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Reflection of a weak shock wave from an isothermal wall
K. PIECHOR (WARSZAWA)

THe proBLEM of reflection of a weak shock wave of its front parallel to the wall is analysed.
Only the case of the isothermal wall is considered. The flow domain is divided into two parts:
an outer domain containing both shock waves and an inner domain adjacent to the wall. To
determine the outer flow the Lighthill technique and the multiple scales method are combined.
The structure of the inner flow is exactly the same as in [l]. To determine some unknown
functions the matching principle is used. The structure and the trajectory of the reflected shock
wave are obtained as results.

W pracy analizuje si¢ odbicie slabej fali uderzeniowej o froncie rownoleglym do $cianki. Roz-
waza si¢ tylko przypadek izotermicznej $cianki. Obszar przeplywu dzieli si¢ na dwie czesci:
obszar zewnetrzny zawierajgcy obie fale uderzeniowe i obszar wewnetrzny przylegly do cianki.
W celu wyznaczenia przeplywu zewngtrznego wykorzystano technike Lighthilla lacznie z metoda
wielu skal. Struktura przeplywu wewnetrznego jest dokladnie taka sama jak w [1]. Zasada
kojarzenia rozwigzan jest uzyta do wyznaczenia pewnych niewiadomych funkcji. W wyniku
otrzymuje si¢ m.in. strukture i trajektori¢ fali odbitej.

B pabore ananuanpyerca orpaykeHue ciafoil yaapHOM BOMHBI C (DPOHTOM mapasseNsHbIM
crenxe. PaccmatpuBaercs ToJIBKO ciryuailt m3oTepmuueckoil credky. Obnacts TeweHus pas-
JIENIAETCA Ha JIBE YACTH: BHEUIHAA 00/1aCTh, cofeprKaBlasn obe yapHbIe BOJHEI i BHYTPEHHAA
obsacts, npuMbIKaroliasn k creHke. C LeNbIo OIpe/ieseHHs BHEIUIHET0 TeueHuAa KomOuHupyercsa
TexunKa Jlafitxunna ¢ merogom MHorux maciutaboB. CTDYKTypa BHYTPEHHETO TE€UeHHA TOUHO
TaKad e Kak B [1]. ITpuHumn cpaluBaHus pelleHui HCIIONB3YETCA A OnpelelieHHsa He-
KOTOPBIX HEH3BECTHBIX (yHKuMii. B peaynsTaTe monydyaloTcs, MEXOAY IPOYMM, CTPYKTYpa
H TPaeKTOPHA OTPAYKEHHOH BOHBI.

1. Introduction

IN THE PRESENT paper we undertake the problem of reflection of a weak shock wave of
its front parallel to the wall, a problem already theoretically considered in [1] and.also
in [2, 3]. In the paper by Lesser and SeeBass [1] the problem under consideration was
solved by means of perturbation methods. The same ideas were repeated in [2] and [3].
Let x denote the distance from the wall and let ¢ be the time. The x-axis is directed from
the gas to the wall, so the problem is considered in the domain —0 < x < 0, —00 <
< t < o0, Lesser and Seebass divide this domain into several subdomains: “thermal
boundary layer” (in the case of the isothermal wall) described by x = 0()/ g), — <
<t< o, (¢is a “small” parameter) “acoustic region” |x| > }/&, t = 0(1) and two
domains involving either the incident shock wave (—t > 1) or the reflected one (¢t > 1).
Then the solution, valid in the boundary layer, is matched to the “acoustic” approxima-
tion, and in turn the last one is matched separately to the incident shock and to the
reflected one. As a result of this, the structure and the trajectory of the reflected shock
wave, among others, are obtained. A disadvantage of this approach is the necessity of
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such a complicated division of the flow domain and, consequently, the necessity of many
matchings. Moreover, in order to distinguish the “reflected shock” domain it is necessary
to have some introductory information on the reflected shock wave: it is necessary to
know that it exists and to have even very rough knowledge of its location.

