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Reflection of a weak shock wave from an isothermal wall 

K. PIECHOR (WARSZAWA) 

THE PROBLEM of reflection of a weak shock wave of its front parallel to the wall is analysed. 
Only the case of the isothermal wall is considered. The flow domain is divided into two parts: 
an outer domain containing both shock waves and an inner domain adjacent to the wall. To 
determine the outer flow the Lighthill technique and the multiple scales method are combined. 
The structure of the inner flow is exactly the same as in [1]. To determine some unknown 
functions the matching principle is used. The structure and the trajectory of the reflected shock 
wave are obtained as results. 

W pracy analizuje si~ odbicie slabej fali uderzeniowej o froncie r6wnoleglym do scianki. Roz­
wai:a si~ tylko przypadek izotermicznej scianki. Obszar przeplywu dzieli si~ na dwie cz~sci: 
obszar zewn~trzny zawieraj<!:CY obie fale uderzeniowe i obszar wewn~trzny przylegly do scianki. 
W celu wyznaczenia przeplywu zewn~trznego wykorzystano technik~ Lighthilla l<~:cznie z metod<~: 
wielu skal. Struktura przeplywu wewn~trznego jest dokladnie taka sama jak w [1]. Zasada 
kojarzenia rozwi~it jest ui:yta do wyznaczenia pewnych niewiadomych funkcji. W wyniku 
otrzymuje si~ m .in. struktur~ i trajektori~ fali odbitej. 

B pa6oTe aHamt3IqJyeTcH o1'pa>l<eHae cna6oH: y.r.apHoH: BOJIHbi c <l>poHToM rrapannem.HhiM 
CTeHKe. PaccMa1'pimaeTcH TOJibKO c.rryqaH: a3oTepMaqecKoH: CTeHKI{. 06naCTb TeqeHI{H pa3-
~eJIHeTcH Ha .r.ae qaCT~C BHeiiiHHH OOJiaCTb, CO~ep>l<aBIIIaH o6e y~apHbie BOJIHbi H BHyTPeHIDIH 
o6JIRCTb, Ilpl{MbiKaiO~aH K CTeHKe. C n;eJiblO orrpe~eJieHHH BHeiiiHero TeqeHHH KOM6HHiqJyeTCH 
TeXHHKa JlaH:TXHJIJia c MeTo~oM MHorax MacwTa6oB. C1'pyKTypa BHYTpeHHero TeqeHI{H To~o 
TaKaH >l<e KaK B (1]. IJpl{Hil;HII cpa~HBaHHH peiiieHI{H: HCIIOJ1b3yeTCH MH orrpe~eJieHHH He­
KOTOpbiX HeH3BeCTHhiX <l>yHKn;aH:. B pe3yJ1bTaTe rronyqaroTcH, Me~ rrpoqaM, CTPYKTypa 
M 1'paeKTOpl{H 01'pa>l<eHHOH BOJIHbi. 

1. Introduction 

IN THE PRESENT paper we undertake the problem of reflection of a weak shock wave of 
its front parallel to the wall, a problem already theoretically considered in [1] and.also 
in [2, 3]. In the paper by LESSER and SEEBASS [1] the problem under consideration was 
solved by means of perturbation methods. The same ideas were repeated in [2] and [3]. 
Let x denote the distance from the wall and let t be the time. The x-axis is directed from 
the gas to the wall, so the problem is considered in the domain - oo < x < 0, - oo < 
< t < oo. Lesser and See bass divide this domain into several subdomains: "thermal 
boundary layer'' (in the case of the isothermal wall) described by x = O(y'B), - oo < 
< t < oo, (s is a "small" parameter) "acoustic region" Jxl ~ y~, t = 0(1) and two 
domains involving either the incident shock wave (- t ~ 1) or the reflected one (t ~ 1). 
Then the solution, valid in the boundary layer, is matched to the "acoustic" approxima­
tion, and in turn the last one is matched separately to the incident shock and to the 
reflected one. As a result of this, the structure and the trajectory of the reflected shock 
wave, among others, are obtained. A disadvantage of this approach is the necessity of 
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234 K. PIECH6R 

such a complicated division of the flow ,domain and, consequently, the necessity of many 
matchings. Moreover, in order to distinguish the "reflected shock" domain it is necessary 
to have some introductory information on the reflected shock wave: it is necessary to 
know that it exists and to have even very rough knowledge of its location. 

