3 (el 1) {x£1)2 —x} Pdx]
4.5) K@) = 2! dx; __£ (I + (x)2 ) .

Thus the boundary condition 1,;(x,,0) = —1o, |x,| < I together with Eq. (4.4) leads
to an integral equation for the unknown dislocation density f;(»)-

Similarly, for the problem (ii) we use a continuous distribution of edge dislocations
on x; = 0, |x;| < ! with the Burgers vector in the x, direction. This gives a,;(x;,0) = 0
and

I
_ p(A+p) S2(n) (1 =) {(x —7)*+3x3 }dn
@O omtnx) =Gy ) T e eap

and
1
uy(x,,01) = % ffz(ﬂ)d’?-
with
1
J; Sa(n)dn = 0.

Thisleads to the expression

I
@7 t22(%;,0) = %)7 __[fz(’])d’?xz(xx -n)
with
ol [k, 63D (A1) fxd 674 3x8Pdxd
¢9 Ko =2[a [ Ty -

Thus, together with the boundary condition t;,(x,,0) = —t,, |x;| < Eq. (4.7) gives
an integral equation for the unknown density f>(n) for the problem (ii).
Finally, for the problem (iii) using the field of a screw dislocation leads to the expression

!
“9 1306,0) = L [ fyddnKs(e—n),
2y
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where

@ o
_ o alxil, [x3]) (x1+t)dx}
(4.10) Ks() =2 of axs [ Ll (e et

-0
Taking Fourier transforms of Egs. (4.7) and (4.10) and noting the expression for the
displacement given by Eq. (4.6) leads to equations identical in form with Egs. (3.15)
and (3.16).

From the above we see that each of our problems has been reduced to an integral
equation of the first kind for the unknown dislocation density f(n). Moreover, for finite
displacements u, f(n) is integrable. Whether or not the above integral equations will have
solutions depends therefore on the kernels K;(t—n) (i = 1, 2, 3). Clearly, if «(|x}], |x3]) =

= 8(|x1]) 8(1x3]), then K;(t) = % and Eq. (4.7) leads to a Cauchy integral equation which

gives the classical elastic solution. However, for other expressions it is not clear whether
the above integral equations will have solutions. Suppose, for example,

[ _ a(isidaxt
(D, b3 = (i) then Ko@) = Ko(9) = Koty [ = 2D

Integral equation with this kernel occur in [1] where arguments are given to show that
2
'f_ exp :— (%) x}’}, a # 0 has no solution with integrable
n

the problem when a(|x!|) =
a

f(n) for the case when the applied stress is constant. If no solution exists for this problem,
2
we expect no solution for the casea(|x|) = aoexp{— (%) x- x} by comparison. We

attempt to prove this below.

The case
@.11) alix) = toerp (~fiGI+xD), fu= L.

We need to investigate the properties of the kernels, K;, K, and K;. To do this sub-
stitute for Eq. (4.11) and change the x} integration to a new integration variable u = x}+1.
The result is

2 42 r ¢ 2,17 100 "‘fz'f"zzf 2—;’(‘
412 Ki) = exp(=f12e0 [ exp(~pxprass [ SRPCELE D

-

with similar results for K,(f) and Ks(f). The inner integral in Eq. (4.12) is convergent
for all values of 7. The only possible neighborhood in which the integral might not con-
verge is in the vicinity of x} = 0, u = 0, and that it is in fact convergent there can be
easily checked. Similar remarks apply also to K, and K.

Hence, if f;(n) is integrable in (—/,[), (i.e. finite displacements of the crack faces),
then the right hand side of Eq. (4.4) is an andlytic function of x, for all real x, . If we replace
%; by z = x; +iy (y real), then the right hand side of Eq. (4.4) is an analytic function of
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z (the analytic continuation of Eq. (4.4) on —! < x; <[). Moreover, from Eq. (4.12)
with ¢ = z— 7 we see that K(¢) has growth properties like exp (81y?) as y = + 0. However,
the boundary condition #,,(x;, 0) = —1,, |x;| < I says that the left hand side of Eq. (4.4)
is a constant for |x,| </ and the analytic continuation of this into the complex z plane is
simply —1#, (i.e. constant everywhere). This contradicts the equality sign of Eq. (4.4)
and hence no solution with integrable f,(n) exists for the boundary condition t;,;(x;,0) =
= —1 (constant), |x,| < I.

Of course, solutions for special loadings may still exist. For example, the solution
fi(n) = d6(n) is consistent with the loading 7,,(x,,0) = %ig% K,(x,), |x| < I. Note,
however, that this loading has precisely those growth characteristics in the complex z plane
that our argument above says are necessary.

Similar conclusions apply also to the plane strain tension and anti-plane strain cases.

