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Multiaxial secondary creep behaviour of anisotropic materials(*) 

J. BETTEN (AACHEN) and M. W ANIEWSKI (WARSZA WA) 

THE THEORY is based upon the assumption of the existence of a creep potential which can depend 
only on the irreducible invariants (integrity basis) of Cauchy's stress tensor a or its deviator 
if the material is isotropic. In this paper a simplified theory is discussed, i.e., the anisotropic 
behaviour is described by using the linear transformation ru = fJIJklak 1 instead of the actual 
stress tensor a in the isotropic concept. The anisotropy of the material is entirely involved in 
the fourth rank tensor (3, the components of which are related to experimental data. For example, 
the orthotropic case is considered, furthermore the influence of the anisotropy on the creep 
behaviour of a thin-walled tube subjected to tension, torsion and internal pressure is investi
gated. Numerical results are compared with correspondings experimental data in order to 
discuss the validity of the proposed simplified theory. 

Teoria jest oparta na zalozeniu istnienia potencjalu pelzania, kt6ry w przypadku materialu 
izotropowego zalezy tylko od nieredukowalnych niezmiennik6w tensora napr~zenia Cauchy'ego 
a lub od jego dewiatora. W pracy dyskutowana jest uproszczona teoria, tzn. opisany jest przypa
dek anizotropii przy nzyciu liniowej transformacji stanu napr~zenia r,1 = PuuOu. Anizotropia 
materialu w opisie pojawia si~ w tensorze czwartego rz~du (3, skladniki kt6rego odniesione s~ 
do danych eksperymentalnych. Rozwazono przypadek ortotropii, ponadto analizowano wplyw 
anizotropii na pelzanie cienkosciennych pr6bek poddanych dzialaniu rozci~gania, skr~cania 
i cisnienia wewn~trznego. Wyniki teoretyczne por6wnano z danymi eksperymentalnymi w celu 
sprawdzenia przydatnosci proponowanej uproszczonej teorii. 

TeopMH omfpaeTCH Ha npe~noJiomemHf cy~eCTBosamm noTeH~UaJia non3ytieCTM, HOTopbiH 
B CJiyqae U30TponHoro MaTepUaJia 3aBUCUT TOJihl<O OT HenpMBO~l{MbiX MHBapHaHTOB TeH3opa 
HanpHmeHUH Konm a UJIU oT ero ~eBHaTopa. B pa6oTe o6cym~aeTCH ynpo~eHHaH TeopHH, 
T. 3H. Olll{CbiB3eTCH CJiyl:IaH aHU30TpOITUU npU UCITOJih30BaHHU JIHHeMHOrO npeo6pa30B3HHH 
HanpHmeHHoro cocroHHUH ru = fJ,1k,akl· AHH30TponHH MaTepHaJia B onHcaHHH noHBJIHeTcH 
B TeH3ope tieTBepToro llOpH~I<a (3, COCT3BJIHIO~He I<OTOporo OTHeCeHbl I< :mcnepHMeHT3JlhHbiM 
~aHHhiM. PaccMoTpeH CJiyl:Ja:H opToTponuu, I<poMe 3Toro aHaJIU3HpyeTcH BJIHHHHe aHH3oTponHH 
Ha llOJI3ytieCTh TOHI<OCTeHHblX o6pa3~0B, llO~BeprHyThiX ~eHCTBHIO paCTHmeHHH, CI<py1:!H
BaHHH H BHyTpeHHero ~asJieHHH. TeopeTHl:IeCI<He pe3yJihTaTbi cpasHeHhi c 3I<cnepHMeHT3Jih
HhiMU ~aHHhiMH C ~eJihlO nposepi<H npHrO~HOCTH npe~JIO)f(eHHOH ynpo~eHHOH TeopnH. 