In the present paper we consider the some problem as in [1], but another method of 
solution is used. We consider only the case of isothermal wall and we divide the domain 
into two parts only, inner domain (thermal boundary layer) and outer domain. We do 
not use any assumption concerning the reflected shock wave, we do not even assume 
its existence. Generally speaking, our method applied in the outer domain is a combina­
tion of the Lighthill technique [6] and the multiple scales method. Consequently, our 
calculations are longer and more tedious, but they are made once for all. Next, the outer 
expansion is matched to the inner one. 

2. Basic assumptions 

In this paper we consider a weak shock wave moving in a half-space bounded by 
an infinite plate. If the front of the shock wave is constantly parallel to the wall, then 
the problem may be treated as one-dimensional but unsteady. The coordinate system is 

Reflected shock 

~ 
X 

FIG. 1. 

shown in Fig. 1. We assume that the shock wave is weak, so we may use the Navier­
Stokes equations and neglect the molecular structure of the gas. 

Also no inner degree of freedom is taken into account. Next it is assumed that the 
wall is impearmeable and isothermal. It is assumed that at x* = - oo and t* = - oo, 
a weak shock wave was formed and it travels to the wall immersed at x* = 0. The moment 
at which the shock wave occurs at the wall is denoted by t* = 0. 

We assume that before the arrival of the shock wave the gas was at rest and it was 
characterized by the constant density et, constant temperature Tt and its velocity u* 
was zero. Let u! = const be the gas velocity behind the incident shock. We form the 

parameter 
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REFLECTION OF A WEAK SHOCK WAVE FROM AN ISOTHERMAL WALL 235 

where a! is the sound speed of the quiescent gas. The ratio e is used as a basic parameter 
and it is assumed to be small. Following [1] we introduce dimensionless variables as 

follows: 

_ e1ai e * 
X- --*-X, 

fl 

e*a*2e 
t = 1 1 t* 

p,* ' 

where p,* is the coefficient of viscosity. In order to shorten calculations it is assumed to 
be constant. The dimensionless velocity, density and temperature are defined by 

u* = eaiu, e* = ei(l + ee), T* = T!(1 +eT). 

The Navier-Stokes equations written in these coordinates take the form 

ae au a 
-+-+e-(eu) = 0 at ax ax ' 

(2.1) 

(2.2) 
au 1 a [ au au 1 a 4 o2u ] 2 au -+--(e+T)+e e-+u-+--(eT)---- +e eu- = 0 ot y ox ot ox y ox 3 ox2 ox ~ 

(2.3) ar ae [ ar ae ar ae --(y-1)-+e e--(y-1)T-+u--(y-I)u-
ot at at at ax ox 

_ _L~T_]+e2 [eu oT -(y-1)Tu~-_i_y(y-1)(~)
2

]= 0 
Pr ox2 ox ox 3 ox ' 

where y is the specific heat ratio, Pr is the Prandtl number. To obtain the system of 
equations (2.1)-(2.3) the pressure p* was eliminated by means of the perfect gas equation 

p* = R*e*T*, 
where R* is the gas constant. 

We solve Eqs. (2.1 )-(2.3) subject to the conditions 

(2.4) lim e(x, t) = 0, lim u(x, t) = 0, lim T(x, t) = 0, 
t-+-00 t-+-00 t-+-00 

which express mathematically the fact that the gas is at rest ahead of the incident shock 
wave. 

Next we look for solutions of Eqs. (2.1 )-(2.3) satisfying the following conditions at 
the wall: 

(2.5) u(O, t) = 0, 

which means that the wall is impermeable, and 

(2.6) T(O, t) = 0. 

This condition is of double meaning. First it means that the wall is isothermal, i.e. its 
temperature is constant and it is the same before the arrival of the shock wave and after 
its reflection. Secondly it means that all the time the gas is in a thermal equilibrium with 
the wall. 

The last group of assumptions concerns the oncoming flow. Let D* be the incident 
shock wave speed. Then the ratio D* fai is the Mach number of the incident shock wave. 
The Rankine-Hugoniot relations give 

(2.7) ~; =M= y;-:;:(~ •r +~ e, 

5* 
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236 K. PIECOOR 

where 

r = y+l 
2 . 

Let limis denote the following limiting process: x-+ - oo, t-+ - oo with ~ = x · ­
-M(e)t fixed. 

