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Anisotropy degree of elastic materials 

J. RYCHLEWSKI (WARSZAWA) and ZHANG JIN MIN (SHANGHAI) 

THE DEFINITION of the anisotropy degree of tensors, functions and functionals with respect to 
some given operation group is presented. The anisotropy degree of fourth-order tensors is 
investigated in details. Numerical examples are given for cubic, transversely-isotropic and 
orthotropic linear elastic materials. 

Podano definicj~ stopnia anizotropii tensor6w, funkcji lub funkcjona16w, wzgl~dem odpo­
wiedniej grupy. Szczeg61owo rozwazono stopien anizotropii tensor6w euklidesowych czwartego 
rz~du. Podano przyklady numeryczne dla tensor6w sztywnosci material6w liniowo spr~zystych 
o symetrii kubicznej, transwersalnie izotropowych i ortotropowych. 

,I(aHo onpe.n;eJieHHe CTeiieHH aHH30TpOIIHOCTH TeH30pOB, Q>yHI<~HH H Q>yHH~HOHaJIOB, OTHO­

CHTeJihHO COOTBeTCTBYIO~eH rpyiiiibl. ,I(eTaJibHO paCCMOTpeH CJiytiaH eBI<JIH.D;OBbiX TeH30pOB 

tieTBepToro paHTa. .I(aHbl l!HCJieHHbie IIplil'1epbl OIIliCaHHH CTeiieHH aHH30TpOIIHH TeH30pOB 

)l{eCTI<OCTH JIHHeHHO ynpyroro TeJia .D;JIH CJiy l.IaH I<y6HlleCKOH CHMMeTpHH, TpaHCDepCaJihHOH 

H30Tpomm II OpTOTpOIIl•IH . 

Introduction 

MosT NATURAL materials, like rocks, bones, wood, are anisotropic. In highly advanced 
technology, isotropic materials have come into use rather by way of exception. 

It would be good to have the possibility to say that one elastic material is more or less 
anisotropic than another one. The possibility deserves some measures or coefficients of 
anisotropy. There have been some attempts. For example, in rock mechanics the param­
eter a= (C11 -C12)/C44 is in use. Here C11 = C1111 , C12 = C1122 , C44 = C1212 are 
elastic coefficients in some special orthogonal base, see [2, 7]. In [1], it is mentioned that 
such a measure is suited only for cubic crystals. For general elastic materials, six inde­
pendent parameters of such a kind should be used. All six parameters are equal to I for 
isotropic materials and degenerate to one parameter for cubic crystals. For transversely­
isotropic materials, the parameters are equal in pairs and one of the pairs is equal to 1. 
In [5] it is mentioned that for any anisotropic elastic material, its deviation from some 
isotropic material can be measured. In [6] a measure of this kind is presented. 

Let us stress that the quantitative evaluation of the anisotropy of a material and its sym­
metry group are quite different matters. A matrial can be very close to an isotropic material 
but have no symmetry at all. 

We present here a concept of the anisotropy degree of elastic materials. The concept 
is based on the investigation of orbits of the orthogonal group in tensor space [17, 18]. 
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698 J. RYCHLEWSKI AND ZHANG JIN MIN 

1. Anisotropy degree 

1.1. Let r be a group and !f' a set. The group r is said to operate on the set !l' if there 
exists such a mapping 

(1.1) 

that for each X E !f' and any a, {J E F 

(1.2) 

where (a, {J) ~ a{J is the group operation and i the identity of the group r. 
The orbit of the element x is 

(1.3) 

The symmetry group of the element x is 

(1.4) 

If F(x) = r , i.e., the orbit of X is a singleton, r*x = {x}, we say that X is an isotropic 
element. All other elements are called anisotropic. For details see, for example, [ 18]. 

1.2. We are interested in the case when the set !f' is a Banach space, and the group T pre­
serves the structure, 1.e., 

(1.5) 

a*(ax+by) = a(a*x)+b(a*y), 

lla*x ll = ll x ll 

for all arguments written. Here 11 ... 11 is the norm in !f' . 
The size of the orbit T * x is described by its diameter 

(1.6) d(F*x } = max lly-x ll = maxl la*x-xll 
yer* x a.er 

and its radius· 

(1.7) 

1.3. Now we may introduce the main parameter that is supposed to measure ani­
sotropy. 

DEFINITION. The parameter 

(1.8) 

is said to be the anisotropy degree of the orbit F * x. We introduce the anisotropy degree o(x) 
of the element x as anisotropy degree of its orbit 

(1.9) ll a*x-xll 
b(x) = L1 (T*x) = ~e~x 21 1xll 

The geometric meaning of b(x) is obvious 

( 1.1 0) 
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ANISOTROPY DEGREE OF ELASTIC MATERIALS 699 

where cp is the apex angle of the cone {aoc * xla E R, ex E F}. Therefore 

(1.11) 0 ~ ~(x) ~ I. 