1. Introduction 

FRoM THE PHYSICAL point of view, the assumption of the existence of a creep potential 
has only limited justification [1], i.e., the creep potential hypothesis can only be used for 
describing the secondary creep, especially the isotropic behaviour. In this case, the creep 
potential is a scalar-valued tensor function of the stress tensor a. This function is said 
to be isotropic if the condition 

(1.1) 

(*) This paper was presented at the "Fourth Polish-German Symposium on Mechanics of Inelastic 

Solids and Structures" held in Mogilany, September 1987. 
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is fulfilled under any orthogonal transformation (a;kai" = t5i1). It is evident from the theory 
of isotropic tensor functions that in an isotropic medium the creep potential F can be 

expressed as a single-valued function of the irreducible basic invariants 

(1.2) S,(a) = tr(a") 

or, alternatively, of the irreducible principal invariants 

(1.3) J1(a) = a,b J2(a) = -aL[llaJUJ• J3(a) = a;[t)aJ£J1ak£kJ 

of the stress tensor a, that is, 

(1.4) F = F[S,(a)] or F = [Jv(a)] , v = 1, 2, 3, 

respectively. 

Assuming incompressibility, it is practical to use the invariants 

(1.5) l 2 (a') = S2 (a')/2 = a;1 a;tf2, J3(a') = S 3 (a')/3 = a;1 aj"a~tf3 
of the stress deviator a~1 = a0 - a"" t5uf3, so that the creep potential (1.4) takes the form 

(1.6) F = F[J2 (a'), J3(a')]. 

The theory of a creep potential is based on the principle of maximum dissipation rate 

[2, 3, 4, 5], from which, following Lagrange's method in connection with a creep condition 

F(a;1) = const as a subsidiary condition, we obtain the flow rule 

(1.7) t:LJ = i[oF(a')/oau] 

(ii1-tensor of the steady-state creep rate). A creep potential (1.6) and 11ow rule (1.7) 

lead to the constitutive equation of isochoric creep behaviour: 

(1.8) . ., [ oF , oF "] 
Etj = IL -0-y;au+ OJ3 a;j 

in which 

(1.9) 

is the deviator of the square of the reduced stress ai1. 

To determine Lagrange's multiplier }. in Eq. (1.8), we first calculate the dissipation rate 
[6, 7] 

(1.10) 

Then, by the hypothesis of equivalent dissipation rate [6, 7], ai = a;1iil and by assuming 
Norton's creep law 

(J.ll) 
. . (] 

( )

n 

e = Kan = Ec U: , 
we find the multiplier 

(1.12) 
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MULTIAXIAL SECONDARY CREEP BEHAVIOUR OF ANISOTROPIC MATERIALS 681 

The index V, appended to the brackets in Eq. (1.12), indicates an appropriate equivalent 
stress state a which can be obtained from the creep condition F( a;1) = const corresponding 
to Eq. (1.6). In this special case the creep potential hypothesis is compatible with the tensor 
function theory if additional conditions are fulfilled [6]. 

However, in the anisotropic case the creep potential theory only furnishes restricted 
forms of constitutive equations. Consequently, the clasical flow rule must be modified for 
anisotropic solids, as has been pointed out in detail in [7]. 

2. Oriented solids 

For anisotropic solids, the flow potential is a function not only of the stress tensor a1J 

but also of the constitutive tensors A1h A ilk" ... , characterizing the anisotropy of the ma
terial [6] 

(2.1) 

Then, by analogy with the condition (1.1), we have the invariance condition 

(2.2) 

fulfilled under any orthogonal transformation. 
Now the central problem is: to construct an irreducible integrity basis for the tensors 

a0 , Au, A Ukl etc. Together with the invariants of the single argument tensors a0 , Au, 
Auk1 etc., Eq. (1.2) or (1.3), we have to take into consideration the system of simulta
neous or joint invariants [8]. 