We assume that the following limits exist: 

(2.8) lim18 U = us(x-Mt)+O(e), 

(2.9) lim~se = es(x-Mt)+O(e), 

(2.10) 

where 

(2.ll) 

(2.12) 

and {1 is a constant 

us(~) = el~) = -----,.!:..-; 
l+efJ 

Ts(~) = (y -l)el~) 

/(~), 

The formulae (2.11) and (2.12) mean that the incident shock wave is of the "classical" 
Taylor structure. Our task is to find an asymptotic solution to the problem under con­
sideration. It needs dividing the domain - oo < x ~ 0, - oo < t < oo into two parts: 
an outer domain x < 0, lxl ~ ye, - oo < t < oo and an inner · domain (thermal bound­
ary layer) X = O(ve), -00 < t < 00. 

In each of these domains another expansion is developed. They are called outer 
and inner expansion, respectively. Finally, they are matched one to another. 

3. Outer expansion 

Let Q(t, x; e) be any of the variables u, (!or T. The boundary conditions (2.8)-(2.10) 
show that Q is a function not only of x and t, but that it is a function of infinitely many 
arguments: x, t0 , t 1 , t2 , 13 , etc., where In= ent, n = 0, 1, 2, .... Consequently, we look 
for solutions of Eqs. (2.1)-(2.3) in the form 

(3.1) 

Then, for the derivative with respect to t we have 

a a a 
(3'2) 7ft = Oto + E ot 1 + .... 

Substituting Eqs. (3.1) and (3.2) into Eqs. (2.1)-(2.3), we obtain 

(3.3) 0(! + au + E [ 0(! + _}__ (eu)] = O(e2), 
ot0 ox ot1 ox 
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(3.4) 
ou I o [ ou ou ou I o -+--(e+T)+e -+e-+u-+--(eT) ot0 y ox ot1 ot0 ox y ox 

(3.5) 

In the above equations, t0 , t 1 , etc. are treated as independent variables. 
In the present paper we are not interested in large scales time variations described 

by t2 , t 3 etc. Thus our results will be valid only for times t of order of e-1 • 

Now, we apply the strained coordinate method to the system of equations (3.3}-(3.5), 
treating t0 and t 1 as completely independent variables. We make the following transfor­
mation of independent variables: 

(3.6) 

X= P(~, 'YJ, T), 

to= cf>(~,'YJ, r), 

where the functions P and C/> will be chosen according to the strained coordinate prin­
ciples [6). 

The system of equations (3.3)-(3.5) is equivalent to the following equations: 

(3.7) 

(3.8) 

( 
a'P ae oP oe ) ( acf> au acf> au ) [( aP acp 
o~ O'YJ - O'YJ o~ + O'YJ a[ - o~ L. O'YJ + e O'YJ o-r: 

_ acp aY!) ae + ( acp oP _ oP a~) ~ + ( oP oC/J 
O'YJ ot: o~ o~ o-r: o~ o-r: O'YJ o~ O'YJ 

_ ocf> oP) oe + ( acp o(eu) _ ocf> o(eu>)] = O(ez) 
o~ O'YJ o-r: O'YJ o~ o~ O'YJ ' 

( 
olJf ou __ oP ~) + _!_ ( acf> o(e + T) _ ocf> o(e + T) ) + s [( o P acp 
o~ O'YJ O'YJ o~ y O'YJ o~ o~ O'YJ O'YJ o-r 

_ acp aP)~ + ( acp aP _ oP acp)~ + (oP acp 
a'YJ o-r a~ a~ a-r a~ o-r a'YJ a~ O'YJ 

acf> aP) au ( oP au aP au) ( acf> au 
- o~ a'YJ a-r: +e a~ ar}- a'YJ a[ +u a'YJ-ar 

_ acp ~) + _!_ ( acp o(eT) _ acp o(eT) ) 
a~ a'YJ r a~ a~ a~ a'YJ 

- _i_ ( oC/J ow - ot/J ow )] = 0( e2) 
3 O'YJ o~ o~ O'YJ ' 
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(3.9) 

(3.10) 

(3.11) 

(
a'P a(T-(y-1)e) _ a'P a(T-(y-1)e)) +e [(~'P aq, 
a~ O'TJ O'TJ a~ O'TJ o-r 

K. PIECH6R 

_ aq, alJI) ~(T-<r-nR)_ + (aq, a'P _ alJI a(]>) 
a'TJ a-r a~ a~ a-r a~ a-r 

x a(T-(~-1)e) + (alJI aq, _ iJ(]> alJI) a(T-(y-I)e) 
a'TJ a~ a'TJ a~ a'TJ a-r 

( 
a'P aT alJI aT) ( a'l' ae alJI ae ) 

