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Multiaxial secondary creep behaviour of anisotropic materials(*)

J. BETTEN (AACHEN) and M. WANIEWSKI (WARSZAWA)

THE THEORY is based upon the assumption of the existence of a creep potential which can depend
only on the irreducible invariants (integrity basis) of Cauchy’s stress tensor ¢ or its deviator
if the material is isotropic. In this paper a simplified theory is discussed, i.e., the anisotropic
behaviour is described by using the linear transformation 7;; = fi;04 instead of the actual
stress tensor ¢ in the isotropic concept. The anisotropy of the material is entirely involved in
the fourth rank tensor @, the components of which are related to experimental data. For example,
the orthotropic case is considered, furthermore the influence of the anisotropy on the creep
behaviour of a thin-walled tube subjected to tension, torsion and internal pressure is investi-
gated. Numerical results are compared with correspondings experimental data in order to
discuss the validity of the proposed simplified theory.

Teoria jest oparta na zalozeniu isinienia potencjatu pelzania, ktory w przypadku materiatu
izotropowego zalezy tylko od nieredukowalnych niezmiennikéw tensora naprezenia Cauchy’ego
o lub od jego dewiatora. W pracy dyskutowana jest uproszczona teoria, tzn. opisany jest przypa-
dek anizotropii przy nzyciu liniowej transformacji stanu naprezenia 7;; = f;x 64 Anizotropia
materialu w opisie pojawia si¢ w tensorze czwartego rzgdu @B, skladniki ktorego odniesione sa
do danych eksperymentalnych. Rozwazono przypadek ortotropii, ponadto analizowano wplyw
anizotropii na pelzanie cienkodciennych probek poddanych dzialaniu rozciagania, skrecania
i ci$nienia wewnetrznego. Wyniki teoretyczne poroéwnano z danymi eksperymentalnymi w celu
sprawdzenia przydatno$ci proponowanej uproszczonej teorii.

Teopust onupaeTcs HAa NPEAIOJIOMKEHHM CYILECTBOBAHUS MOTCHIMAJIA JIOJI3YUECTH, KOTOPbIi
B Cllyyae H30TPOIHOIO MaTepHalsia 3aBHCHT TOJIBKO OT HEIPUBOAHMBIX HHBApHaHTOB TeH30pa
nanpsbrennii Kot o uwnm or ero gesBuaropa. B paborte obcyrypaercsi ynpolleHHasi TEOPHS,
T. 3H. ONHCBIBAETCH CIIyYall aHM3OTPOIMK IIPH HCIOJB30BAaHHM JIMHEHHOro rnpeobpasoBaHust
HAIPSDKEHHOT0 COCTOSAHMA T;j = fijk 0. AHU30TPONMA MaTepHasia B ONMMCAHMH TIOABJIACTCA
B TEH30pe YETBEPTOTO MOPAAKA [3, COCTABIMIONINE KOTOPOTO OTHECEHBI K 3KCIEPUMEHTAIBHBIM
IaHHBIM. PaccMoTpeH ciiydai opTOTPONUK, KPOME 3TOr0 aHAJIM3UPYETCA BIIHSHHUE aHU30TPOIHK
Ha IOJI3YYECTh TOHKOCTEHHBIX 00pasloB, NMOABEPrHYTBIX NEHCTBUIO PACTSMKEHMA, CKPYUH-
BaHHsA W BHYTPEHHEro AaBlieHus. TeopeTndecKre pe3yJbTaTbl CPABHEHBI C OKCIIEPHMEHTAb-
HBIMH JIaHHBIMH C eJIBIO TPOBEPKH NPUTOJHOCTH ITPeVIOXKEHHOH YIIPOILEHHONH TeOpHH.

1. Introduction

FROM THE PHYSICAL point of view, the assumption of the existence of a creep potential
has only limited justification [1], i.e., the creep potential hypothesis can only be used for
describing the secondary creep, especially the isotropic behaviour. In this case, the creep
potential is a scalar-valued tensor function of the stress tensor o. This function is said

to be isotropic if the condition

(][) F(afpajq(qu) = F(O'U)

(*) This paper was presented at the “Fourth Polish-German Symposium on Mechanics of Inelastic

Solids and Structures” held in Mogilany, September 1987.
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is fulfilled under any orthogonal transformation (aixa;, = 9;;). It is evident from the theory
of isotropic tensor functions that in an isotropic medium the creep potential F can be
expressed as a single-valued function of the irreducible basic invariants

(1.2) S,(e) = tr(a”)

or, alternatively, of the irreducible principal invariants

(1.3) Ji(e) = o, J2(0) = —oinojn,  J3(0) = i 050 Ok
of the stress tensor o, that is,
(1.4) F=F[S(e)] or F=[J(a], »=1,2,3,
respectively.