The element xis isotropic if and only if its anisotropy degree is equal to zero, ~(x) = 0. 
The set of all isotropic elements in !l' is a linear subspace 

( 1.12) J = {xE!l'l ~(x) = 0}. 

The element x with b(x) equal to 1 is said to be extremely anisotropic. 

1.4. The above definition is good for functions (mappings, functionals) as well. Let f be 
a function f: f!£ ~OJ! where f!£, OJ! are two Banach spaces. Let F be a group operating both 
on fl' and OJ!: 

(1.13) x-)cx·x, y~exxy. 

It leads to the operation of r on the set of functions f!['Y. 

(1.14) f ~ ex*f= (exx)ofo (ex- 1
·). 

A function is called an isotropic function if F(f) = · F, i.e., 

(1.15) ex xf(ex- 1 
• x) = f(x) for all x E DomU) and ex E r. 

Otherwise we say that the function f is an anisotropic function. For details, see [18]. 
Introducing in f!['Y the linear structure and norm such that Eq. (1.5) is valid, we can 

define the anisotropy degree of the function f as 

(1.16) 
~(f)_ ll(exx)ofo (ex- 1 

• )-fll 
U - ~E~ 211fll • 

2. Anisotropy degree of tensors, tensor functions and fonctionals 

2.1. The properties of materials in continuum physics are described by Euclidean tensors, 
tensor functions and functionals of various kinds. We have to apply the formal scheme of 
Sect. 1 to these situations. 

Let us take 

(2.1) 

We assume that the norm in f7 P is given by 

(2.2) IIAII = (A. A)1/2. 

Tensor operations are described in the Notations. 
The orthogonal group (!) operates on !T P according to 

(2.3) 

It is obvious that the conditions (1.2) and (1.5) are satisfied. 
The isotropic tensor A is defined by t!J(A) = (!) (see Eq. (1.4)), i.e., 

(2.4) R*A =A for any R E t!J. 

The subspace J c !T P for any p is described in many papers. 

6* 
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The anisotropy degree of an anisotropic tensor A is equal, according to the definition 
(1.9), to 

(2.5) 
IIR*A-AII 

t:5(A) = max 2IIA . 
Re(l) II 

For extremely anisotropic tensors we have t:5(A) = I, i.e., 

(2.6) 

for some R E (!). It is possible only for A· (R *A) = -A· A, i.e., the tensor A is extreme­
ly anisotropic if 

(2.7) R*A = -A. 

2.2. Let us take several examples 

EXAMPLE I. Vectors, !l' = 3@3, r = (!). The only isotropic vector is 0. For any a =1=- 0 
we have a rotation R that, according to (2. 7), R * a = -a. Therefore 

(2.8) t:5(a) = I for all a =1=- 0. 

EXAMPLE 2. Vectors, !l' = 3@3, r = (!)(k), where k =1=- 0 is given. For any a =1=- (!),we have 

(2.9) t:5(a) = sin(a, k). 

Vectors Ak are isotropic with respect to group (!)(k). The extremely anisotropic vectors 
are An, nk = 0. 

EXAMPLE 3. Symmetric second order tensors, !l' = Sym3®3, r = (!). This case has 
been studied in [8]. For any ex= a 1 n1 ®n1 +a2n2®n2+a3 n3 ®n3 , a 3 ~ <X2 ~ <Xt, we 
have 

(2.IO) 

Hydrostatic pressures a 1 = a 2 = a 3 are isotropic, pure shears a 2 = 0, a 3 = - a 1 are 
extremely anisotrpic. 

Let JV be the subset of tensors with nonnegative eigenvalues: A1 ~ 0, a 2 ~ 0, a 3 ~ 0. 
We have 

(2.11) 
y2 

maxt:5(cx) = - - . 
cxe% 2 

EXAMPLE 4. Let us take into consideration a linear tensor function l :!T P ---+ !T q, which 
is uniquely determined by a tensor L 

(2.I2) /(X) = L · X for any X EfT,. 