+e a~ O'TJ - O'TJ a~ -(y-1)T a~ Tr}- O'TJ af 

+ u ( f)(/J iJT - f)(/> iJT) -( -1)u (f)(]> !__g_- iJ!P ~g_) 
a'TJ a~ a~ a'TJ " a'TJ a~ a~ a17 

- _L ( f)(/> !! - i}(/> f)(j )] = 0( €2) 
Pr a17 a~ a~ a17 ' 

a!P ~ - a!P ~ = ( a'P o(/> - aq, alJI) w 
a17 a~ a~ a17 a~ a17 a~ a17 ' 

iJf/J iJT _ iJf/J iJT = ( iJIJI iJf/J _ iJf/J iJIJI)o 
a17 a~ a~ a17 a~ a17 a~ a17 · 

We seek solutions of these equations in the form 

00 

(3.12) Q(e, 1], -r, e)=}; e"Q,(~, 'YJ, -r), 
n=O 

and 

(3.13) 
. 'T}-~ f/J( ~, 1] , T, e) = -

2
- + ef/J 1 ( ~, 1] , -r) + ... , 

(3.14) IJI(~,'YJ,T,E) = 'T};~ +elJ'1 (~,1],T)+ ... , 

where Q denotes one of the variables u, e, T, w or 0. 
Substituting Eqs. (3.12)-(3.14) into Eqs. (3.7)-(3.11) gives 

a a 
017 

(eo+ uo) - a[ (eo - uo) = 0, 

_i_ (uo + eo+ To) _ j_ (uo _ eo+ To ) = 0 , a17 , ae , 

(3.15) 
a a 

a'YJ (To-(r-1)eo)-ar (To-(y-1)eo) = o, 
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REFLECTION OF A WEAK SHOCK WAVE FROM AN ISOTHERMAL WALL 239 

and 

(3.16) 

etc. 
The functions w i (} play only an auxiliary role and because of that we have not written 

equations for w1 and 01 • 

We solve the systems of equations (3.15) and (3.16) subject to conditions following 
from Eqs. (2.4). 

(3.17) lim Uo(~, fJ, -r) = 0, lim eo(~, fJ, -r) = 0, lim To(~, fJ, -r) = 0, 
E-++oo f-+oo E-++oo 

and 

fl-+-00 

f+'l-fixed 
'l--oo 
E+11-fixed 

(3.17) lim Ut(~,fJ,T)=O, lim el(~,fJ,T)=O, lim Tl(~,fJ,T)=O, 
e-+oo f-+oo e-+oo 

etc. 

1]-+-00 

f+11-fixed 

From Eqs. (3.15)3 and (3.17)1 we obtain 

(3.18) To = (y-l)eo. 

Using this relation in Eq. (3.15)2 gives 

a a 
af} (uo+eo)+ a~ (eo -uo) = 0. 

From the above equation and from Eq. (3.15)1 we have 

(3.19) 
eo+Uo = 2go(~, r), 

fJ-+-00 

f+11-fixed 
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240 K. PCECH6R 

where g0 and h0 are arbitrary bounded functions. In virtue of Eqs. (3.18) and (3.19) we 
can write 

(3.20) 

uo(~, 'YJ, T) =go(~, 7:)-ho('YJ, T), 

eo(~, 'YJ, t) = Ko(~, T)+ho('YJ, T), 

To(~, 'YJ, 7:) = (y-I)[go(~, T)+ho('YJ, 7:)]. 

Substitution of Eq. (3.20)1 into Eq. (3.15)3 , and Eq. (3.20)1 into Eq. (3.15) 

(3.20)' 

a a 
Wo =a~ go(~,'t')- a'YJ ho('YJ,'t'), 

Oo = (y-1) [ :~ Ko(~. T)+ :fJ ho(rp)]. 

Finally, let us note that from Eqs. (3.17) and (3.20) it follows that 

(3.21) lim g0 (~, t) = 0, lim h0 ('YJ, T) = 0. 
~-++oo fJ-+-oo 

Now we turn to the analysis of Eqs. (3.16). 
In virtue of Eqs. (3.20) we can write Eq. (3.16)3 as follows: 

.!_[r~ -(y-I)e~- (y-I)(y-2) e5+ y(y-I) wo]! 
~ 2 ~ 

gives 

-_!_(r~ -(y-l)(h- (y-I)(y-2) e5+ y(y-l) wo] = 0 
a~ 2 Pr . 