Instead of the generalized representation (2.1), by analogy with the theory of plasticity 
[9, I 0, 11 ], the anisotropic creep behaviour may be considered by a flow potential 

(2.3) F = F(au, Mu) 

the representation of which is given in the usual manner [6, 11] 

(2.4) F = F[S,(a), S.,(M), Ql, ... , Q4], 

where the irreducible invariants 

(2.5) 

(2.5') 

S.,(<r) = tr<r", S.,(M) = trM", v = l, 2, 3, 

Q 1 = traM, Q 2 = traM2
, Q 3 = trMa2

, Q 4 = tra2M 2 

form the integrity basis. The second order tensor generator is defined as the dyadic pro
duct M = V ® V; vector V specifies a privileged direction of the material (transverse iso
tropy). 

2.1. Simplified theory 

To describe isochoric creep behaviour of oriented solids, BETTEN [12] proposed a theory 
adapted previously in the plasticity of anisotropic solids [9, 13, 14] where the following 
operators are used involving anisotropy effects: 

(2.6) 

5 Arch. Mech. Stos. 5/89 
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682 J. B ETTEN AND M. WANI EWSKI 

The mechanical anisotropy is specified by the tensors a , ~' y, ... of rank 2, 4, 6, .. . , the 
components of which are to be determined by experimental data. 

Assuming a linear representation 

(2.7) 

tensor ~ transforms anisotropic stress state a- of the actual material on the equivalent 
isotropic stress state 't" of the fictitious material. The irreducible basic or principal invariants 
by analogy with the invariants ( 1.2) and (1.3) are given in this simple way: 

(2.8) Sv('r) = tr(T"), 1' = I , 2 , 3 

or 

(2.8 1
) f 1('t")::: iu , f 2 ('t")::: -Ti[i]Tj[j] • f 3 ('t")::: Ti[i]ij[j)Tklk] 

Then the anisotropic behaviour can be described by using the invariants (2.8) or (2.8 1
) 

in the flow potential 

(2.9) 

instead of the invariants of the actual stress tensor a-. 
Assuming incompressibility (1.5), the flow potential has the form 

(2.1 0) 

and 

(2.11) 

where ,B{u}kt = fJ upq- /)kkpq bu /3 is deviatoric corresponding to the index pair { U}. 
Starting from a flow potential as a function of the mapped stress tensor 't'

1
, Eq. (2.1 0) , 

by analogy with Eq. ( 1.7), (1.8) and (1.9) , in anisotropic state, the constitutive equation has 
been formulated in thi s simple way: 

(2.12) sij = ;:[oF('t" 1)/orpq]Jpqij = yPlJJpqi j• 

where Jacobi's matrix is defined as lpqij = o-c~q/ aa0 = {J~q liil • y denotes the steady-state 
creep rate tensor to be specified in the fictitious state. 

In a fictitious creep state, defined by Eq. (2. I I) and by the equality of the equivalent 
isochoric creep rates in both states 

(2.13) y = c , 

we have, by analogy of Eq. (1.1 I), 

(2.I4) 

where L , m, Yc. Tc and i:c are material constants. 
The equivalent fictitious isotropic creep stress r can be determined by the hypothesis 

of equivalent dissipation rate D. Thus, in connection with Eq. (2.13), we require 

(2.15) ry = r 8 = a;i f:u = D. 

From the flow rule (2.12), combined with the relations (2.14) and (2.15), we finally obtain 
the constitutive equations [12] 

(2.16) . f/>{J' ( oF I oF I~) 
cu = pq{i j} ·-iTT; rpq+ oJ-; rpq 
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in which the function 4> is defined by 

(2.17) (/) = J_ L {3 /[(!£_) + _ _!__ (!£_) ])(m+l)/2 
2 ()J2 v 3 ()J3 v 

[ 

()F 3 ()F ]<m-1)/2 
X (}J2 J2('t'')+2 (}J3 J3('t''J_ 

The index V, appended to the round brackets in Eq. (2.17), indicates the equivalent ficti
tious stress state (rii)v. Contrary to Eq. (2.11), the tensor 