There are two interesting possibilities, among others, to define the anisotropy degree 
of the relation (2.12) with respect to the orthogonal group(!). One is to consider the func­
tion I as an element in the Banach space of all linear tensor functions from fT P into 
fi"q with the induced norm defined by 

(2.13) 11/11 = sup II/(X)II 
X !lXII 
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An other problem is to consider I or its equivalence Las an element in the Banach space 
ff P+qwith the norm defined by Eq. (2.2). The following discussions are restricted to the 
last consideration. The first case deserves another paper. 

ExAMPLE 5. The same scheme as the last paragraph can be applied to tensor functionals. 

3. Solving equation 

3.1. In the investigation of the anisotropy degree of the p-th order tensor which is conside­
red as an element in the Banach space with the norm defined by Eq. (2.2), it is fundamen­
tal to calculate the diameter 

(3.1) d(A) = max IIX-YII = maxJJR*A-AJI. 
X,Yem*A Rem 

If one discusses the maximum values directly from Eq. (3.1), the calculation will be 
very complicated because of the root. But we have 

(3.2) d 2 (A) = (maxJIR*A-AJI)2 = max!JR*A-AIJZ. 
Rem Rem 

So one can first calculate d 2 (A) which in fact, is equal to 

(3.3) 

Introducing the Lagrange multiplier tx, one has the Lagrangian function as follows: 

(3.4) 

After calculating the partial derivative of the obtained Lagrangian function with res­
spect to R, we get the condition for the stationary values 

(3.5) 
()([>A(R) 
- --aR __ _ 

p 

-2 _2; a,A0[(1®R® ... ®R)a;A]-2Ra 
i=l 

p 

= 2 _2; (l®Rf® ... ®R~)(a;A)0a,A-2Ra = 0. 
i=l 

The Lagrange multiplier can be derived out from Eq. (3.5) 
p 

(3.6) a = - _2; a;A0 [(R®R® ... ®R)a;A] 
i=l 

p p 

-}; [(RT®RT® ... ®RT)a,A]0a;A = -}; (RT*a;A)0a,A. 
i=l i=l 

As the restriction condition RTR- I = 0 is symmetric, it is enough to take a symmetric 
multiplier, i.e., 

(3.7) 

which can be further expressed in terms of Eq. (3.6) as 

(3.8) aiA0(RT*a,A)-(RT*a1A)0a1A = 0. 
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Because of the asymmetry of the tensor a.a, Eq. (3.8), in fact, is equivalent to three 
scalar equations which, in addition to the three orthogonal conditions and three normal 
conditions, can be used to determine all rotations R which make IIR * A- All have sta­
tionary values. 

3.2. When A = a. is a tensor of the second order, Eq. (3.8) degenerates into 

(3.9) Rra.Ra.~+Ria.TRa.-a.R~a.TR-a.TR!a.R = 0. 

When a. further is a symmetric tensors, Eq. (3.9) is simplified into 

(3.10) R T a.Ra. = a.RT a.R . ... ... 
It is well known that two symmetric tensors of the second order are commutative if 

and only if for some orthogonal base o1 , o2, o3 

(3.11) 

(3.12) 

~ = R_:~XR = Pt 01 ®nt +P2n2®n2 + P3n3(8)o3, 

a. = IX1 Ot ®nt + IX2D2®n2 + IX303(8)n3. 

On the other hand, ~ has the same eigenvalues as a.. The eigenvalues of a. must be 
some permutations of those of a.. Therefore, Eq. (3.10) holds if and only if R is such that the 
eigenvectors of a. permute. This result is the same as [8] and leads to equation (2.1 0). 

3.3. When A is a tensor C of the fourth order with the symmetry properties 

(3.13) 

then Eq. (3.8) becomes 

(3.14) 

This case is especially interesting to us as the mechanical behaviour of a linear elastic 
solid can be described completely by such tensor. In the two following paragraphs, the 
attention will be paid to a detailed investigation of various equivalent conditions of Eq. 
(3.14) and the calculation formulae of the anisotropy degree <5(C) for transversely-iso­
tropic, cubic and orthotropic linear elastic materials. 

4. Elasticity, eigenstates and true rigid moduli 

4.1. The constitutive equation of elastic materials has the form 

(4.1) a= f(F) = R*g(U), 

where F = RU is the deformation gradient with respect to a fixed undistorted configura­
tion, R, U are, respectively, the rotation tensor and the right stretch tensor, 0' is the Cauchy 
stress tensor. 

Let us rotate the reference configuration by a rotation Q and then apply the same de­
formation F. We have 

(4.2) 

After taking 

(4.3) 
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we obtain for L1a = R*L1a that 

(4.4) 

We take ~(g) as the anisotropy degree of the elastic material. 