We solve this equation subject to the conditions (3.17)z; this yields 

T1 = (y-I)et+ (y-I)iy-2) e~- y(~~I) wo. 

If the last relation is used in Eq. (3.16)2 , then it takes the form 

a a . ( aPl auo aPt auo) 
a'YJ (ei +ul)+ a~ (el -u~)+2 8r a'YJ -~-a~ 

+ 2 ( af/Jl aeo - af/Jl aeo ) + auo + y- _!___ (-~ e5 + _!____ e5) 
a'YJ a~ a~ a'YJ a, 2 a'YJ a~ 

+eo ( ~; - a;; ) + "• ( ~; + a;; } -P ( a~. + a~. ) = o. 
Now we combine the last equation and Eq. (3.16)1 and obtain the following two equa­
tions: 

y -I ( a 2 a 2 ) I ( au0 auo ) 1 ( auo 
+-4- a'YJ eo+ a~ eo +Teo ~-8[" +Tuo ~-

auo) 1 ( a a ) P ( awo awo ) 
+ 8r + 2 a~ (eouo)+ a'YJ (eouo) - T -~ + ar = o 
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REFLECTION OF A WEAK SHOCK WA YE FROM AN ISOTHERMAL WALL 241 

and 

a 2) 1 ( auo auo ) 1 ( auo auo ) + a~ f!o + -l f!o ----ar]- ---ar + 2 Uo ----ar] + ---ar 

- _!___ (~ (eouo)+ ~ (eouo))- f!_ ( awo ·- awo) = 0 
2 a~ a'YJ 2 a'YJ a~ · 

General solutions to these equations are of the form 

and 

p a [ y-3 ] a +2 a~ go(~,-r)+2 'P1+f/J1--4 -Go(~,-r) a'YJ ho('YJ,-r) 

-~ (Oh0 -Fho aho _ j1_ a
2ho) 

a-r a'YJ 2 a'YJ 2 
' 

where g1 and h1 are arbitrary bounded functions, and G0 and H 0 are defined by the 
relations 

(3.23) 

Substituting in Eq. (3.22) 

(3.24) 

and also 

(3.25) 

(3.26) 

we obtain bounded expressions for u1 and (! 1 • 

Now the necessity of combining the two methods is evident. Applying solely the 
multiple scales method is equivalent to substituting in Eqs. (3.22) 'P1 = f/>1 = 0. Then, 
however, we should not be able to eliminate terms involving G0 and H0 which in general 
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are unbounded functions. Thus, in the case under consideration the multiple scales method 
fails. Similar arguments show that on the other hand the Lighthill method also breaks 
down, because it does not make possible the elimination of the last terms in Eq. (3.22), 
which also are not bounded. 

Equations (3.23) do not uniquely determine the functions G0 and H0 • We choose 
them such that 

(3.27) 

Then the straight line ~ +'Y} = 0 in the (~, 'f})-plane corresponds to the boundary x = 0 
in the (x, t)-plane, namely we have 

x(-'f}, 'fJ, r) = 0, t(-'f}, 'YJ, r) = ~. 
Equation (3.23) subject to the conditions (3.27) determine uniquely the functions G0 

and H0 and they are given by 
~ 'I 

(3.28) G0(~, 'fj, -r) = y ~3 J g0 (a, -r)du, 
-'I 

H0(~, 'YJ, r) = Y~3 J ho(u, -r)du. 
-; 

Thus the transformation (3.6) is of the form 
~ 

'Y}+~ y-3 f x = -2- + e-
8

- [g0 (u, r)+h0 ( -0', -r)]da+ ... , 

~ 

(3.29) 'Yj-~ y-3 f t = -
2
-+e-

8
- [g0 (a, -r)-h0(-u, -r)da+ ... , 

1]-~ 
T = t 1 = et = e -

2
- + .... 

For the time being, only the boundary conditions (2.4) have been used. Now we apply 
the conditions (2.8)-(2.10) to our solutions (3.20), (3.29). Since the upper bound of 
absolute values oft we are interested in is of order of e-1, we can simplify these condi· 

tions assuming that if x and t tend to - oo with x- t- e ~ t fixed, then 

u-+[(x-1-e; 1). 
This condition, when applied to Eq. (3.12), takes the form 

(3.30) Uo-+ t(x-lo- ; 1,) 

provided that X' -+ - oo, t0 -+ - oo, t 1 -+ - oo with x- t0 - ~ t 1 fixed. 