Assuming incompressibility, it is practical to use the invariants
(1.5) J2(0') = S2(0)/2 = 0i;05/2,  J3(a) = S5(0')/3 = 0i;0 01,3

of the stress deviator o;; = o;;— 0w 0;;/3, so that the creep potential (1.4) takes the form
(1.6) F = F[Jy("), J5(a)].

The theory of a creep potential is based on the principle of maximum dissipation rate
[2, 3, 4, 5], from which, following Lagrange’s method in connection with a creep condition
F(o};) = const as a subsidiary condition, we obtain the flow rule

(1.7) & = A[OF(a")/d0y)

(¢;7—tensor of the steady-state creep rate). A creep potential (1.6) and flow rule (1.7)
lead to the constitutive equation of isochoric creep behaviour:

8F ’ aF 2]
(lg) (‘,U— Alajz 0“+ aj?, ,j:l
in which
(1.9) 0':, (0’(2)) = Urk"'k; 212("’)511'/3

is the deviator of the square of the reduced stress aj;.
To determine Lagrange’s multiplier 4 in Eq. (1.8), we first calculate the dissipation rate
[6, 71

aF 3

Then, by the hypothesis of equivalent dissipation rate [6, 7], o¢ = o};¢;; and by assuming
Norton’s creep law

(1.11) ¢ =Ko" = &, (F) ,
o

we find the multiplier

(1.10) Tiyby = [2

3Ka""1)2

TlElE]

(1.12)
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The index V, appended to the brackets in Eq. (1.12), indicates an appropriate equivalent
stress state o which can be obtained from the creep condition F(o;;) = const corresponding
to Eq. (1.6). In this special case the creep potential hypothesis is compatible with the tensor
function theory if additional conditions are fulfilled [6].

However, in the anisotropic case the creep potential theory only furnishes restricted
forms of constitutive equations. Consequently, the clasical flow rule must be modified for
anisotropic solids, as has been pointed out in detail in [7].

2. Oriented solids

For anisotropic solids, the flow potential is a function not only of the stress tensor o;;

but also of the constitutive tensors 4;;, 4;u, ..., characterizing the anisotropy of the ma-
terial [6]
Q.1 F =Floy, Aijs Aija> Aijxima,..]-

Then, by analogy with the condition (1.1), we have the invariance condition
(22) F((l,-pajqo‘pq, P a“,a_,qak,.a,sAm,s, ) = F(Crfj, ceey Aijkl!"')

fulfilled under any orthogonal transformation.

Now the central problem is: to construct an irreducible integrity basis for the tensors
0;j, Aij, A ete. Together with the invariants of the single argument tensors oy;, 45,
A ete., Eq. (1.2) or (1.3), we have to take into consideration the system of simulta-
neous or joint invariants [8].

Instead of the generalized representation (2.1), by analogy with the theory of plasticity
[9, 10, 11], the anisotropic creep behaviour may be considered by a flow potential

(2.3) F = F(oy;, M}))

the representation of which is given in the usual manner [6, 11]

2.4) F = F[S,(0), S,(M), £,, ..., £.],

where the irreducible invariants

(2.5) S,(0) =tre*, SM)=trM, »=1,2,3,

(2.5) 0, =treM, 0, =treM?, 0, =irMe?, 2, = tre®M?

form the integrity basis. The second order tensor generator is defined as the dyadic pro-
duct M = V®V; vector V specifies a privileged direction of the material (transverse iso-

tropy).

2.1. Simplified theory

To describe isochoric creep behaviour of oriented solids, BETTEN [12] proposed a theory
adapted previously in the plasticity of anisotropic solids [9, 13, 14] where the following
operators are used involving anisotropy effects:

(2.6) Ty = 0+ Bkt Ot + Y ijkimn Okt Oma+ oov s

5 Arch. Mech. Stos. 5/89
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The mechanical anisotropy is specified by the tensors a, B, vy, ... of rank 2, 4, 6. ..., the
components of which are to be determined by experimental data.