In the present paper we consider the some problem as in [I], but another method of
solution is used. We consider only the case of isothermal wall and we divide the domain
into two parts only, inner domain (thermal boundary layer) and outer domain, We do
not use any assumption concerning the reflected shock wave, we do not even assume
its existence. Generally speaking, our method applied in the outer domain is a combina-
tion of the Lighthill technique [6] and the multiple scales method. Consequently, our
calculations are longer and more tedious, but they are made once for all. Next, the outer
expansion is matched to the inner one.

2. Basic assumptions

In this paper we consider a weak shock wave moving in a half-space bounded by
an infinite plate. If the front of the shock wave is constantly parallel to the wall, then
the problem may be treated as one-dimensional but unsteady. The coordinate system is

Incident shock

Reflected shock

Boundary layer

FiG. 1.

shown in Fig. 1. We assume that the shock wave is weak, so we may use the Navier-
Stokes equations and neglect the molecular structure of the gas.

Also no inner degree of freedom is taken into account. Next it is assumed that the
wall is impearmeable and isothermal. It is assumed that at x* = —oc0 and #* = —o0,
a weak shock wave was formed and it travels to the wall immersed at x* = 0. The moment
at which the shock wave occurs at the wall is denoted by t* = 0.

We assume that before the arrival of the shock wave the gas was at rest and it was
characterized by the constant density o, constant temperature 77 and its velocity u*
was zero. Let u¥ = const be the gas velocity behind the incident shock. We form the

parameter
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where a¥ is the sound speed of the quiescent gas. The ratio ¢ is used as a basic parameter
and it is assumed to be small. Following [1] we introduce dimensionless variables as
follows:

e
0ya; &

* %2
014,°¢
BAEY R R

Ju* P'*
where u* is the coefficient of viscosity. In order to shorten calculations it is assumed to
be constant. The dimensionless velocity, density and temperature are defined by

u* = eatu, = ot(1+¢e0), T*=Ti(1+eT).

The Navier-Stokes equations written in these coordinates take the form

‘*

’

69 3u d _
(2.1) ¥ TR~ H(@“) =0
ou 1 9 6u ou 1 & 4 9% , Ou
oT or aT
2.3) ——(y—l)—+£[ —Ta-r—-(y I)T—-i-u —(y—l)

2 2
- ;r %x{]ﬂ" [eu% -(y-DT %i———;-r(y-l)(%) ]= 0,
where y is the specific heat ratio, Pr is the Prandtl number. To obtain the system of
equations (2.1)-(2.3) the pressure p* was eliminated by means of the perfect gas equation
p* = R*Q*T*,
where R* is the gas constant.
We solve Egs. (2.1}(2.3) subject to the conditions

(2.4) lim p(x,2) =0, limu(x,t) =0, lim T(x,t)=

I=+—wm t—+—o0 ]

which express mathematically the fact that the gas is at rest ahead of the incident shock
wave.

Next we look for solutions of Egs. (2.1)-(2.3) satisfying the following conditions at
the wall:

(2.5) u@,1)=0
which means that the wall is impermeable, and
(2.6) 7T©,1) = 0.

This condition is of double meaning. First it means that the wall is isothermal, i.e. its
temperature is constant and it is the same before the arrival of the shock wave and after
its reflection. Secondly it means that all the time the gas is in a thermal equilibrium with
the wall.

The last group of assumptions concerns the oncoming flow. Let D* be the incident
shock wave speed. Then the ratio D*/af is the Mach number of the incident shock wave.
The Rankine-Hugoniot relations give

@2.7)

. o
1+ —2—-6)

5*
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where
y+1
I= =
Let lim;; denote the following limiting process: x =+ —o0, t -+ —o0 with § = x--
— M(e)t fixed.
We assume that the following limits exist:
(2.8) limyu = uy(x—Mt)+0(e),
2.9 limp = p,(x —M1)+0(¢),
(2.10) lim;, T = T,(x—Mt)+0(e),
where
(2] I) uJ(E) = QS(E) —__f(f)!
l+e"j
(212) TS(E) = (?“1)93(5)
and £ is a constant
4 y-1
e R

The formulae (2.11) and (2.12) mean that the incident shock wave is of the “classical”
Taylor structure. Our task is to find an asymptotic solution to the problem under con-
sideration. It needs dividing the domain —o0 < x < 0, — < f < c0 into two parts:
an outer domain x < 0, |x| > ]/ g, —00 < t < o0 and an inner domain (thermal bound-

ary layer) x = 0()/e), —0 < t < oo,
In each of these domains another expansion is developed. They are called outer
and inner expansion, respectively. Finally, they are matched one to another.