5. The finite crack problem in a solid whose nonlocal moduli consist of both short-range
and long-range behavior

KRONER [5, 6] has suggested that the nonlocal moduli should have both a short range
and a long range part. We adopt such a constitutive relation here and investigate its con-
sequences. Only an outline of the analysis will be given. It should apply to any nonlocal
law of the general form given below. Further work is necessary to justify any particular

law, by reference to lattice theory, for example, before calculating the numerical coefficients.
The nonlocal moduli (4!, ') are now written as

(E8)) (A, ') = (4, @) {bo(Ix" —x))+ (1 - b) s (Ix* —x])},

where b is a constant (b < 1). The expression «,(|x|) is normalized as in Eq. (2.5) and may
be defined, for example, by the definitions (2.4) or (2.6).

We consider the finite crack problem specified by the boundary conditions (2.13),
(2.14) and (2.15) for the problems (i), (ii) and (iii), respectively. Also, we assume that
the crack length to the lattice parameter ratio is such that ¢ = a/fl < 1 as in Sect. 3.
Strictly speaking, this applies to a, as defined in Eq. (2.6). For the definition (2.4) replace
B by unity in what follows.

If the limit @ — 0 is taken in Egs. (2.4) or (2.6), then «,(|x|) - d(|x|) and in Eq. (5.1)

(52) @, ') - (2, p) 8(jx —x|).

The problems (i), (ii) and (iii), with the moduli (5.2), become the classical elastic crack
problems. The solution to these problems is well known, in particular the behavior near
the crack tip x, = 0, x;, = [ is

f;u = K;(xl —1)'113(2::)"”2, 0< le —” < ],

(5.3 K g \?
= — 1/2 ._._.'_ —

40, = 0y ) (&),

1 T
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(when #, is constant in Egs. (2.13), (2.14) or (2.15), then K; = (#l)'/? t,), M; = M, =
= u[(1-¥), M3 = p with » = 1/2(A4 ) and as before the index 1, 2 or 3 refers to the
problems (i), (ii) or (iii).

Clearly, if @ # 0, then the solution (5.3) will probably not be a correct solution to the
nonlocal problem since, in this case, to give the stress field the ,,strain” field is integrated
over the whole body. Nevertheless, we might expect that the classical elastic solution is
valid throughout the body if a is small enough, except perhaps near the crack tips where
the full nonlocal character of the medium should be important. To investigate the field in
this region we define inner coordinates (X;, X;) as in Section 3, i.e.

(54 x; = 10 4elX;, (cf. 3.5, j=1,2

with & = a/pl.

We assume that the ,,outer solution” obtained by letting £ — 0 in the original problem
is valid at distances 0 > ¢ from each tip. The influence of these features is then transmitted
to the ,,inner” solution through matching conditions near each tip where ¢ < d < 1. Since
both inner and outer approximations are valid in these regions, they must be asymptotically
equivalent there.

The inner problem

Making the change of variables outlined in Eq. (3.5) and (3.6), the inner problem has
boundary conditions derived from Egs. (2.13), (2.14) or (2.15) as
Cjz(Xl, 0) = 0 VX],

-2
(5.5) TZI(X’. L] 0) T (8’)1!2‘0’ "8— < Xl. < 0’

U(X;,00=0 —o0 <X < _Tz 0<X, <.
The subscript i in these equations takes the value 1, 2 or 3 for the problems (i) (ii) or (iii),

respectively, with the exception of the first equation which is not relevant when i = 3.
If we now let ¢ — 0, the last two of the above equations become

T(X,,0) = 0, -0 <X; <0,
s T+(Xll0)s 0 <Xl < 00,
(5.6) U(X;,0)=0, 0<X; <oo,

=U_(X,,0), -o<X, <0,

where the functions T, (X;, 0), U_(X;, 0) are unknown and the index i has been dropped
for convenienc: . Taking the Fourier transform over X as in Sect. 3 then leads to equations
similar in form to those given in Eqgs. (3.14), (3.15) and (3.16). Hence we get

(5.7 T, (§,0) = —M,|EIF,(§)U_(£,0),

where F; is given in Egs. (3.17), (3.18) or (3.19), the index i = 1,2, 3 again referring
to the problems (i), (ii) and (iii). M, is a constant depending on A and u, compare Egs.
(3.14), (3.15) and (3.16) and Eq. (5.3).
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Tospecifythe ,,inner problem” further we need conditions at infinity. These are obtained
by matching the inner and outer solutions. Rewriting the outer solution in inner coordi-
nates and taking the appropriate limit gives from Eq. (5.3) the conditions

1/2
Ui(X,,0) ~(i) Kl ( -X))'? as X, -
(5.8) and

T(X;,0) ~ — X7'? as X, - .