(2.18) fJ;q{tJ} = {JpqiJ {Jpqkk ~u/3 

in Eq. (2.16) is deviatoric corresponding to the second index pair. By analogy of Eq. (1.9), 
tensor 't'" 

(2.19) 

is the deviator of the square of the reduced stress T~q· 
Inserting Eq. (2.16), together with Eq. (2.17), in Eq. (2.15) we obtain the rate of dissi

pation of creep energy [ 12] 

(2.20) 

In the isotropic special case, given by {Jpql) = (~Pi ~qi+ ~PJ~qi)/2, L-+ K, m-+ n, r;1 -+ a;1 
and ·r;_j -+ a;), the constitutive equation (2.16), together with Eq. (2.17), immediately lead 
to the corresponding relations derived in Sect. 1. 

3. Simplify application for incompressible and orthotropic solids 

To verify the mapped stress tensor concept for incompressible solids, we assume the 
MisEs's flow potential [15] 

(3.1) 

Inserting the flow potential (3.1) in Eq. (2.16) and (2.17), we obtain the constitutive equa
tions 

(3.2) • 3 L( )"'-1{3' I c;J = 2 T pq{iJ} Tpq. 

For isotropic state, Eq. (3.2) are reduced to the 0DQVIST law [16] 

(3.3) . 3 K( )11-1 I c11 = 2 a apq 

and assuming equivalent secondary creep rate e in the form 

(3.4) 

we find the relation (1.11) where 

(3.5) 

5* 
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684 J. BETIEN AND M. W ANIEWSKI 

Experimental verification of Eq. (1.11) is shown on Fig. 1, for e and a defined by 
(3.4) and (3.5), respectively, assuming isotropic creep behaviour presented in double 
logarithmic scale (straight line fit). Tests were performed on plate specimens of Mg-alloy 

pulled independetly in two perpendicular directions at 513 K [17]. 
Assuming the orthotropic case, the creep behaviour can be presented as the second 

order tensor w [ 12] 

(3.6) 

0 J.I=-1.0 
() -0.5 
{) a. o ..-r$.:v. 
!;:,. 0.5 . 0_3..0------() 
"V 1.0 ~~ --v---

FIG. 1. Isotropic secondary creep behaviour due to [5). 

If we assume that the second order tensor of anisotropy w is real and symmetric, then its 
principal values w., w11 and w111 are all real [18], wil = w1i = diag {w.,w11 ,w111}. So the 
principal invariants of the tensor w take the following form, (18]: 

(3.7) J 1 (w) = w1 +w11 +w11., 

J 2 (w) = -(w1w11 +w11 w111 +w1w111); J 3 (w) = w1w11 w111 

or, alternatively, 

(3.8) 

4. Identification of the tensor of anisotropy 

Components of the tensor w and essential creep parameters L, m involved in the con
stitutive equations (2.16) are related to experimental data. For instance, there are some 
experiments carried out under combined stress states which identify anisotropic behaviour 
of material during the creep process [19, 20, 21, 22, 23, 24, 25, 26, 27]. A double logarithmic 
plots of a vs E, where a and E are defined as Eqs. (3.5) and (3.4), respectively, present re
sults by ODING et al. (20], Fig. 2a and by KowALEWSKI [27], Fig. 2b. The tests were per
formed on thin-walled tubes of austenitic, chromium-nickel steel at 873 K and of pure 
copper at 573 K. The scatter of the points is too large to exlude the general straight line 
fit, Eq. (1.11). However, good agreement with experiments gives the straight line fit for the 
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FIG. 2. Anisotropic secondary creep behaviour (experimental values due to [20, 27]). 
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appropriate stress tensor directions, see the experimental data of pure shear and uniaxial 
tension creep tests, Fig. 2a and Fig. 2b. 