Assuming a linear representation
(2.7 Tiy = BimtOus
tensor B transforms anisotropic stress state ¢ of the actual material on the equivalent

isotropic stress state T of the fictitious material. The irreducible basic or principal invariants
by analogy with the invariants (1.2) and (1.3) are given in this simple way:

(2.8) S0 =tr(w), v=1,2,3
or
(2.8) Ji(7) = 15, (W) = — T T S3(0) = T T T

Then the anisotropic behaviour can be described by using the invariants (2.8) or (2.8')
in the flow potential

(2.9) F=F[S,(t)] or F=FJ(], r=1,2.73

instead of the invariants of the actual stress tensor o.
Assuming incompressibility (1.5), the flow potential has the form

(2.10) F = FlJy (%), J5(t)]
and
(2.11) Tiy = Bl Cpas

where 5l = fijpg— Pripg 0ii/3 is deviatoric corresponding to the index pair {ij}.

Starting from a flow potential as a function of the mapped stress tensor ', Eq. (2.10),
by analogy with Eq. (1.7), (1.8) and (1.9), in anisotropic state, the constitutive equation has
been formulated in this simple way:

(2.12) &y = KO8T, pats = ¥ pavatso

where Jacobi’s matrix is defined as J,q; = 01,,/00,; = [y, ¥ denotes the steady-state
creep rate tensor to be specified in the fictitious state.

In a fictitious creep state, defined by Eq. (2.11) and by the equality of the equivalent
isochoric creep rates in both states

(2.13) y =&,
we have, by analogy of Eq. (I.11),
(2.14) y = L™ = yo(v/t)" = & (z/r)" = &,

where L, m, ¥., 7. and #, are material constants.

The equivalent fictitious isotropic creep stress 7 can be determined by the hypothesis
of equivalent dissipation rate D. Thus, in connection with Eq. (2.13), we require
(2.15) ™) = 1& = oj,&; = D.

From the flow rule (2.12), combined with the relations (2.14) and (2.15), we finally obtain
the constitutive equations [12]

) ; aF oF ,,
(2.16) &y = PBpqiip) 372 Tpet (3._/3— qu)
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in which the function @ is defined by

) 1 / OF 1 OF (m+1)/2
.17 b= 2 L{3 / [(372_),,—'--3_(3—]3)»’]}

oF 3 oF tn=hifz
[3.]2 JZ( )+2 a] J3( ] .
The index V, appended to the round brackets in Eq. (2.17), indicates the equivalent ficti-
tious stress state (7;;)y. Contrary to Eq. (2.11), the tensor

(2.18) 08;"1(”} = ﬂpqij Bpaix 01513
in Eq. (2.16) is deviatoric corresponding to the second index pair. By analogy of Eq. (1.9),
tensor T’

aJ5(t")

’ ’ ’ 2 r
(2.19) Ty = (i) = TaTrp ™3 J2(v) 6y = 0ty

is the deviator of the square of the reduced stress 7j,.
Inserting Eq. (2.16), together with Eq. (2.17), in Eq. (2.15) we obtain the rate of dissi-

pation of creep energy [12]

(2.20) D = [2(9F|dJ,)J2 (%) + 3(8F|3J3) J3()) D.

In the isotropic special case, given by By = (0p;0,5+ 0p504)/2, L = K, m = n, 7i; — oy
and 7}; — o}, the constitutive equation (2.16), together with Eq. (2.17), immediately lead
to the corresponding relations derived in Sect. 1.

3. Simplify application for incompressible and orthotropic solids

To verify the mapped stress tensor concept for incompressible solids, we assume the
Mises’s flow potential [15]
1
3
Inserting the flow potential (3.1) in Eq. (2.16) and (2.17), we obtain the constitutive equa-
tions

T2,

(3.1 F=U/0x) =

. 3 1o ,
(3.2) &ij = TL(T)"' ' Boatist Toa-
For isotropic state, Eq. (3.2) are reduced to the ODQVIST law [16]
: 3 .
(3.3) &y = E_K(U)'_lgpq

and assuming equivalent secondary creep rate £ in the form
(3.4) &= [(4/3) () = [(2/3)8,8,',
we find the relation (1.11) where

(3.5 o = [(3/2)0;;01,)' 1%,

5
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Experimental verification of Eq. (1.11) is shown on Fig. 1, for & and o defined by
(3.4) and (3.5), respectively, assuming isotropic creep behaviour presented in double
logarithmic scale (straight line fit). Tests were performed on plate specimens of Mg-alloy
pulled independetly in two perpendicular directions at 513 K [17].