4.2. For small rotations and deformations, the constitutive equation (4.1) takes the classi­
cal form of Hooke's law 

(4.5) a = C · £, £ = S ·a, 

where £ is the tensor of small deformation and C the rigidity tensor, S is the inverse of C 
satisfying 

(4.6) CoS=SoC=I. 

According to Eq. (1.8), we take ~(C) as the anisotropy degree of the linear elastic ma­
terial. 

4.3. We are going to present closed formulae for the anisotropy degree of several kinds 
of linear elastic matrials. The method is based on the approach to linear elasticity given 
in [9]-[16]. Let us present a brief outline of the approach. 

The rigidity tensor C is considered as a linear operator mapping 6-dimensional space !/ 
of the symmetrical second order tensor into itself. We have in !/ the scalar product 
(a, (3) ---+ a· (3. There exists the following spectrum theorem [12] for C: 

For every elastic material C, there exists such an orthogonal expansion 

(4.7) !/ = &'1® ... ®&'e, (! ~ 6, 

&'1 .l &'1 for i =f. j, 

and such a sequence 

(4.8) 

that 

(4.9) 

where Pi is the orthogonal projector from .Cf on Pi, and 

( 4.10) 
I= P 1 + ... +P,p 

P 1 o P 1 = P 1 , P 1 o P1 = P1 o P 1 = 0 for i =f. j. 

For every wE &i'i, we have 

(4.11) 

so A.i are eigenvalues and w eigenelements of the operator C. The parameters A.i are called 
the true rigidity moduli and w are called the eigenstates of the elastic material C. 

For elastic energy, we have the expression 

(4.12) 

where ef =£·Pi·£. Therefore we must have 

(4.13) 
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If the orthogonal base w 1 , ... , w 6 in !/, wi · wk = <5;k, is taken in such a way that 
every wi belongs to some [l}Jk, then 

(4.14) 

For isotropic material the expansion is as follows: 

(4.15) 

where 

(4.16) 
1 -

p .9' = 31®1 

is the orthogonal projector from !/ onto the 1 -dimensional space of isotropic tensors, 

(4.17) 
1 

p!'} = 1- - 1®1 
3 

is the orthogonal projector from !/ onto the 5-dimensional space of deviators, and 

(4.18) 

where .A, p, are the Lame's moduli. It corresponds to the case 

(4.19) 

in the formula (4.14). 
For cubic crystals, we have 

(4.20) C = .AP91 +p,P0 +YP9f, 

where P9 is given by Eq. (4.16) and 

(4.21) 

where 

(4.22) 

For transversely-isotropic materials, the expansion is 

(4.23) C = .A1P1 +J,2P2+.A3P3+A4P4, 
where 

pl = -~sin2xl®l+ v; sinxsin(xo-x)(1®7t+7t®l)+ ~ sin2 (xo-x)7t@7t, 

(4.24) 
1 )13 3 

P2 = 2- cos2xl®l- -
2
- cosxcos(x0 - x)(l®7t+7t®l)+T cos2(x0 -x)7t@7t, 

1 
P3 = -.2- (a1 + 0'2- c) x [(1-7t)®(l-7t)], 

1 
P4 = 2- (a1 +a2)x [7t®(l-7t)+(1-7t)®7t], 7t = k®k, 

where 0 ~ x < ~ is called the distributor, a1, a2 are two permutation operators a1 = 
= [1324], a2 = [1432] and c the unit permutation operator, c = [1234], tgxo = y'2. 
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For orthotropic materials, the eigenstates are 

(4.25) 

where 

(4.26) 

(4.27) 

0 0 ! 

WL2 0 I, 
0 WL3 I 

3 

L= 1,2,3, 

WL' W N = 2 WLiWNi = ~LN' 
i=1 

yi IO Ol 
(1)4 = -1 1 0 0!, 

2 
10 0 Oj 

V2 I o o 11 
w 5 = -- !0 0 0 !, 

2 
11 0 0 l 

._ I o o o i 
t/2 w ~ = --- -- I 0 0 11. 