In this section, according to the test performed on the thin-walled tubes under com
bined stress states [20, 27], Fig. 3, we try to verify the constitutive equation (3.2) based on 
the relation (3.1) and on the following assumption: 

(4. J) r = (2riJYJd3)1J2 

for incompressible and orthotropic solids, Eq. (3.6). 

FIG. 3. The plane stress state of anisotropic material. 
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Let us consider a thin-walled circular cylindrical tube (thickness s, mean radius r) 
subjected to combined tension, torsion and internal pressure p. Its stress state is given by 
the components axx, ayy, axy with circumferential (yy), radial (zz) and tube axis (xx) 
principal directions. We consider an orthotropic material with privileged directions (J l), 
(22) and (33) = (zz), 0 is the angle between the directions (xx) and (11), Fig. 3. 

Using the notations from Fig. 3 and considering Eq. (3.6), the diagonal form of the 
"orthotropic tensor" wu is given by 

(4.2) 

where the equivalent stresses ( a) 11 = diag {a 11 , 0, 0}; ( a)22 = diag { 0, a 22 , 0} and 
(ah 3 = diag{O, 0, a 33 } are obtained by the using creep law (1.1 I) in tests on specimens 
cut along the mutually perpendicular directions (ll), (22) or (33). Then, with the notation 
from Fig. 3, we have 

(4.3) 

In any privileged orthonormal frame [28], the components of the stress tensor, Fig. 3, are 
given by 

(4.4) 

axxCOS20 +ax:; sin 20 +a yysin20; -~- (a yy- axx) sin 20 +a xyCOS 20; 0 

~- (aY>'- axx)sin20+ axycos20; axxsin20-axysin20+ayyCOS20; 0 

O· , o· 
' 

0 

Let us assume that the stress state is coincident with the privileged orthonormal frame 
of material, 0 = 0, Fig. 3. Then the representation (4.4) has a form 

(

axx; axy; 0) (all; all; 0) 
alj = axy; ayy; 0 = a12; a22; 0 . 

0; 0; 0 0; 0; 0 

(4.5) 

Inserting Eqs. (2.11) and (3.6) in Eq. (3.1) and assuming the form (4.5), we obtain the 
quadratic equation 

Equation (4.6) in the stress space represents an ellipsoid, i.e., the surface of constant steady
-~tate creep rate. 

To determine the principal components w1 , wu and w 111 of w, the following three creep 

tests are required, i.e., the thin-walled tubular specimen is subjected to: 
uniaxial tension 

(4.7) 
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pure torsion 

(4.8) 

or internal pressure 

(Jij = (~11: ~22: 0~)' 
0 ; 0 ; 

(4.9) 
rp 

ati = 2s, 

Then Eq. (4.6) is reduced to the following three forms: 

(4.10) 
4 1 4 1 4 2 2 2 2 1 2 2 9r2 

_ 9r
2 

2w1 + -
2
-- w11 + -

2 
w111 +wlwu+wlwm- -

2
- (J)uWu1 = 

2
a 211- = 2 • 2(a)u 

r2 r2 
2 2 -

(()II(()III = -3 2 = -( )2- ' 
(J12 (J 12 

(4.11) 

(4.12) 
4 2 2 4 ' r2 - 3r2 

"'" + "'""'"' + "'m = -( is f ---= ( cr)!- -

687 

The scheme of determination ofthe equivalent stresses, (a) 11 , (a)12 and (a)p, to be defined 
in Eqs. (4.10)-(4.12), is presented on Fig. 4. m double logarithmic scale. 

T=(G)tz 

Ftdr'tious isotropic material 
T~ 
~ 

11 

(6)12 {u)p (altt a 
Actual anisotropic material 

FIG. 4. "r-concept" - determination of the equivalent stress. 