Assuming the orthotropic case, the creep behaviour can be presented as the second
order tensor w [12]

, 1 1
(3.6) Biisiea = 3 (Wip 05+ w105,) — 3 wS‘;’ 0yj.
8 I I I T [
- O p=-10 ]
N ] -05
E i Z gg /Q/G‘V/OO
~ : o _¥O
Sl v 1w 0 o—" i
© / = 2611
A,Q——‘O v o1-GIr
2 | l L1 1 l
5 10 100 g(%/hx10%)

F1G. 1. Isotropic secondary creep behaviour due to [5].

If we assume that the second order tensor of anisotropy w is real and symmetric, then its
principal values oy, w,; and wyy are all real [18], w;; = w;; = diag {w,, @y, w;,}. So the
principal invariants of the tensor w take the following form, [18]:

(3.7 Ji(w) = ooy,
Jr(w) = —(wogtogomteown);  Ji3(w) = owgon

or, alternatively,

1
Ji(w) = o, Jrw)= o (@05 —wywyy),

) J3(w) = det(w,)).

4. Identification of the tensor of amisotropy

Components of the tensor w and essential creep parameters L, m involved in the con-
stitutive equations (2.16) are related to experimental data. For instance, there are some
experiments carried out under combined stress states which identify anisotropic behaviour
of material during the creep process [19, 20, 21, 22, 23, 24, 25, 26, 27]. A double logarithmic
plots of o vs ¢, wherc o and ¢ are defined as Egs. (3.5) and (3.4), respectively, present re-
sults by ODING et al. [20], Fig. 2a and by KowALEwsk1 [27], Fig. 2b. The tests were per-
formed on thin-walled tubes of austenitic, chromium-nickel steel at 873 K and of pure
copper at 573 K. The scatter of the points is too large to exlude the general straight line
fit, Eq. (1.11). However, good agreement with experiments gives the straight line fit for the
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F1G. 2. Anisotropic secondary creep behaviour (experimental values due to [20, 27]).

appropriate stress tensor directions, see the experimental data of pure shear and uniaxial
tension creep tests, Fig. 2a and Fig. 2b.

In this section, according to the test performed on the thin-walled tubes under com-
bined stress states [20, 27, Fig. 3, we try to verify the constitutive equation (3.2) based on
the relation (3.1) and on the following assumption:

“.0n ¥ = Qpyyi/3)'?
for incompressible and orthotropic solids, Eq. (3.6).

F1G. 3. The plane stress state of anisotropic material.
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Let us consider a thin-walled circular cylindrical tube (thickness s, mean radius r)
subjected to combined tension, torsion and internal pressure p. Its stress state is given by
the components 0., 0,,, 0x, With circumferential (yy), radial (zz) and tube axis (xx)
principal directions. We consider an orthotropic material with privileged directions (11),
(22) and (33) = (zz), 0 is the angle between the directions (xx) and (11), Fig. 3.

Using the notations from Fig. 3 and considering Eq. (3.6), the diagonal form of the
“orthotropic tensor” w;; is given by

4.2) wy = diag (¥ 7/, VEl(@azs 1V T/(0)33]),

where the equivalent stresses (o),, = diag {o,,,0,0}; (0),, = diag{0, 5,,,0} and
(0)33 = diag{O, 0, 7353} are obtained by the using creep law (1.11) in tests on specimens
cut along the mutually perpendicular directions (11), (22) or (33). Then, with the notation
from Fig. 3, we have

(4.3) e = K 0fy = Ky 0% = Kyyo%y.
In any privileged orthonormal frame [28], the components of the stress tensor, Fig. 3, are
given by

. . 1 .
00820 + 6,,.8in20 + o, sin?0; 5 (o,,—0,)sin20+ o,,cos26; 0O

44 =11 . ) .
@4 oy 5 (0,, — 04,)8in20 + 0,,c0520 ; 0,,sin%0—0,,sin20+0,,cos?0; 0O