0 2 
10 OJ 

5. Anisotropy degree of linear elastic materials 

705 

s.t. For linear elastic materials, after substituting Eq. (4.9) into (3.14) and taking into 
consideration Eq. (4.10), we have 

e-1 
(5.1) 2 (Acx- A(l)(Ap- ).e)[(R~*Pcx)OPp-PpO(Rr *Pcx)] = 0 

cx ,/1=1 

or, written in terms of eigenstates, 

5 

(5.2) 2 ().i-).6)(Ai-A6){(R_:*wt)·wi)[(RT*wt)wi-wi(RT*w;)] = 0. 
i,j=1 

In a similar way, the calculation formula of the norm JIR * C- C!l can be simplified 
to 

5 5 

(5.3) IIR*C- CW = 2 2 (At- ).6)2
- 2 2 (At- ).6)().i- },6)[(RT *wt) · wi]2 

i=1 i,j= 1 

or 

e-1 Q-1 

(5.4) jJR*C-CW = 2 2 dcx(Acx-A(.>)2 -2 2 [(Acx-Ae)(Ap-Ar)[(RT*Pcx)·Pp], 
cx=1 cx,/1=1 
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5.2. For the fourth order tensors satisfying the symmetry property (3.13), the condition 
(2.7) can be expanded into 

(5.5) 

For each tensor, there exists exactly one system of pairwise mutually orthogonal pro­
jectors. As its result, Eq. (5.5) holds if and only if there exists a permutation a of [l, 2, ... , e] 

such that 

(5.6) 

(5.7) 

(5.8) 

For elasticity tensors of real materials, Eq. (5.7) can not be satisfied because all ri ­
gidity moduli are nonnegative and there exists at least one nonnegative rigidity modulus. 
Therefore there is no extremely anisotropic linear elastic material at all. 

5.3. Cubic crystals. Taking into account Eq. (4.20), the solving equation for cubic crystals 
can be simplified to 

(5.9) 

which can be led to 

(5.10) 

When p, = v, the material degenerates to a trivial case: the isotropic material for which 
the parameter constantly equals zero for all rotations R. If p, =1= v, let R = Runi®n1 , 

Eq. (5.1 0) is led to 

(5.11) 

In order to find the solutions of the above equation, we will use the following genera 
representation formula of the rotation tensor 

(5.12) 

where k is the rotation axis and q; the rotation angle of R. 
If one tries to find all solutions of R directly from Eq. (5.11), the calculation will be 

very complicated. The solution for maximum can be guessed in terms of the character­
istics of the problem. The solutions are believed to be 

(5.13) 2 2 k2 1 
kl = k2 = 3 = 3' 
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---------- ------- ---------

In this case, 

2 2 

±1 0 0 
3 3 3 

tl 0 0 
2 1 

0 ± 1 0 
3 3 

0 0 ±1 2 2 

(5.14) 0 ±1 0 
2 

R= 
0 ± 1 

3 

3 3 3 

lt is obvious that such R satisfy Eq. (5.11). 
The diameter of the {9-orbit is 

(5.15) 

because of 

( 
T ) 17 (5.16) R *K · K = 2.7 · 

The anisotropy degree <5(C) is 

(5 .17) d(C) ( 32(,u -v)2 
)

1 12 

<5(c) = -2T(c!r = 27(A2 + 2,u 2 + 3v2 ) 

The maximum anisotropy degree for materials with cubic symmetry is 

(5.18) Sup <5(C) = lim <5(C) = 0.7698. 
)../p,vfp-+0 

From Eq. (5.15) the diameter d(C) is independent of the rigidity modulus A whose pro­
jector represents an isotropic volume deformation. When ,u = v, d(C) = 0, the material 
degenerates to an isotropic one. 

The parameter a = (C11 - C12)/C44 for cubic crystals, expressed by eigenvalues, is 
p,fv, which, like d(C), is independent of the rigidity modulus A. The parameter a represents 
the ratio of two rigidity moduli ,u and v which are equal to each other for isotropic ma­
terials. 

5.4. Transversely-isotropic materials. Taking into account Eqs. (4.23) and (4.24), after 
some tedious but simple calculations, one has 

(5.19) (Rr *P1)0P2 -P2 0(RT *P1) 

= y ~~ sin2(x0 -x)[y2sin2(x0 -x)-sin2(x0 +x)](t®k-k®t), 

where 

(5.20) 

Similarly, for any rx and {J, it is easy to prove that 

(5.21) (Rr *Pcx)0Pp-Pp0(Rr*pa) = Yfap(y2)(t®k-k®t), rx ¥= {J, 

where fap are functions of y 2 • 

http://rcin.org.pl



708 J. RYCHLEWSKI AND ZHANG JIN MIN 

Now the solving equation is led to 

4 

r[ L /cxp(y2)AcxAp)](t®k-k®t) = 0. 
·cx,/1=1 

(5.22) 

It can be proved by direct calculation that if Ai =I= Aj, i =I= j, then, 

4 

(5.23) l., Acx Ap}~p(y2) > 0. 
cx,P=I 

There exist two possibilities for the solving equation to be satisfied: 

(5.24) t®k-k®t = 0 

or 

(5.25) y = 0. 