(23)1,‘2
The transformed variables should thus have the behavior

‘-f+ e ST eui}d-&-;lzz as E-0

(5.9) and

— K,

U_ ~ — W eui,mg_—_a,!z as E =0,
i

It remains to solve the functional equation (5.7) subject to the matching conditions (5.9).
To do this note that Eq. (5.7) is defined on the real line Im& = 0, the transforms 7, and
U_ being (unknown) analytic functions for Im& > 0 and Imé < 0, respectively. The
function |&| is defined in the complex & plane so as to have a positive real part; it is factorized
into the product of a plus and minus function as |£| = £}/2£2/2, The expressions £3/2,
and £12 have cuts from i0— to —ico and from i0+ to +ico, respectively. The next step
in the standard approach to functional equations such as Eq. (5.7) is to factorize F(§)
into the product of plus and minus functions each of which is regular and non-zero in
its respective half plane. If we assume that such a factorization, F = F, F_, has been
accomplished, then Eq. (5.7) can be rearranged as

T.(¢,0)
§V7F. (&)

Recall now the expressions (3.17), (3.18) or (3.19) for F(£). For the nonlocal moduli
considered in this section (Eq. (5.1)) these expressions apply with «(|X|) replaced by
bé(IX|)+ (1-b)x, (1X]). The function o;(|X|) as described above can be derived from
Eqs. (2.4) or (2.6) for example. Consider the situation when «,(|X]) is defined as in Eq.
(3.9), i.e.

(5.10) J= = —M,EVF_(&)U_(&,0).

(5.11) &,(IX]) = +-exp(— X7 - X3).

Then, with «(|X|) as defined above, Eqgs. (3.17), (3.18) and (3.19) give

Fa(8) = b+(1- b){ M g-re ( ___)‘E]rf (lél)}

(5.12)
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and

F3(®) = b+(1 -—b)Erfc('EI)
where

(-]

Erfe(®) = oz | exp(~r)dt.

z

For all real & each of F,, F, and F; have one sign and tend to b a |£| = o0 on the real
line. The factorization F = F, F_ can then be done in a standard way by taking logs and
using Cauchy’s theorem giving

(5.13) F,© = b exp { " ;‘i long(;)jb}}

with Im& > 0 for F, and Im§ < O for F_, thus the integral is indented below the real
axis for F, (£) and above the real axis for F_(£) (£ real). From Eq. (5.13) it is follows
that F(£) - b'/? as |£| —» oo in their respective half-planes of regularity, and also that
F,(0) = F_(0) = 1. This last result can be seen by evaluating the integral in Eq. (5.13)
for F,(0) and F_(0) by integrating along the real axis and noting that F(s) is an even func-
tion of s; the contribution from s = 0 leads to the result.

The function J defined jointly by both sides of Eq. (5.10) is analytic in the whole complex
plane, except possibly at £ = 0. Now, if U(X,, 0) is to be bounded as X; — 0, then each
side of Eq. (5.10) will tend to zero for large |£|, also the requirements (5.9) at § =0

imply the existence of a simple pole at this point. Liouville’s theorem then leads to the
result

(5.19) J(s) = L

From Eq. (5.10) the behavior of the stress and displacement at the crack tip can now be
deduced as

1/2

Ui(X,,0) ~ b_”z( ) ( -X)? as X,-0_,
(5.15)
K;

Toi(Xy, 0) ~ b'/2 W

X7i3 as X, -0,.

Note again that the subscript i in Eq. (5.15) takes the values 1, 2 and 3 and refers to the

problems (i), (ii) and (iii), respectively. In the original variables Egs. (5.15) become, for
the crack tip x, = I,

1/2

(5.16) e

t2u(xy, 0) ~ b12K,Q2m)~12(x, =D)~Y2%, 0 < |x; =1 < 1.
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In other words, the solution for the crack tip stress and displacement field becomes,
in the limit ¢ = a/fl — 0, the classical crack tip elastic displacement field multiplied by
b~1/2 and the classical crack tip stress field multiplied by b'/2.

Although Eq. (5.16) has been derived for the particular case where «,(|X|) is defined
as in Eq. (5.11), it seems to be much more generally true. In fact this will be true for any
a, (|x|) transforming to a function &, (|X|), in the scaled variables, which leads to an F;(&)
with the properties that (i) F;(&) > 0 for all real &; (ii) F;(c0) = b, Fi(0) = 1; (iii) Fy(§) =
= Fy(—§). Property (i) is obviously true for F, and F; (compare Egs. (3.18) and (3.19)).
Property (ii) will hold provided the contribution from «, to F;(£) is a function which tends
to zero as |&| — co. This is not true if &; = §(|X[) but seems to be so for functions which
tend to zero more slowly than this. Properties (ii), and (iii) hold for all «(}X|). From prop-
erty (iii) it follows that if F(&) = F, (&) F_(&), then F,(—§) is equal to F_(£) apart from

lim

a multiplicative constant. If we choose this constant to be unity, then |£| = cwF, () =
= b'? and F,(0) = F_(0) = 1, the limits being taken in the respective half-planes of
regularity. The result (5.16) then follows without the need for the specific factorization
(5.13), although this would be required, of course, to find other information besides the
singular crack tip stresses. It is worth noting that the product of the crack tip stress and
displacement given in Eq. (5.16) reproduces the classical elastic result; this implies the
continuity of the energy release rate as £ — 0 (compare ref. [8] for a proof of a correspond-
ing result in couple-stress and micropolar elasticity).