0; 0; 0
Let us assume that the stress state is coincident with the privileged orthonormal frame
of material, 6 = 0, Fig. 3. Then the representation (4.4) has a form

Orxi Oxy: O oy 0,25 0
(45) O'U = ny; ny; 0 = |012; 022, 0 .
0; 0; O 0; 0; O

Inserting Eqs. (2.11) and (3.6) in Eq. (3.1) and assuming the form (4.5), we obtain the
quadratic equation

2 1 1 1 2
(4.6) = 260‘1‘4‘ w?l""—w?l|+wlzwlzl+wlzwrzu_‘ —wf;(u;z“)o’h
9 2 2 2

2 5 |
4 4 4 2 2 2 2 PP
— o (207 + 207, —oi+ - wijon— 5 0foj— , OO O 022

9 2 2 2

A ! whot ool ot + ofoiohs =
Equation (4.6) in the stress space represents an ellipsoid, i.e., the surface of constant steady-
-state creep rate.

To determine the principal components ,, w,; and wy;, of w, the following three creep
tests are required, i.e., the thin-walled tubular specimen is subjected to:

uniaxial tension
@.7 o,; = diag{s,,,0,0},

2 (1 1 !
Ly (2 of + 20+ - of + ool —
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pure torsion

0 ; 0250
(4.8) 6,;=1012;0 ;0
0 ;0 ;0
or internal pressure
g0 ;0
(4.9) o; =10 ;5 0225 0), o, = ;Pg’ g = pSp
0;0 ;0 '
Then Eq. (4.6) is reduced to the following three forms:
1 1 1 972 972
(4.10) 2w‘,‘+ 5 w‘,‘,+72 m‘,‘“ﬂ-mfw,z,-i—wlzwf“—z (v)f,a),z,[ = -—2—0‘%—1— = 2(0‘)21——,
2 2
4.11 - N N
R = e = W
. 7* 372
(4.12) wh+ohwh o, = - rp )2 = _(0')12:
25

The scheme of determination of the equivalent stresses, (a),, (¢);2 and (0),, to be defined
in Egs. (4.10)-(4.12), is presented on Fig. 4. in double logarithmic scale.

[
L | |
(5)12 ((JJ)P (5)11 G
Actual anisotropic material

I | foce |

T-(or =4

Fictitious isotrapic material

FIG. 4. “1-concept” — determination of the equivalent stress.

Resolving Eqgs. (4.10)-(4.12), we obtain the principal values of tensor w:

2 T
(4.13) of = o
(4.14) 2 _ (Du

Wy = T
11 (U)%z ’

“ oin= Y 2o )
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Finally, the equation of ellipsoid (4.6) in the stress space o,,, o,, and oxy has the form

(0')%2 2 1 (0')%2 (02%1 _ (0')%1” = 2 1 -
B N Ly i sl -l UC T Dl (‘/“‘])]"”””

L], @, @i, 1 [ (97 3 :
HE [2‘(5)‘%7* @ 2 (mf:‘ )(V -l )] %+ 305 = (@12,
where
_ W(O')?z _
a=12 (@%1(@5 3

The stress state defined in Eq. (4.5) causes the steady-state creep rate, the representa-
tion of which is given by the way

E11> €123 0
4.17) by = | E125 €223 0

0; 0; —(&1+é22)
Inserting Eqs. (2.11), (3.6), (4.13)-(4.15) in Eq. (3.2) and assuming the form (4.5), we
obtain the following representation of isochoric creep rate tensor:

(4.18) i

2 1 1 1
= 2 1 (20t 4ot 3 oo rotots— ) oho) o

1 : :
—(w‘.‘+w1‘|_ 5 w‘l‘”+5wxzwlzll_’4" of ofy — 4(:)?1031211)] 0225

: 2 ' 1 5 1 1
(4.19) €22 = 9 L(m™~! l_(w?+w?l_ 2'w?ll+ 4'0)1260121“ 4“’12‘01211‘4’3‘)12|U’12u)(7t1
] 1 1
+( 2 (u,‘+2m',‘, 4= 3 a)f,,+mfm,2,— ; (:)]2(0,2"+(uf,(u[2“)]au,
. 2 1 1 5 1 s
(4.20) Bay = L(z)™! l(—t1)‘,‘+2wﬁ—w‘,‘"+ Y wiwf — i w,zwf”+f4f wflw;") &y
I & 4 o L oga 1 o 4 5 54
+ 5y —w—wn+ 3 le"“1 g O22
and A
4.21) B3 = g L('r)”’"culzwﬁo',z.