Equation (5.24) holds when and only when t = RTk = k, i.e. , R is a symmetric rota­
tion of the matrial. At this case, 1/ R *C-CI/ equals zero. 

Equation (5.25) means, in fact, that 

(5.26) tk = 0, or equivalently, kRk = 0 

which implies that the rotation R rotates k to the plane perpendicular to k itself. The sta­
tionary value in this case can be calculated in the way presented in Tabl. 1. 

Table 1. The coefficients (Rr*Pcx) · Pp. 

_____ i ----~~-- -- ___ j ______ ~---- ___ j_P3 --'--- - p4 

I 9 2 - sin 2(x0 - x) 
16 

0 

------- - - -----· ---- - -- ----~--1 

3 2 - cos (x0 -x) 
4 

0 

----------- - ---

0 0 
------------1-----

3 2 - sin (x0 -x) 
4 

3 2 - cos (x0 - x) 
4 

-------- -------------
___ 4 _ _ _ _1 

According to Eq. (5.4), the stationary value is 

(5.27) d2(C) = CAt- A2)2 + 2(A3 - A4 )
2 +(At- A4 )

2 + (A2- A4 ) 2 

- ~ [(A1 - A4 )sinusin(2u0 - u)- (A2- A4 )cosucos(2u0 - u)] 2
, 

where we have used the equalities 

(5.28) . 2 2 Jl2 
SID Uo = - -

3
- , COS 2x0 = 
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For transversely-isotropic materials, 

(5.29) 

where the supremum is taken with respect to the elasticity tensors of all transversely iso­
tropic materials. 

The following special cases seem to be interesting to us: 
i) When A1 = A2, 

(5.30) 

ii) When Y. = 0 

(5.31) d 2(C) = U1- Az)2 + 2(J.3- .J-4)2 + (J.l- .J-4)2 + ~ (J.z- .J-4)2. 

n 
iii) When Y. = -.f 

iv) When Y. = Y-o 

(5.33) 

v) When 

(5.34) 

the material becomes isotropic and, therefore, d 2 (C) = 0 
In engineering applications, the material constants of transversely isotropic materials 

usually are given through elastic moduli E(k), E(n), Poisson's ratios v(n), v(k) and shear 
moduli G(n, k), where n is an arbitrary direction normal to the symmetry axis k. The 
relations between the engineering constants, the rigidity modululi and the distributor 
are 

(5.35) 1 1 ( 1 1 v(n) 2v(k) ) 
~- = 2 E(D) + E(k) - E(n) - E(k) sin 2Y- ' 

(5.36) 1 1 ( 1 1 v(n) 2v(k) ) 
~ = -2- E(nf+ E(k) - -E(n) + £(k)sin2Y- ' 

(5.37) A3 = 2G(n, k), 

(5.38) ;. _ E(n) 
4 

- 1 +v(n) 

The distributor is determined by means of Eq. (5.36) and the equation 

(5.39) 
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ExAMPLE. Most of fine-grained and laminated rocks can be regarded as transversely 

isotropic materials. LEKHNITSK 11 [4] has given the elastic constants of a coarse dark-grey 

aleurolith containing 60-70 percent of fragments of quartz and feldspar and 30-40 per­

cent of argil. The constants are as follows: 

(5.40) 

E(n) = 6.09 x 109 Pa , 

G(o , k) = 2.24 x 109 Pa, 

v(k) = 0.24 . 

E(k) = 5.57 x 109 Pa , 

v(o) = 0.22 , 

The rigidity moduli and the distributor for such material are 

A. 1 = 9.74 x 109 Pa, A. 2 = 4.90 x 109 Pa , 

(5.41) A. 3 = 4.49 x 109 Pa , A. 4 = 4.99 x 109 Pa , 

Y. = 0.955. 

The lD-orbit diameter d(C) and the anisotropy parameter b(C) of this matrial are 

(5.42) d(C) = l.84x 109 Pa , b(C) = 0.072. 

From Eq. (5.41), it is obvious that the material is very close to isotropic material whose 

elastic constants satisfy Eq. (5.34). 
It seems that the following material [I] deviates a little more from the isotropic material. 