3. Outer expansion

Let O(t, x; €) be any of the variables u, ¢ or T. The boundary conditions (2.8)-(2.10)
show that @ is a function not only of x and #, but that it is a function of infinitely many
arguments: x, t,, ¢, t,, t3, etc.,, where ¢, = &', n =0, 1, 2, .... Consequently, we look
for solutions of Egs. (2.1)-(2.3) in the form
(3'1) Q= Q(x! tﬂlrls---:e)'

Then, for the derivative with respect to f we have
a a d
(32) W - 6—&, +& 3—f1 +

Substituting Eqgs. (3.1) and (3.2) into Egs. (2.1)-(2.3), we obtain

(.3 2 2| v L] =0,
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ou 1 @ ou du ou 1 @
4 Ful g
335
i} 0 oT
(3.5) Pt T—(y— l)_-_+£|:all Tr— (}'—1) ——( —l)T

In the above equations, #,, #,, etc. are treated as independent variables.

In the present paper we are not interested in large scales time variations described
by 1, t; etc. Thus our results will be valid only for times ¢ of order of 72,

Now, we apply the strained coordinate method to the system of equations (3.3)-(3.5),
treating f, and ¢, as completely independent variables. We make the following transfor-
mation of independent variables:

X = W('E: n, T):
(36) Iy = Q(E! 7 T):
=71,

where the functions ¥ and @ will be chosen according to the strained coordinate prin-
ciples [6].
The system of equations (3.3)-(3.5) is equivalent to the following equations:

on (¥ % ¥ 69) oD u 0P 6u) ¥ oo
J 06 On  On 0 on 0t~ 0F on on ot

od aw) do (aqs ¥y ¥ aai) do [0V 0@
~ % oc ) ot Y\ oF or T o) oy T\ oF oy

od asp) do (a¢> dou) oD 6(eu))] — 0(e?)

T 0k an)ar "\oqm OE T OE oy

as) i?{@__a_svau) (aqsa(g+:r) 6€D6(@+T))+ (_@giq_s
0k on ~ Tom OF o OF ot o Ny or

P ayf) du (aa.& ) ' aqp) du (aav L)
o0&

T ov )0 T\ o T B o7 ) o T\GE o

_@_q_!i) o o2 o _OF ou (aqa du
& o) ar TC\oE g~ om o&) T\ oy &

oD 6u) 1 (aai AeT) 0@ a(g:r))
4

T 0t On O0F 0t ot on

Ao o] o,
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¥ o(T-(y-1e) ¥ o(T-(r—1o) [ Y b
G (35‘“‘@?*““3?{—55")“ (“aﬁ;"

oD aaﬂ) d(T—(y—1e) (aqs 0¥ ny__ag)

T oy o] 08 % 0 dr  0fF ot

GG ST 36 ) AF-- T
oy 0 dn  0& 0y ot

oY T oY or ¥ 9o ¥ 9@_)

o (5o Fae) o7 (G o -

(aqb or 0D ar)_( _1) (ads do 0D 59)

on 0F ~ OF o “\on 98 ~ o€ oy

_— (ﬁ % _ @ _ai)] = 0(¢?),

Pr\dn 06 0F Oy

(3.10) _afﬁ_qﬁ?iﬁ“__(ﬂﬁ_ﬁ?ii'{)w

) on 0k OF on \ o0& Oy 0k on] "’
(3.11) 99 oT _ 0% oT _(.‘?E o9 .32__53)5

) on 0F T 9F ap  \ @ aq  0F oy
We seek solutions of these equations in the form
(3.12) 0, n. 7, ) = D) £"0u(E, 7, ),

n=0

and
(3.13) DE,n, 7,8 = —¢ + 6D, (&, 1, O+ ...\

(3.14) Y(¢,n, 1,80 = ._;ﬁ + e, (¢, 1, v+ ..