However, in order to keep x-t0 - ~ Ft1 fixed it must be x-t0 -+- oo, moreover, 

we have of course x+ t0 -+ - oo. It follows then from Eq. (3.29) that ~-+ - oo and 
1J-+ -00. 
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We re-formulate this condition assuming that 

(3.31) limu0(~,1J,T)=f(~-; T) 
if ~ ~ - oo, 'YJ ~ - oo and r ~ - oo with ~- ~ r fixed. 

Assuming that 

(3.32) lim h0 ( 'YJ , r) = 0 
1J-+-OO 

t-+-00 

we obtain from Eqs. (3.20) and (3.31), Eq. (3.32) 

(3.33) 

(~-> -oo, T-> -oo, ~- ; T fixed). If we take 

(3.34) g0(~, T) = t(E- ; T) = {I +exp [ ~ (~- ; T)]r'-
then both Eq. (3.25) and the condition (3.33) are satisfied. 

243 

However, the boundary conditions (2.5), (2.6) at the wall cannot be satisfied. Indeed, 
in the (~, rJ)-plane the equation of the wall is ~ + 'YJ = 0. Thus the boundary conditions 
(2.5), (2.6) may be formulated as follows: 

(3.35) u0 ( -'Yj, 'Y}) = 0, T0 ( -'Yj, 'Y}) = 0. 

And now we can see that it is impossible to satisfy the two conditions (3.35). This 
means that the boundary layer exists close to the wall. It is considered in the next para~ 
graph. 

4. Inner domain. Matching 

The basic features of the flow in the inner domain (thermal boundary layer) were 
established by LESSER and SEEBASS [1]. Consequently, we give only an outline of the 
analysis. We define the inner coordinates by [1]. 

(41) 'Y}+~ ~0 - 'Yj-~ 
. r = 2 J!'e ~ ' s - 2 

and 

(4.2) reu = u, 

Then from Eqs. (3.7)-(3.11) we obtain 

(4.3) 

" T= T. 

ae au 
Ts+Tr = O(e), 

a " " ar (e+ T) = O(e), 

a " " , a2T 
Ts(T-(y-l)e)- Pr ar 2 = O(e). 
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We solve these equation subject to the boundary conditions 

(4.4) u(O, s) = 0, T(O, s) = 0. 

It can be shown that the solution to the problem (4.3}-(4.4) is (see [1]) 

A 2(y-I) I' foo , ( z2Pr) e-w 
u = -2q/(s)r yn dz cp s-~ yw dw+O(e), 

0 0 

A 2(y-l) Joo ( r2Pr) e-w 
(4.5) (! = 2cp(s)+ Vn cp s-~ yw dw+O(e), 

0 

f = 2(y-l)[qo(s)- J,. j 9' (s- '~:r) ~: dw]+O(e), 
0 

where cp(s) is a function to be determined, cp'(s) is its derivative. 
Hence we have two undetermined functions, namely h0 in the outer expansion and cp 

in the inner one. (To be precise h0 is not completely arbitrary because it has to satisfy 
Eq. (3.26) and only an initial condition for this equation is needed). 

We find both the function cp and the initial condition for Eq. (3.26) from the matching 
principle. We apply this principle in the form due to CoLE [7]. 

Let d(e) be a positive function such that 

(4.6) lim d(e) = 0, lim d(~ = + oo. 
e-+0 e-+0 ye 

"Intermediate" variables ~ ~ 0, and a are introduced by 

(4.7) 'f}+~ = 2~d(e), n-~ = 2a. 

Then we have also 

(4.8) 
_ E d(e) 

r- s- ye' s = (J. 

From Eqs. (4.2), (4.5), (4.6) and (4.8) we obtain 

2(y-l) - Joo cp'(a-rt) 
u = -2cp'(a)~d(e) + Y ye -;=- drt+O(e), 

n~ yrt · 
0 

(4.9) e = 2cp(a)+O(e), 

T = 2(y-l)cp(a)+O(e). 