The elastic constants are 

(5.43) 

E(n) = 11.17 x 109 Pa, 

G(n , k) = 1.94 x 109 Pa , 

v(k) = 0. 328 . 

E(k) = 5.19 x 109 Pa , 

v(n) = 0.067 , 

The rigidity moduli and the distributor for such material are 

} , 1 = 18.32x 109 Pa , A. 2 = 4.52x 109 Pa , 

(5.44) A. 3 = 3.88 x 109 Pa , A.4 = 10.47 x 109 Pa , 

Y. = 1.141. 

The lD-orbit diameter d(C) and the anisotropy parameter b(C) of this matrial , respectiv­

ely, are 

(5.45) d(C) = 11.23 X I 09 Pa ' o(C) = 0.256. 

5.5; Orthotropic materials. If one substitutes Eqs. (4.25) and (4.27) into Eq. (5.2) directly 

the equation will be very complicated. It is easy to see that if the rotation R is such that 

w 4 , w 5 , w 6 permute with each other, then all rotated tensors of w 1 , . .. , w 6 remain per­

pendicular to each other. Equation (5.2) is satisfied because 

i) i , j ~ 4 , (R T * w;) · w j = 0 or R T * w ; = w i , 

(5.46) ii) i~4 , j~3 , (RT *w;)·wi=O , 

i ~ 3 ' j ~ 4 , 

iii) i , j ~ 3, (R*w;)wi =wART *w;) . 
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The correspondence relation between the exchanges of [456] and the exchanges of 
[ 123] is as follows: 

(5.47) 

(45) -+ (23)' 

(56) -+ (12)' 

( 46) -+ (I 3) . 

Because each permutation can be decomposed into multiplications of finite exchanges, 
the relation (5.47) induces naturally a correspondence relation between the permutations 
of [456] and [123]. 

The stationary values in these cases are 

6 6 3 

(5.48) d 2 (C) = 2 [I A?- I AiAj6a(i)J- I AtAiWta(k)WJk)2
], 

i= I i,j=4 k,i,.i= 1 

where a is a permutation of [123456] such that the first half part and the last half part 
satisfy the correspondence relation (5.47). For different permutation a, Eq. (5.48) will 
lead to different stationary values, the largest of which is what we need: maximum d(C). 

For orthotropic matrials, the relations between the moduli of rigidity At, A2 , A3 , A4 

As, A6 , the distributors wu and the engineering constants are 

I wL w~ t w~ 1 
- - = - - +---+--
E(X) At A2 A3 ' 

(5.49) 
1 wi2 w~2 wL 

E(Y) = ~+~+~, 

1 wi3 w~3 w~3 
E(Z) = ----;:;-- + ~ + ~ ' 

v(X, Y) W11Wt2 W21W22 W3t WJ2 

E(Y) At + A2 + A3 

(5.50) 
v(Y, Z) w12w13 (022(023 (032(033 

E(Z) At 
+---+ 

A2 A3 

v(X, Z) WuWt3 
+ 

W21 W23 W31 W33 

E(Z) At A2 
+ . 

).3 

1 
4G(X,- Y) = -2A

4 ' 

1 
4G(Z, X) = 2A.5 ' 

(5.51) 

4G(Z, Y) = 2A6 • 

Equations (5.49) and (5.50) can be combined into a matrix equation 

(5.52) wr[+]w= u, 
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- ---· -~--------· - ---

where U, [ ~ ] and W are defined as follows: 

1 v(X, Y) 
E(Xf- E(Y) 

1 

v(X, Z) 
E(Z) 

v(Y, Z) 
(5.53) U= E(Y)- E(Z) 

Symmetry 
1 

E(Z) 

(5.54) 
I* 0 0 

Wtt 

[+] 0 
).2 

0 W= (1)21 

(I) 31 

0 0 
.).3 

(I) 12 W 1 3 I 

(1)22 (1)23 ! . 
I 

(1)32 w33 I 

In other words, U can be diagonalized into [~]by the orthogonal matrix W. In order 

to find the rigidity moduli .A. 1 , .A. 2 , .A 3 and the distributors W, one needs only to consider the 
diagonalizing problem of U. The following are four calculation examp1es for orthotropic 
rocks. The material coefficients are taken from LUMA and VuTUKURu's "Handbook on 
Mechanical Properties of Rocks" [3] 

Table 2. Engineering elastic constants of the four rocks. 
---~------~-------··---·----