where Q denotes one of the variables u, o, T, w or 6.
Substituting Egs. (3.12)-(3.14) into Egs. (3.7)-(3.11) gives

d
%(wuo)— 2 =) =0

_3_(“0+ Qo+To)_i(uo_Qo:To)=o,

on ¥ o
d 0
_ auo 3140
WU = ‘ﬁé_ + T
e T, + 0T,

K3
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and

a a 35”, agu 6'1U1 690
_67;_(9""“‘)”6_5(9‘_”‘)'{'2 BE oy —-_E.T}__a_f._

) 0D, Ouy 09D, 6uo) 5‘90
on o0& ot on

?a_( 91+T1)_i(ul_e,+?1)+2(6‘}’, du, OV, b‘uo)

E (otto)+ —— 6 (2ouo) = 0;

k3 y 08 oq on OF
_2_ ( 0P, 3(90‘*‘ 7o) aqf'l _?(Qa'f' Ty) + Oug " dug
on 0 on ar "\ oy
a”‘l dug aﬁ_ 3(90 To) (00 To) ) _ i ( dw, _‘?_“io_) AL
"Eé)*“ (aa *3 ) ( on 3\ Ty )70

4 lpl o—\ry— o

o2& an
o, 5(7‘0—(3!-1)90)} (67’0 a:ra)
= on oF (To"(?“1)90)+ e 13

900 g0 0T, | 0T, 000
"(”_”T"('?_?)J’ o[ Tt ) v (G

000 y [ 9o 590)_
+_ar,)_'15?(3é"+§;" =9,
etc.

The functions w i 6 play only an auxiliary role and because of that we have not written
equations for w, and 6,.

We solve the systems of equations (3.15) and (3.16) subject to conditions following
from Eqgs. (2.4).

(3.17) lim u(€,7,7) =0, lim go(4,7,7) =0, lim To(§,7,7)=0
E=+ f=+o0
e:;_"?m £+ n-fixed ¥ atired
and
(3.17) Iim w(€,7,7)=0, lim g(&,79,7)=0, lim T,(5,7,7)=0
_.w e:t$ é:+£
€+q —fixed g-i-q—ﬁmd &+ n—fixed
etc.
From Egs. (3.15); and (3.17), we obtain
(3.18) T, = (7~ 1)¢o.

Using this relation in Eq. (3.15), gives
d i
W(“o*‘?o)‘l‘ 35‘(90—“0) = 0.

From the above equation and from Eq. (3.15), we have
Qot+to = 2g0(§, 1),

3.19
019 G il 5 2Rl 9,
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where g, and h, are arbitrary bounded functions. In virtue of Egs. (3.18) and (3.19) we
can write

uo(€, 1, ) = go(€, V) —ho(n, 7),
(3.20) 00(&, 1, 7) = go(€, D +ho(n, 7),
To(§, 1, ©) = (y—Dlgo(é, 7)+ho(n, D).
Substitution of Eq. (3.20), into Eq. (3.15);, and Eq. (3.20), into Eq. (3.15) gives

5%30(5, T}—";’,Tho(’?’ ),
(3.20)

0o = (y—1) [aiego(fs 7)+ %ko(ﬁs T)] .

Finally, let us note that from Eqs. (3.17) and (3.20) it follows that
(3.21) lim go(&,7) =0, lim hy(y,7) =0.