5. Comparisons with experiments

Basing on the experimental data obtained from the creep tests under combined tension
and torsion stress states carried out by ODING et al. [20] and by KowALEWsKI [27] on the
thin-walled tubular specimens, Fig. 2a and Fig. 2b, we discuss the validity of the proposed
simplified theory. To find components of the tensor of anisotropy, we started off with
the experimental data received from uniaxial tension and pure torsion creep tests. The
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data allow to specify the values of (¢);; and (o), for various equivalent creep rates ¢,
Fig. 4. Due to the lack of creep tests performed on the tubular specimens deformed under
internal pressure, the value of (), is used as the parameter and the stress state described
by Eq. (4.5) is reduced by o,, = 0. Then Eq. (4.16) has a simplified form

(5.1 wol +302, = 73
where
(5.2) x=(0)1/(0)}; and 7= (0)
or
(5.3) ol 43(1/x)o2, = 12,
where
(5.4) T = (0)1,
Table 1.
mat.: austenitic steel T=2873 K #
w =111 Wi = 0.90 wm = 1.17

experimental values due to [20]
- — e
i Ou | 011

i m =280 L = 1.05e—11 o« = 029 (@) = (0)12/1.10
|

. . |

‘ l

| = | = - l ) ) . 7
| E=y [ C12 (0)xy T ‘ MPa ] MPa i .10-5/h
*10-*/hi o,  MPa [ e g ] — | . —=i|
g o | exp { Eq. (5.1)! exp r Eq. (5.1)| exp ’ Eq. (5.5)] exp | Eq. @.21)|
| - e e - e - e |

13 0 291 588 538 | 0 | o | 13| 13 o o
20 |0 339 | 686 628 | 0 0 | 20 20 | 0 o
22 04 349 | 490 470 196 | 139 10 22 | 17 13
[ 24 03 36.0 392 402 | 118 | 166 | 20 | 20 | 12 1.7
| 28  ~ 38.1 0 0 245 | 20 |0 0 24 24 |
| 30 0 392 | 834 | 726 o | o 3.0 30 | 0 o
S 505 | 981 | 935 o | o0 6.1 61 | 0 0o
65 |~ | 514 | 0 | 0 294 | 297 | 0 0 | 56 56 |
90 |~ 578 0 | 0 343 | 334 0 o | 77 7.7 |
92 | 06| 582 | 490 | 49.0 294 | 300 | 3.0 4.1 7.5 7.1 |
16 (0 | 635 | 1177 | 117 0 0 16 | 116 | 0 o
11.6 |20 | 63.5 172 | 172 | 343 36.1 0 1.7 | 100 99 |
144 | 05 \ 68.3 68.6 | 683 343 33.3 5.0 77 |17 | 105 |
203 |10 786 | 441 | 439 | 441 432 | 45 64 |180 | 176
25.1 ‘0.3, 833 981 999 | 294 368 | 170 | 162 [160 | 166
289 |~ 817 | 0 0 | 500 506 0 0 250 | 250 |
207 |04 885 | 981 984 | 392 40.9 200 | 178 [ 190 | 206 |
364 0 | 955 | 1471 1769 0 0 364 | 364 | 0 0
420 [0 | 1005 | 1765 | 1862 0 0 420 420 0 0
450 |~ 1027 | 0 0 58.8 593 | 0 0 390 | 390
534 1.0 109.1 | 588 | 588 | 588 603 | 125 | 155 | 450 | 443
Css2 lo6 | 1zs | 833 845 | 500 594 | 195 | 235 | 475 | 461
637 |20 | 1162 | 343 | 341 68.6 | 663 | 50 | 100 | 550 | 545
693 | ~ | 1198 | 0 | 0 600 | 692 | 0 0 600 | 600 |
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and the material response is expresed by the reduced form of Egqs. (4.18)-(4.20) as
follows:

. 2 1 5o 1 5
(5.5) B = L(7)"! (200;‘4- 5 wi + 5 of+of off +of off — 5 mﬁm,‘")a“,
. 2 ] 5 9 b [ 2 2 l 2 2
(5.6) Egq = — 9 L(7)"! (ruf‘-kmﬁ— 5 wt + 4 j Wy — 4 Wi O — 4 (uf,(-)l'”)cr” s
; . 2 i i Vg L s a. 5 g 5 > 2
(5.7) €33 = — 9 L(7) wy — 2 oy — 4 wyj o+ i Wy W — 4 ORI ) Oy s

where 7 is defined in Eq. (5.2) or in Eq. (5.4), depending on the form of Eq. (5.1) or Eq.
(5.3), respectively.