1 E(Z) G(X, Y) G(X, Z) G(Y, Z) , 
E(X) I E(Y) (X 109 (X 109 (X 109 (X 109 I V(X, Y) V(X, Z) V(Y, Z) 

( x 109 Pa) ( x 109Pa) Pa) Pa) Pa) Pa) i 

-~----~ I I 

Roc~ _1~~~~~8_J_o=-_ l, __ o.6J _ 0.63 ~-~.75 Lo~5 J o.oss_ . J_oo8~ 
I I I 

Rock II 8.30 7.85 7.33 2.91 3.01 3.19 0.314 0.353 I 0.306 i 
---- - ---~-~-- --~---- 1- - ·---1 

Rock III 11.27 j 10.39 9.60 1 3.58 3. 72 4.17 0.278 0.276 0.317 ~ 

Rock IV 9.90 ~~~~--;~ . 2.33 3.55 0.185 0.258 0.329 

Table 3. The rigidity moduli of the four rocks (unit = 109 Pa). 

~---- ···-~---

! 

Rock I 1.72 1.48 0.72 1.22 1.25 i 1.49 
---~~ -- - - ----- --- - ·- - ------ . 

I 

-I 

Rock II 24.29 5.59 6.10 5.82 6.02 6.39 
- - - -

~ -~~-
. ----- -·--· 

Rock III 8.49 26.87 7.13 7.45 9.31 

I i - ------ ·- - ---·-

Rock IV 7.76 21.09 
I 

4.85 4.72 4.66 7.10 
I 

http://rcin.org.pl



ANISOTROPY DEGREE OF ELASTIC MATERIALS 713 
- ---~ ------- --- - -

Table 4. The distributors for the four rocks. 

I w11 W12 
I 

Wt3 I W21 
I 

W22 
I 

W 23 W31 I WJ2 I WJJ 

- - - -

I I 

Ro ck I I 0.994 0.048 0.099 -0.050 1.000 0.011 -0.100 -0.016 0.995 
- - I 
ck ll 0.618 0.556 0.556 -0.474 -0.301 0.828 -0.628 0.775 -0.077 

- ·- ·- - I 

1 

Ro 

Ro ck III 0.779 -0.571 -0.258 0.605 0.579 0.546 -0.162 -0.582 0.797 
- -- - ···- --

Ro ck IV 
I 

0.732 -0.667 -0.142 0.634 0.589 1 0.502 -0.251 I -0.457 o.853 I 
---- ---·· 

Table 5. Orbit diameters and anisotropy degrees. 

I d(C), Pa I <5(C) 
----------

Rock I 1.449 X 109 0.219 
- - - - ·--· - -

Rock II 2.498 X 109 0.045 
----~---

Rock III 4.079 X 109 
I 

0.063 

Rock IV 6.548 X 109 0.131 

Now we have established a total order in the set consisting of all linearly elastic materials 
according to their anisotropy degrees. For two arbitrary elastic material C1 and C2, 
we write C1 > C2 if b(C1) > b(C2 ). Therefore, according to Table 5, we have the follow­
ing relation: 

(5.55) ROCK I > ROCK IV > ROCK III > ROCK II. 

Notations 

A three-dimensional Euclidean vector space is denoted by 3 , its elements by x, n, ... , 
scalar product by xy. 

The Euclidean tensors of the p-th order are elements of the p-th tensor power Q9P3. 

Second order symmetric tensors are denoted by a, ~ ... , orthogonal tensors of the se­
cond order are denoted by R, Q. They are elements in the orthogonal group(!) = S0(3) = 

= Aut3 = {Q E3®3IQTQ = QQT = 1}. 
Group (!) operates on Q9P3 according to the rule A --+ Q * A, Q* is a linear operation 

defined on decomposable tensors by 

Q*(a® ... ®b)= Qa® ... ®Qb. 

Permutation of the sequence (1, ... , p) is denoted by a = (a( I) ... a(p)). Permutations 
form a group which operates on Q9P3 according to A --+ ax A, where ax is a linear opera­
tor prescribed on decomposable tensors by 

C1 X (al Q9 ... QS)ap) = aa(l)QS) ... ®aa(p). 

The permutations ai, i =I, ... ,pare given as ai = (il2 ... (i-1) 1 (i+l) ... p). 

7 Arch. Mecb. Stos. 5/89 
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To translate all formulae to well-known Cartesian index language, you may use the 
table 

We have 

R*A 

a, 1 

a~ 

a@~ 

a·~ 

A 

AOB 

x,n 

xy 

x®y 

(l®R® ... ®R)A 

c 
C·D 

CoD 

lx X 

for all x E 3, et E sym3(8)3. 
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