] -

Now we turn to the analysis of Egs. (3.16).
In virtue of Egs. (3.20) we can write Eq. (3.16); as follows:

0 (=D —2) + =D
—é;}"[ﬂ—(?‘—l)é‘t— 2 Pr ]

v-Dr-2) , _ﬁr_-_llw]ﬂ
Pr * ’

d
¥ T,—-(y—1De, ‘_'T'—'E’o'i‘
We solve this equation subject to the conditions (3.17),; this yields

-Dr-2) , -1 o
2 Pr o

If the last relation is used in Eq. (3.16),, then it takes the form

T, =(y-Do+

d d
By et 5 (@ “1’*2( GE on ~ on 0F

2(5¢1 ago 5@1 ago)+ auo ?_'l ( a 2

an oF o oy ot

ouy  Oug dug  Oug ) ( dwe  Owe ) B
+Q°(5‘n as)* °(an N AT
Now we combine the last equation and Eq. (3.16), and obtain the following two equa-
tions:

'aa_n'(gl 1) (Sp ¢I) aé (90+u0)+ 2 a (90+uﬂ)

l"_‘_iziz 1 (Ou0 _ Ouo) 1 (O
+73 (67;9°+6£9°+29° am o) T2\
ﬁuo 1[0 0 ) ﬁ(awo awo)_
% )+T(a_§(9°“°)+a_q(‘-’°"°) o\t
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and
%1— (e;—ul)—a%('f’d@,)%(eo—uo)—%%(ewuohyle( é‘fr 03
e ai) vpe(G 5] e (G )
(B @t 2 teon) - £ (Fn. - T ) o,

General solutions to these equations are of the form

(3.22); o1+u; = 281(‘5 '51)_“"4—}’0( » T)— ﬁ_—a_'ho(q!f)" SO(E 7)”0(’?: 7)
0 0, a2
+2[yll_ 4 T)] aé- gO(E T) ??( aga +Pg0 ag;’ g aéz 8’0)
and
(322}2 0y —u, = 2}11(59 TL)_ __" 8o(§s 'E') 2 gO(E T)hﬂ(ﬂs f)
)
+ 5 "aé* go(f T)+2 [lp +®, - Go(f, ")] ho(n, 7)

oho ohe B a’ho)
E( Pf’o ‘_a“"?'_ = 7 anz )

where g, and h, are arbitrary bounded functions, and G, and H, are defined by the
relations

G, 0H,

(323) 6—5 = Lo Tn" = ;fo.
Substituting in Eq. (3.22)
-3
¥ -9, = '}’4 Hy,
(3.24)
worp, = Y3
l+ 1 = GD!
4
and also
B g - 0go 33'9
(3.25) 5 oE I'ge % +
ﬂ 32110 aho Oho
(3.26) 7_6? —I'hg — 3 +F5

we obtain bounded expressions for u, and p,.

Now the necessity of combining the two methods is evident. Applying solely the
multiple scales method is equivalent to substituting in Egs. (3.22) ¥, = @, = 0. Then,
however, we should not be able to eliminate terms involving G, and H, which in general
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are unbounded functions. Thus, in the case under consideration the multiple scales method
fails. Similar arguments show that on the other hand the Lighthill method also breaks
down, because it does not make possible the elimination of the last terms in Eq. (3.22),
which also are not bounded.

Equations (3.23) do not uniquely determine the functions G, and H,. We choose
them such that

3.27) Go(—=n,m) =0, Ho(—n,1) =0
Then the straight line £+% = 0 in the (&, #)-plane corresponds to the boundary x = 0
in the (x, t)-plane, namely we have

x(=n,9,7)=0, t(-n,9,7)=2¢.
Equation (3.23) subject to the conditions (3.27) determine uniquely the functions G,
and H, and they are given by

(3.28) Go(é,n,7) = fgo(or t)do, Ho(&,n,7) = f}zo(o' 7)do.

Thus the transformation (3.6) is of the form

£
-3
xom AEE 73 f [golo, D) +ho( 0, Ddo+ ..,

(3.29) t = qT§+ AT f[g.;,(o’ 7)—ho(—0, T)do+ ..

For the time being, only the boundary conditions (2.4) have been used. Now we apply
the conditions (2.8)-(2.10) to our solutions (3.20), (3.29). Since the upper bound of
absolute values of f we are interested in is of order of ¢!, we can simplify these condi-

tions assuming that if x and r tend to —co with x—t—eér fixed, then

u—bf(x—t—a‘; t).
This condition, when applied to Eq. (3.12), takes the form

(3.30) U —»f(x-—ro—i;r,)

provided that x » —o0, f, = — o0, t; - —o0 with x—ro—§31 fixed.