Resolving Eqs. (4.10)-(4.12), we obtain the principal values of tensor w: 

(4.13) 

( 4.14) 

( 4.15) 

2 (a)u 
W11 = -( )2 T, 

(J 12 
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Finally, the equation of ellipsoid (4.6) in the stress space axx, a y y and axy has the form 

(a)i2 2 1 [ (a)i2 (a)i. (a)it (· ;- )2 1 (· ; - )] 
(4.16) (a~(Jxx- f 3 (a)t + ·-(a)f2- - 4(a)i2 ra-1 - i ra-1 _ axxO'yy 

where 

a= 12 (a)t2 -3 
(a)i1 (a); · 

The stress state defined in Eq. (4.5) causes the steady-state creep rate, the representa
tion of which is given by the way 

( ~11; ~12; 0 ) 
cu = c12 ; c22 ; 0 . 

O; 0; - (eu + i22) 
( 4.17) 

Inserting Eqs. (2.11), (3.6), (4.13)-(4.15) in Eq. (3.2) and assuming the form (4.5), we 
obtain the following representation of isochoric creep rate tensor: 

(4.18) 

(4.19) 

(4.20) 

and 

(4.21) 3 L( )m-1 2 2 c I 2 = -2 7: W1 Wu 0' 1 2 • 

5. Comparisons with experiments 

Basing on the experimental data obtained from the creep tests under combined tension 
and torsion stress states carried out by ODING et a/. [20] and by KowALEWSKI [27] on the 
thin-walled tubular specimens, Fig. 2a and Fig. 2b, we discuss the validity of the proposed 
simplified theory. To find components of the tensor of anisotropy, we started off with 
the experimental data received from uniaxial tension and pure torsion creep tests. The 
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data allow to specify the values of (a)11 and (a) 12 for various equivalent creep rates c, 
Fig. 4. Due to the lack of creep tests performed on the tubular specimens deformed under 
internal pressure, the value of (a)p is used as the parameter and the stress state described 
by Eq. (4.5) is reduced by a22 = 0. Then Eq. (4.16) has a simplified form 

(5.1) oca;x+3a;Y = T
2 

where 

(5.2) 

or 

(5.3) 

where 

(5.4) T = (a)11 

Table 1. 

mat.: austenitic steel T = 873 K 
Ill = 2.80 L = 1.05e- 11 tX = 0.29 (a)P = (a)12/l.l0 

Wu = 0.90 Wm = 1.17 

I 
I 
I 

W t = 1.11 
experimental values due to [20] 

I i <111 I <111 I 
~ = y \ ? t ~ (a)x y = i ~--~;~----~ 

•10- 5 /h I a 1 1 MPa -

_/ -------~- 1 exp I Eq. (5.1) 