Moreover, the isochoric creep rate in torsion direction is represented by Eq. (4.21).
The constants w;, w,;, o, defined in Eq. (4.13)-(4.15) and material constants L, m de-
pend on the form of the equivalent stress 7, ie., L = K,, and m = n,, if 7 = (0);2,
Eq. (5.2)or L = K;, and m = n,, if T = (¢),,, Eq. (5.4), Fig. 4. In the case of intcrsec-
tion of the straight lines presented on Fig. 4 for anisotropic creep behaviour, we note the
evolution of anisotropy during the creep process. On the contrary, the components of the
tensor of anisotropy are independent of the changes of creep stress levels.

Comparisons of experimental data with numerical results are presented in Table |
and Table 2 for two different materials. The values of equivalent stress 7, Eq. (5.2) and
the material constants L and m are identified. The values of the principal components

Table 2.
mat: pure copper T=573 K
m = 5.44 L =15—13 o =141 (6), = (5),2/1.16
wp = 1.09 wy = 0.92 wm = 1.20

experimental values due to [27]

i ‘ ‘ LT ' J11 ‘ T2 i T2 ‘ éli i E.ll éll 5.13
oo || MR MR | om0
1 ! exp ! Eq. (5.1) % exp : Eq. (5.1) | exp ‘ Eq. (5.5)| exp | Eq. (4.21)
| | | | | | |
2.3 ; ~ | 320 | 0 | o© 17.9 | 185 | 0 ‘ 0o | 20 2.0
31 1100 339 155 | 158 155 | 162 | 18 | L7 | 22 2.2
35 (03| 346 | 268 & 263 | 89 | 86 | 32 32 12 | 13
50 0 369 | 310 ‘ 314 . 0 | 0 | 50 50 0 0
90 | ~ 4.1 o0 0 81 | 237 o o0 | 78 7.8
130 |~ 40 | o | o 260 | 254 0 0 M3 13
135 /1.0 444 | 205 208 205 202 | 15 15 ‘ 9.8 9.8
160 | 03| 458 | 355 ‘ 48 118 | 113 145 145 | 62 60
18.5 \ 10 470 | 225 | 224 | 25 | 223 | 105 105 | 132 133
20 03| 482 | 390 | 369 | 130 | 116 |192 191 | 73 76
221 |0 485 | 410 | 408 | o | o0 221 324 \ 0 0
380 |0 | 535 r 451 | 0 | 0 |3 ‘

| 380 30 0 0
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of w, Eq. (4.13)-(4.15) are calculated and the dependence between the stress components
0xx = 0y, and oy, = 0y, is defined basing on Eq. (5.1). The components &,,, Eq. (5.5)
and &,,, Eq. (4.21) of isochoric creep rate are specified and compared with values obtained
from the experiment. Then the normality condition of the isochoric creep rate to the
surfaces defined by Eq. (5.1) is proved in appropriate stress points, Figs. 5 and 6.

6. Conclusions

The experimentally obtained variation of mechanical properties, especially of the
isochoric creep rate under constant but directionally variable creep stress level, is investi-
gated by introducing a simple tensorially-linear transformation, Eq. (2.11). By assuming
the existence of a flow potential as an Odqvist-Mises form, Eq. (3.1), further restriction is
introduced to make impossible the second order effect studing. The theoretical approach
is closely adapted to the investigation of the influence of the anisotropy effect on the se-
condary creep behaviour of thin-walled tubes subjected to the combined tension, torsion
and internal pressure. Moreover, the “z-concept” is very useful to describe the creep pro-
cess under non-proportional multiaxial load paths, assuming different inclination 0,
Eq. (4.4), between load directions and the orthonormal frame of the material.
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