1 .
TI‘:; fixed it must be x—t, - — oo, moreover,

we have of course x+#, - —c0. It follows then from Eq. (3.29) that £ - —oo and
n = =

However, in order to keep x—#,—
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We re-formulate this condition assuming that
(3.31) limuy(é, 7, 1) =f(£~ g—t)

if £ —c0, > —o0 and 7 - —c0 with E—i;r fixed.

Assuming that
(3.32) lim hy(n, 1) = 0

=+ =00
t=+—00

we obtain from Egs. (3.20) and (3.31), Eq. (3.32)

(3.33) limgo(Z, 7) =f(£~ = )

({-‘—» —00, T— —00, £— —12:1* ﬁxed). If we take

(3.34) go(é, 1) = f(.’;‘— —J; ‘c) = { 1 +exp ["fgl (E- —;:r)]}_l,

then both Eq. (3.25) and the condition (3.33) are satisfied.

However, the boundary conditions (2.5), (2.6) at the wall cannot be satisfied. Indeed,
in the (&, n)-plane the equation of the wall is £+ = 0. Thus the boundary conditions
(2.5), (2.6) may be formulated as follows:

(3.35) ug(—n,m) =0, To(—9,7) =0.

And now we can see that it is impossible to satisfy the two conditions (3.35). This
means that the boundary layer exists close to the wall. It is considered in the next para-
graph.

4, Inner domain. Matching

The basic features of the flow in the inner domain (thermal boundary layer) were
established by Lesser and SeeBass [1]. Consequently, we give only an outline of the
analysis. We define the inner coordinates by [1].

+£& n—§&
4.1 = 7? = *“-(-.. 0’ S T
( ) r 2 '/E S 2
and
4.2) Veu=u o=o T=T
Then from Egs. (3.7)-(3.11) we obtain
% on
WP
@3) 2 G+ =00
or ?
2T

d a
55 (T—(r=1e) “%? = 0(e).
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We solve these equation subject to the boundary conditions
(4.4) 40,5) =0, 7(0,5)=0
It can be shown that the solution to the problem (4.3)-(4.4) is (see [1])

—2¢'(s)r — (” )fdf (- z‘;‘)]/_ dw+0(e),

4.5) 6 = 20(s)+ 2(7' J, f (

) —_aw+0(e),
ﬂ:

- 2(y—1)[¢(s)—'/—f (—’P" f/l}dw]w(s).

where ¢(s) is a function to be determined, ¢'(s) is its derivative.

Hence we have two undetermined functions, namely 5, in the outer expansion and ¢
in the inner one. (To be precise k, is not completely arbitrary because it has to satisfy
Eq. (3.26) and only an initial condition for this equation is needed).

We find both the function ¢ and the initial condition for Eq. (3.26) from the matching
principle. We apply this principle in the form due to CoLe [7].

Let d(¢) be a positive function such that

(4.6) lim 8(s) = 0, lim (F‘)

=0 e=+0

= +00

“Intermediate” variables £<0, and o are introduced by

4.7 n+& = 286(e), n—&=20.
Then we have also
é(¢)
4. = — s —
(4.8) r=§ i

From Egs. (4.2), (4.5), (4.6) and (4.8) we obtain

_29/(0)88(e) +-22=1) ]/_ ) Ve f"’(" ? du+0(e),

(4.9) e = 2¢(0)+0(e),
T =2(y—-1ep(a)+0(e).
On the other hand, from Egs. (3.20), (3.29);, (3.34) and (4.7) we have
u = f(£6—0—e0)—ho(£6+ 0, £0)+0(e)

= f(=0)~ho(o, 0)+£6(2) |f'(—a) ~Z (o, 0)] +0(07),
(@10) ¢ = f(=0)+ho(o, 0)+£8(2) [f’(-a)+ o ho(o, 0)]+0(az>,