u., ~Pa "" ~ --~±~:" '~~-- ~ 
exp Eq_ (5.1) j exp I Eq. (5.5) exp I Eq. (4.21)1 

1.3 
2.0 
2.2 
2.4 
2.8 
3.0 
6.1 
6.5 
9.0 
9.2 

11.6 
11.6 
14.4 
21.3 
25.1 
28.9 
29.7 

36.4 
42.0 
45.0 
53.4 
58.2 
63.7 
69.3 

0 
0 
0.4 
0.3 

0 
0 

0.6 
0 
2.0 
0.5 
1.0 
0.3 

0.4 
0 
0 

1.0 
0.6 

2.0 

29.1 
33.9 
34.9 
36.0 
38.1 
39.2 
50.5 
51.4 
57.8 

58.2 
63.5 

63.5 
68.3 
78.6 
83.3 
87.7 

88.5 
95.5 

100.5 
102.7 
109.1 
112.5 
116.2 
119.8 

58.8 
68.6 
49.0 
39.2 
0 

83.4 
98.1 

0 
0 

49.0 
117.7 

17.2 

68.6 
44.1 
98.1 
0 

98.1 
147.1 
176.5 

0 
58.8 
83.3 
34.3 
0 

53.8 
62.8 
47.0 
40.2 

0 
72.6 
93.5 

0 
0 

49.0 
117.7 

17.2 
68.3 
43.9 
99.9 
0 

98.4 
176.9 
186.2 

0 
58.8 
84.5 
34.1 
0 

0 
0 

19.6 
11.8 
24.5 

0 
0 

29.4 
34.3 
29.4 

0 
34.3 
34.3 
44.1 

29.4 
50.0 
39.2 

0 
0 

58.8 
58.8 
50.0 
68.6 
60.0 

0 
0 

13.9 
16.6 
22.0 
0 
0 

29.7 
33.4 
30.0 
0 

36.1 
33.3 
43.2 
36.8 
50.6 
40.9 
0 
0 

59.3 
60.3 
59.4 

66.3 
69.2 

1.3 
2.0 
1.0 
2.0 
0 
3.0 
6.1 
0 
0 
3.0 

11.6 
0 
5.0 
4.5 

17.0 
0 

20.0 
36.4 
42.0 
0 

12.5 
19.5 

5.0 
0 

1.3 
2.0 
2.2 
2.0 
0 
3.0 
6.1 
0 
0 
4.1 

11.6 
1.7 
7.7 

6.4 
16.2 

0 
17.8 
36.4 
42.0 

0 
15.5 

23.5 
10.0 
0 

0 
0 
1.7 
1.2 
2.4 
0 
0 
5.6 
7.7 
7.5 
0 

10.0 
11.7 
18.0 
16.0 
25.0 
19.0 

0 
0 

39.0 
45.0 
47.5 
55.0 

60.0 

~ I 

1.3 
1.7 

2.4 
0 
0 
5.6 
7.7 
7.1 
0 
9.9 

10.5 
17.6 
16.6 
25.0 
20.6 
0 
0 

39.0 

44.3 
46.1 
54.5 
60.0 
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and the material response is expresed by the reduced form of Eqs. (4.18)-(4.20) as 

follows: 

(5 5) 2 L( )"'- t ( 2 4 I 4 I 4 2 2 z 2 I 2 2 ) • E 1 1 -
9 

r Wr + -
2 

Wu + 
2
- w111 +w1 w11 +w1 w111 -

2 
-w11 w111 a 1 1 , 

where r is defined in Eq. (5.2) or in Eq. (5.4), depending on the form of Eq. (5.1) or Eq. 
(5.3), respectively. 

Moreover, the isochoric creep rate in torsion direction is represented by Eq. ( 4.21 ). 
The constants w 1 , w11 , w111 defined in Eq. ( 4.13)-( 4.15) and material constants L , m de
pend on the form of the equivalent stress r , i.e., L = K12 and m = n 12 if r = (a) 12, 
Eq. (5.2) or L = K11 and m = n 11 if r = (a)11 , Eq. (5.4), Fig. 4. In the case of intersec
tion of the straight lines presented on Fig. 4 for anisotropic creep behaviour, we note the 
evolution of anisotropy during the creep process. On the contrary, the components of the 
tensor of anisotropy are independent of the changes of creep stress levels. 

Comparisons of experimental data with numerical results are presented in Table I 
and Table 2 for two different materials. The values of equivalent stress r, Eq. (5.2) and 
the material constants L and m are identified. The values of the principal components 

Table 2. 

mat: pure copper 
m = 5.44 L = 1.5e-13 a = 1.41 

T = 573 K 
(a)P = (u) 12 / l.l6 

w , = 1.09 W u = 0.92 Wut = 1.20 
experimental values due to [27] 