On the other hand, from Eqs. (3.20), (3.29)3 , (3.34) and ( 4. 7) we have 

u =J(ed-a-ea)-h0(~d+a, ea)+O(e) 

=/(-a) -hO(a, O)H~(e) If'( -a)- :a h0(a, 0)] +O(b'), 

(4.10) e = !( -a)+ho(a, 0)+ Eb(e) [r< -a)+ :a h0 (a, O)]+OW), 

T = (y -I) [t< -a)+ h0 (a, 0)] + (y -l)~b( ,; ft'( -a)+ i!~ h0 (a, 0)] + 0( b2
) . 

http://rcin.org.pl



REFLECTION OF A WEAK SHOCK WAVE FROM AN ISOTHERMAL WALL 245 

Equating Eqs. (4.9) and (4.10) gives 
00 

( 4.11) 
2(y-1) ,-J qy'(a-rx) 

ho(a, 0) =/(-a)- ; - Vs y drx, 
. J nPr 0 rx 

00 

(4.12) qy(a) =!(-a)- y-1 ye J qy'(a-rx) drx. 
ynPr 0 y rx 

From Eqs. (4.11) and (4.12) we see that both h0 (a, 0) and qy(a) depend on ye, contrary 
to our earlier asumptions! To avoid this contradiction it would be necessary to return 
to the very beginning of our considerations and to supply the expansion (3.12) with terms 
o(ye). 

However, following LESSER and SEEBASS [1] we note that Eqs. (3.7)-(3.11) do not 
contain terms of order of yB. Consequently, equations for co-efficients by y'e will be 
a linearization of the equations for Q0 • Thus, instead of solving Eq. (3.26) and its linear­
ized version, we solve only Eq. (3.26) subject to an initiai condition involving the term 
o(y£). 

The solution of Eq. (4.12) is 

(4.13) qy(a, s) =/(-a)- ~e U(a)+O(s), 

where 

(4.14) U(a) = y-
1 (__3_~) 112 

Joo rx- 1/2sech2 (rx-_£_a) drx. 
2 n{JPr 

0 
2{1 

A diagram of this function is given in [1], here we note only that 
_ r 2r 

1

2(y-l) V ;c /'" +O(eT), <1--+ -eo, 
U(a) = 

1 
2(y-1) +O(a- 312), a-. +oo. 

ynPra 

From Eqs. (4.11) and (4.13) we have 

ho(a, 0) = f( -a)- yeU(a)+O(s). 

Neglecting terms of order of O(s) which contribute to higher order approximation, we 
solve Eq. (3.26) subject to the initial condition 

(4.15) ho(rJ, O) = f( -rJ)- y'eU(rJ). 

Equation (3.26) is the so-called Burgers equation, it is thoroughly discussed in [8]. 
The Hopf-Cole transformation (see [8]) 

{J I o 
(4.16) ho('YJ, -r) = r Fa;; F 

reduces the Burgers equation (3.26) to the heat equation 

( 4.17) 
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We solve this equation subject to the initial condition 

1 -Ye~(X1]) 
(4.18) F('YJ, 0) = f('YJ) e , 

where 

( 4.19) X('l) = f U( u)du = 2(y- I) (,;!Pr r 1 VI% sech 2 (<X- {p 'I )da. 
-oo 0 

A diagram showing the behaviour of this function is also presented in [1). It can be shown 
that the following asymptotic formulae hold: 

1 
__ r 2r 

1
2(y -1) V JPr l • + 0 (eT\ " -+ - oo , 

X(u) = _ 
4(y-l)"~ / ~+O(u- 1 12), a--+ +oo. Jl nPr 

5. Reftected shock wave. Final remarks 

We are interested mostly in the trajectory and the structure of the reflected shock 
wave. Consequently, we confine ourselves to the case of positive values of times t, and r. 

The solution to the problem (4.17), (4.18) is (see, for example [9)) 

1 
F(rJ, r) = .. ! 

t' 2nfh: 

00 -(ot-'7)2 J e lilT F( et, O)da., (r > 0) 
-eo 

and after some manipulations it can be written as follows ([3)): 

(5.1) 

where 

and 

From Eqs. 

(5.2) 

r 
V= rJ+ 2 r, 

v2 = 'YJ, 

Vs= ?]+Fr 

1 foo ( a- V) -Ye ~X(ce) 
I(V) = 2 -oo erfc JI

2
Pr U(a.)e fJ da., (r > 0). 

(4.16) and (5.1) we have 

1 .. 1- [ ~ v oi(Vs) ol(V2) _ r '(V)] 
+ t' e e oVs + oV2 p l' 2 

ho = 1- r r 
-V p -V 

1 +e 11 -ye P [e P I(Vs)+I(V2)) 
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Using Eqs. (3.34) and (4.16) in Eqs. (3.29) we obtain 

y-3 p t(-f..--~) 
x+t = n+e - 4- FIn (F + ... , 

/Tl"+n) 

y -3 {J F( f)' T) 
x-t = ~+e-4- FIn F(-~, T) + .... 