= =D [ft-erthn(o, 0] 6 -1886) [ (~0)+ 2ot 0] #0089,
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Equating Egs. (4.9) and (4.10) gives

. Ay=1) [ ¢'(o— D i
@.11) ho(a, 0) = f(—0) = ]/eo =
.12) #0) = f(=0)- TV folo=a)

l/ i Ve

From Egs. (4.11) and (4.12) we see that both hy(s, 0) and ¢(o) depend on |/ ¢, contrary
to our earlier asumptions! To avoid this contradiction it would be necessary to return
to the very beginning of our considerations and to supply the expansion (3.12) with terms
0(ye).

However, following Lesser and Seesass [l] we note that Egs. (3.7)-(3.11) do not
contain terms of order of }/E. Consequently, equations for co-efficients by |/; will be
a linearization of the equations for Q,. Thus, instead of solving Eq. (3.26) and its linear-
iz(ed ;fersion, we solve only Eq. (3.26) subject to an initial condition involving the term
0(ye).

The solution of Eq. (4.12) is

(.13 o0, ) = f=0) =L U +000),
where
1z @
(4.14) U(o) = —2—( 32;;1-) ! a~12sech? (oc - 2—1;0) da.

A diagram of this function is given in [l], here we notc only that

2(y—l)]/ e" +0(e ), ¢ - —c,
U(o) =

2(y-1) I/— +0(6~3?), o- 4.

From Egs. (4.11) and (4.13) we have
ho(a, 0) = f(—0)— V eU(0)+0(e).

Neglecting terms of order of 0(g) which contribute to higher order approximation, we
solve Eq. (3.26) subject to the initial condition

(4.15) ho(n, 0) = f(—n)— Y eUQ).
Equation (3.26) is the so-called Burgers equation, it is thoroughly discussed in [8].
The Hopf-Cole transformation (see [8])

B 1 0
reduces the Burgers equation (3.26) to the heat equation
B ?F _ OF

(4.17) BT
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We solve this equation subject to the initial condition

- ﬁg(xn)

(4.18) F(y,0) = %e ;

where

(4.19) X(p) = f U(o)do = 2(y—1) ( )”2 f V/ asech? (m--—%n)da

A diagram showing the behaviour of this function is also presented in [1]. It can be shown
that the following asymptotic formulae hold-
ar
2y ”V e" T
X(o) =

4(y—1)]/x;'l';r+0(a-'f=), o +.

5. Reflected shock wave. Final remarks

We are interested mostly in the trajectory and the structure of the reflected shock
wave. Consequently, we confine ourselves to the case of positive values of times 7, and 7.
The solution to the problem (4.17), (4.18) is (see, for example [9])

D —(a—n)?

1
F s, T =ﬁje x Fa,odﬁ, >0
, 7) Vanpe ) (o, 0), (r>0)
and after some manipulations it can be written as follows ([3]):
Ly Vol
(5.1) F=1+e’ - }/E—E[eﬂ IV)+1(V)),
where
P &
V= n+?t,
Vl = ns
Vs =n+Ix
and
1) = 1 f £ a—V i —V'e'%xm)d 0
._T_w erc(V.z_ﬁ?) (e o (r>0).

From Eqs. (4.16) and (5.1) we have

3I(V5) awv, I
1+ ]/s [ Ve + o, —Ff(Vz)]

(5.2) Bisme

r-a - L e 1w+ 1))
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Using Egs. (3.34) and (4.16) in Egs. (3.29) we obtain

(5o

-3 8,
4 1‘ (
y=3 B, F,7)
4 I'  F(-¢,1)
The above three formulae together with Egs. (3.20) and (3.34) complete the description

of the outer flow after the reflection.
For large positive values of 7, i.e. a long time after the reflection, the above formulae

x+t=n+et

(5.3)
x—t=E&+¢

simplify.
First we have for = > 1
(5.9 8¢, D=x1.
Hence
y-=3
(5.5) x+t=n+e 3 E+n+ ...