Appendix 1

(i) Plane-strain shear
In this case the Fourier transform of Eq. (3.13) with respect of X, gives the equation

(A1) —ifCy + =0, I=1,2.

Now, substituting for the X, Fourier transform of Eq. (3.8) gives
Fﬁl 22— (A+ Zy)ﬁzﬁl —i§(A+p) 62.2 =0,
—iEA+ U, 2+ (A+2u)U;, 5, —E%uU, = 0,
and we remind the reader that the definition (2.12) of the Fourier transform is being used

(A2

[ +]
(ie. UE, X,) = [ UXy, X,)e*1dX, . Also, in Eq. (A.2) a comma denotes differentia-
—c0

tion.
The solution of these equations in X, > 0, with U, and U, both tending to zero as
X, - + o0 can be written

R 8 [ A+3p
A3) Uy = —?{ISIA@H (iflxz e )B(rf)}CXP(-IEIXz),
U, = i{A(§)+X2B(§) Jexp(~£IX),

where A and B are arbitrary functions of &.
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Hence, to satisfy the boundary condition C,, (X;, 0) = O for all X, , the condition

A+
(54) B&) = 28 4
is required.
For the shear problem the following symmetry relations hold:
UL(X:.» -X;) = _UI(XI »X2),
U, (X,, —X;) = U,(X,, X,).
Using these in Eq. (3.7) gives
o L]
(A6 Tu(X,,X;) = [ dx} [ Coa(Xo+Xy, XD {x(IXol, IX:-X,))
0

—-—m
‘f'“(lxol,lxé‘f‘le)}dxo,

where the change of variable X, = X!—X, has been made in the inner integral. Now,
taking the Fourier transform with respect to X, leads to the relation

A7) Tia(6,X5) = [ Cua(€, XD G(XS, X,)ax3,
]
where

G(X3,X) = [ =% {a(1Xol, IX3—Xa])+a(IXo], IX2+X,])}dXo.

Finally, the Fourier transform of Eq. (3.8) gives
ou, .-
Ci2(8,X;) = ,u( 5X; —‘EUZ)

and using Eqgs. (A.3) and (A.4), then substituting in Eq. (A.6) leads to the relation

A, Tialk, 0) = 200+ W) EAQ)F ©),

where

A8 R = (~14EXDeaxs [ 2a(Xol, IXEDe-EodXo.
Since ' h

A9) U,6.0 = + L2 B 4

from Egs. (A.3) and (A.4), Eq. (3.14) of the main text follows from Eq. (A.7).

(ii) Plane strain tension

For this case there are such symmetry relations:
Ui(Xy, —X;,) = Uy (X4, X5),

(A.10) U,(Xy, —X5) = —Uy(X,,X,)
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and the boundary condition g, (X;, 0) = 0 for all X, is satisfied by the relation
(A.11) B(§) = (A+p)|§lA(5)[(A+2p).

Operations similar to those above give
w
(A12) Tpa(8.X2) = [ CraE, XD G(XE, X)dX1,
o

where G(X}, X;) is as defined in Eq. (A.7). Finally, substituting for C,, (£, X%) derived
from Eq. (3.8) leads to the expression

= _ —2u(Atp) .
(A.13) T,,(¢,0) = W i|E|A(E)F,(8),
where
(A.19) Fy(®) = [ (1+[E1XDe"WisdX] [ 20(1Xol,| X3l e~ #FodX,.
0 -
Since

U,(6,0) = id(8),
Eq. (3.15) of the main text follows from Eq. (A.13).

(ili) Anti-plane strain shear
In this case the symmetry of the problem gives
(A.IS) Ua(xn -X;) = —Ua(Xqu)

and steps similar to those above lead to
Ts(6,X2) = [ Coal€, XD G(XS, X,)dX}
0

(G(X1, X,) is defined in Eq. (A.7)) and
[—)'3(5,Xz) = B,(§)exp(—|§1X,), X, > 0.
This leads to the relation
(A.16) Ty3(£,0) = —uB(§)I€IF5(%),
where
F3(5)=-! exp(— || XD dX} f 20(|1 X!, | X3 e ¥XodX,
and hence to Eq. (3.16) of the text.
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