(5.3) 

The above three formulae together with Eqs. (3.20) and (3.34) complete the description 
of the outer flow after the reflection. 

For large positive values of T, i.e. a long time after the reflection, the above formulae 
simplify. 

First we have for T ~ I 

(5.4) 

Hence 

(5.5) 
y-3 

x+t = n+e-4- (~+n)+ .... 

The asymptotic form of the function h0 (rJ, T) is more complicated. We do not give details 
of its derivation (they are given in [3]) and we present only the result. We have 

u ~ ye U(Vs) for rJ > 0, 

u {1 + y'f ~ U(V,) exp [ ~ (V- y'E X(V,)) ]}t(V- eX( V,)) 

(5.6) 

for 0 > rJ > -FT, 
and 

(5.6)' u ~ I for -FT > rJ. 

The formulae (5.6) remind corresponding formulae obtained in [1), but now the variable 
rJ is different, because we have 

and 

(5.7)' x-t = ~ for -FT> fJ· 

However, from Eqs. (5.5) and (5.7) we have approximately 

(5.8) y-3 ( y-3) 
~+t+-2 --r = I+e-

2
- fJ· 
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This definition of the variable 'fJ is different from that used in [1] but if we substitute 
Eq. (5.8) into Eq. (5.6), then we obtain approximately the same expressions for u which 
are given in the quoted paper. 

Moreover, we can obtain the same equation of the reflected shock wave trajectory. 
Indeed, we define the trajectory of the reflected shock wave by the equation (see [I]) 

r .;-
'fJ+ T i = v e X('f}+Fr). 

From this equation we have 

r ;--. ;- rr 
'fJ = -Tr+4(y-l) Jt e Jl 2nPr + .... 

Using this relation in Eq. (5.8) we have 

5-3y ( 2F )
112 

-(5.9) Xshock = -t+e-4-t+2(y-I)e nPr V1 · 
Exactly the same results were obtained by LESSER and SEEBASS [I] and experimentally 
by STURTEVANT and SLACHMUYLDERS [4]. We can see some shift of the trajectory of the 
reflected shock wave compared to that predicted by the ideal gas model. Also the velocity 
of the reflected shock is less than that in the theory referred to. Such a result is in a good 
agreement with the experimental data [4, 5]. This displacement can be explained by the 
influence of the thermal boundary layer. 

Finally, we give some remarks concerning the applied method. It is more formal 
than that applied by Lesser and Seebass. However, it needs more tedious calculations, 
but it does not mean that the whole work is · more cumbersome, because we . do not need 
to solve . various approximations to the Navier-Stokes equations in the corresponding 
domains and then to match them. On the contrary, we obtain solutions valid at once 
in the whole outer domain. Moreover, our method is fully constructive, we have not 
used any introductory knowledge about the reflected shock wave, we have not even 
assumed its existence. The existence of the reflected shock wave, its structure and trajec­
tory are the results of our considerations, however, they cannot be treated as a rigorous 
proof. 

It is important that both the multiple scales method and the strained coordinate 
method fail if they are applied separately, only when used together they can cope with 
the problem. 

We have determined only the two first terms of the expansions. In order to find terms 
of order e2 , e3 

f ••• , e", we take into account slower time variations characterized by 
12 , 13 , ... up to 1" and we treat these variables as being independent. Next we generalize 
Eqs. (3.6) and (3.12)-(3.14) assuming that 

n 

-P(t . ) _ 'f}+~ \1 kiTF (t: ) 0( n+1) X - ~, 'fJ, i o, ... , i n-1., e - - 2- + L..J e r 1c ~, 'fJ, i o, ... , i n- 1 + e , 
k=1 
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n 

Q =}; elcQk(;, 'YJ, To, ... , Tn-J)+O(e"+ 1
), 

k=O 

where 

To = t 1 ' ... ' T n-1 = t rt. 

Thus only x and t0 = t are strained. 

249 

Then the general principles of the Lighthill technique and the multiple scales method 
should be followed. 

Although the coefficients Q1 , Q2 , ... , Q,. satisfy linear partial differential equations, 
calculations become more and more tedious. 

The method used by LESSER and SEEBASS [1] also becomes more and more involved 
when calculating higher order approximations, because it is necessary to distinguish 
new subdomains characterized by t2 , t3 , ... , t,.. Of course, these divisions demand newer 
and newer matchings. 

Consequently, the problem of determining higher order terms is very cumbersome 
and it is independent of the applied method. 
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