The asymptotic form of the function hy(7, 7) is more complicated. We do not give details
of its derivation (they are given in [3]) and we present only the result. We have

u }/? UWs) for n>0,

(5.6)
u {1 +V E% U(Vs) exp [% V-ve X(V,))]} f(V—eX(Vs))
for 0>9n> —IT,
and
(5.6) uxl for —I't>nq.

The formulae (5.6) remind corresponding formulae obtained in [1], but now the variable
7 is different, because we have

—t =&+ "4"3 (n+E+VelX(=E+T7)—X(n+T7)]} for 7> 0,
(5.7
_ f[—r £~y X(I'r - s)]
x—t=5+s?4 for 0>n> -TI7,
f[—r+n Ve X(Ff+n)]
and
5.7y x—t=¢ for —I't>o.

However, from Egs. (5.5) and (5.7) we have approximately

(5.8) x+1+ ?;3 T = (]+£- ;3)17.
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This definition of the variable n is different from that used in [I] but if we substitute
Eq. (5.8) into Eq. (5.6), then we obtain approximately the same expressions for # which

are given in the quoted paper.
Moreover, we can obtain the same equation of the reflected shock wave trajectory.

Indeed, we define the trajectory of the reflected shock wave by the equation (see [1])

1}+—§r = Ve X(m+I).

From this equation we have

r — I't
N = —~2—1:+4(y—l)|zs —m+....

Using this relation in Eq. (5.8) we have

: B 5—3y ar \'*
(5.9) Xook = =1+ 6 I+2(y—])e(m) Vr.

Exactly the same results were obtained by Lesser and SeeBass [1] and experimentally
by STURTEVANT and SLACHMUYLDERS [4]. We can see some shift of the trajectory of the
reflected shock wave compared to that predicted by the ideal gas model. Also the velocity
of the reflected shock is less than that in the theory referred to. Such a result is in a good
agreement with the experimental data [4, 5]. This displacement can be explained by the
influence of the thermal boundary layer.

Finally, we give some remarks concerning the applied method. It is more formal
than that applied by Lesser and Seebass. However, it needs more tedious calculations,
but it does not mean that the whole work is more cumbersome, because we do not need
to solve various approximations to the Navier-Stokes equations in the corresponding
domains and then to match them. On the contrary, we obtain solutions valid at once
in the whole outer domain. Moreover, our method is fully constructive, we have not
used any introductory knowledge about the reflected shock wave, we have not even
assumed its existence. The existence of the reflected shock wave, its structure and trajec-
tory are the results of our considerations, however, they cannot be treated as a rigorous
proof.

It is important that both the multiple scales method and the strained coordinate
method fail if they are applied separately, only when used together they can cope with
the problem.

We have determined only the two first terms of the expansions. In order to find terms
of order &2, &3 ..., &", we take into account slower time variations characterized by
t,,13, ... up to t, and we treat these variables as being independent. Next we generalize
Egs. (3.6) and (3.12)-(3.14) assuming that

5
X =¥’(E’ 7?' 10’ bl rll—l.; 8) = -1%5“ + Z stwl('sr 7?! Toy +ee» fﬂ_l)+0(8“+l),
k=1

to =08, 7, Tos o Tacts &) = Lt 4 DT EBE 1, To s T ) HO(E),
k=1
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n

Q = ZE*QK(‘E-; '?s 709 maay rn-l)+0(£l‘+l)!

k=0
where
TO =t.|.""‘ 1!-! "—'I,,.

Thus only x and ¢, = ¢ are strained.

Then the general principles of the Lighthill technique and the multiple scales method
should be followed.

Although the coefficients Q,, Q,, ..., Q, satisfy linear partial differential equations,
calculations become more and more tedious.

The method used by Lesser and SeeBAss [1] also becomes more and more involved
when calculating higher order approximations, because it is necessary to distinguish
new subdomains characterized by #,, #5, ..., t,. Of course, these divisions demand newer
and newer matchings.

Consequently, the problem of determining higher order terms is very cumbersome
and it is independent of the applied method.
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