i -- - ------, -~-~: 1 ~-~-.· 

t: = Y a12 (a)xy = r I MPa 
.w-s j h a11 MPa I .. I 

I I exp I Eq. (5 .1) I 

2.3 
3.1 
3.5 

1.0 
0.3 

5.0 0 
9.0 

13.0 
13.5 1.0 
16.0 0.3 
18.5 1.0 
21.0 0.3 
22.1 0 
38.0 0 

32.0 I o 
33.9 I 15.5 
34.6 26.8 
36.9 
4l.l 
44.0 
44.4 
45.8 
47.0 
48.2 
48.5 
53.5 

31.0 
0 
0 

20.5 
35.5 
22.5 
39.0 
41.0 
45.0 

0 
15.8 
26.3 
31.1 
0 
0 

20.8 
34.8 
22.4 
36.9 
40.8 

45.1 

a 12 a1 2 I t: tt t:tt I t: 12 1 e1 2 _ __c____l ·-\ I 

exp 

17.9 
15.5 
8.9 
0 

23.7 
26.0 
20.5 
11.8 
22.5 
13.0 
0 
0 

MPa - - •10- 5 /h ! •10- 5 /h- ! 

I Eq. (5.1) I exp Eq. (5.5) ~ --~~~ Eq. (~2;) I 
___ _ __________ .. _! 

I I 
18.5 0 0 2.0 I 2.0 I 

16.2 
8.6 
0 

23.7 
25.4 
21.2 
1 1.3 
22.3 
11.6 
0 
0 

1.8 
3.2 
5.0 
0 
0 
7.5 

14.5 
10.5 
19.2 
22.1 
38.0 

1.7 
3.2 
5.0 
0 
0 
7.5 

14.5 
10.5 
19.1 
22.1 
38.0 

2.2 
1.2 
0 
7.8 

11.3 
9.8 
6.2 

13.2 
7.3 
0 
0 

2.2 
1.3 
0 
7.8 

11.3 
9.8 

6.0 
13.3 
7.6 
0 
0 

http://rcin.org.pl



~18 
Q 

~ 
~ 

b 
~ 12 

~ 
U) 

l._ 

CJ 
(l.J 

Mat: copper 
Temp.=573K 

a 

t3 6 o s;gma 12/sigma 11== 0.3 

0 

0 

6. sigma 12/sigma 11 == 1 

8 16 24 32 
Tension stress u 11 [MPa] 

Mat: copper 
Temp. =573K 

o sigma 12/sigma 11=0.3 

6. sigma 12/ sigma. 11 = 1 

10 20 30 40 

Tension stress a11 {MPa] 

[Fig. 5a,b] 

[69 1] 

b 

40 

50 

http://rcin.org.pl



~24 
Cl 

~ 
C\1 

~ 

~ 16 
~ 
lr) 

l.... 

2 
-.c::: 

tr:> 8 o sigma. 12/ sigma 11 = 03 

t::. sigma 12/sigma 11=1 

Mat: copper 
Temp. =573K 

c 

0 10 20 30 40 50 
Tension stress u 11 [MPa] 
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of w, Eq. (4.13)-(4.15) are calculated and the dependence between the stress components 
axx = a 11 and axy = a 12 is defined basing on Eq. (5.1). The components £11 , Eq. (5.5) 
and E12 , Eq. (4.21) of isochoric creep rate are specified and compared with values obtained 
from the experiment. Then the normality condition of the isochoric creep rate to the 
surfaces defined by Eq. (5.1) is proved in appropriate stress points, Figs. 5 and 6. 

6. Conclusions 

The experimentally obtained vanat10n of mechanical properties, especially of the 
isochoric creep rate under constant but directionally variable creep stress level, is investi
gated by introducing a simple tensorially-linear transformation, Eq. (2.11). By assuming 
the existence of a flow potential as an Odqvist-Mises form, Eq. (3.1), further restriction is 
introduced to make impossible the second order effect studing. The theoretical approach 
is closely adapted to the investigation of the influence of the anisotropy effect on the se
condary creep behaviour of thin-walled tubes subjected to the combined tension, torsion 
and internal pressure. Moreover, the "-r-concept" is very useful to describe the creep pro
cess under non-proportional multiaxial load paths, assuming different inclination () , 
Eq. (4.4), between load directions and the orthonormal frame of the material. 
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