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Anisotropy degree of elastic materials

J. RYCHLEWSKI (WARSZAWA) and ZHANG JIN MIN (SHANGHAI)

THE DEFINITION of the anisotropy degree of tensors, functions and functionals with respect to
some given operation group is presented. The anisotropy degree of fourth-order tensors is
investigated in details. Numerical examples are given for cubic, transversely-isotropic and
orthotropic linear elastic materials.

Podano definicj¢ stopnia anizotropii tensoréw, funkcji lub funkcjonalow, wzgledem odpo-
wiedniej grupy. Szczegodlowo rozwazono stopien anizotropii tensoroéw euklidesowych czwartego
rzedu. Podano przyklady numeryczne dla tensorow sztywnosci materiatéw liniowo sprezystych
o symetrii kubicznej, transwersalnie izotropowych i ortotropowych.

Tano onpemernenue CTerneHN AHM3OTPOIHOCTH TEH30pPOB, GYHKUHH M (YHKUHOHAIOB, OTHO-
CHTEJIbHO COOTBETCTBYIOLeH rpymmbi. JleTanbHo pacCMOTpEH CIyuail eBKIHJOBBIX TEH30DOB
yerBepToro panra. [{aHbI UMCIEHHbIE NPUMEPHLI OMUCAHHA CTEICHH AHH30TPOIMH TEH30DOB
YKECTKOCTH JIMHENHO yNpyroro Tena IUisl ciyuasi KyOHUECKOM CHMMETPUH, TPaHCBEepCaJIbHOM
HM30TPONUKH U OPTOTPOIHH.

Introduction

MoST NATURAL materials, like rocks, bones, wood, are anisotropic. In highly advanced
technology, isotropic materials have come into use rather by way of exception.

It would be good to have the possibility to say that one elastic material is more or less
anisotropic than another one. The possibility deserves some measures or coefficients of
anisotropy. There have been some attempts. For example, in rock mechanics the param-
eter a = (Cy;—C,,)/Css is in use. Here C;; = Cy111, Ci2 = Ci122, Caa = Cy54, are
elastic coefficients in some special orthogonal base, see [2, 7]. In [1], it is mentioned that
such a measure is suited only for cubic crystals. For general elastic materials, six inde-
pendent parameters of such a kind should be used. All six parameters are equal to 1 for
1sotropic materials and degenerate to one parameter for cubic crystals. For transversely-
isotropic materials, the parameters are equal in pairs and one of the pairs is equal to 1.
In [5] it is mentioned that for any anisotropic elastic material, its deviation from some
isotropic material can be measured. In [6] a measure of this kind is presented.

Let us stress that the quantitative evaluation of the anisotropy of a material and its sym-
metry group are quite different matters. A matrial can be very close to an isotropic material
but have no symmetry at all.

We present here a concept of the anisotropy degree of elastic materials. The concept
is based on the investigation of orbits of the orthogonal group in tensor space [17, 18].

6 Arch. Mech. Stos. 5/89



698 J. RYCHLEWSKI AND ZHANG JIN MIN

1. Anisotropy degree

1.1, Let I be a group and % a set. The group /" is said to operate on the set & if there
exists such a mapping

(1.1) ' - %, (x,x)— axx
that for each x € .% and any «, fel’
(1.2) (xf)*x = ax(fxx), Ixx = X,
where («, #) — af 1s the group operation and i the identity of the group I
The orbit of the element x is
(1.3) I'sx = {axx|ael’}.
The symmetry group of the element x is
(1.4) I'(x) = {a€laxx = x}.
If I'(x) = I, i.e., the orbit of x is a singleton, Ixx = {x}, we say that x is an isotropic
element. All other elements are called anisotropic. For details see, for example, [18].

1.2, We are interested in the case when the set % is a Banach space, and the group [’ pre-
serves the structure, i.e.,

ox(ax+by) = a(oxx)+b(axy),
(1.5) lox|| = []x]]

for all arguments written. Here ||...|| is the norm in Z.
The size of the orbit ["+ x is described by its diameter

(1.6) d(I'sx } = max|[y—x|| = max||a*x— x||

yelsx ael

and its radius’
(1.7 r(l'sx) = |[x|].
1.3. Now we may introduce the main parameter that is supposed to measure ani-
sotropy.
DEerINITION. The parameter
d(I'sx)
1.8 Al xx) =
(8 (%) = o)
is said to be the anisotropy degree of the orbit I' x x. We introduce the anisotropy degree 0(x)
of the element x as anisotropy degree of its orbit

x|

(1.9) o(x) = A(I'xx) = TS*X 21|

The geometric meaning of 4(x) is obvious

(1.10) am=@%,
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where ¢ is the apex angle of the cone {ax * x|a € R, « € I'}. Therefore
(1.11) 0 < d(x) < 1.

The element x is isotropic if and only if its anisotropy degree is equal to zero, 6(x) = 0.
The set of all isotropic elements in % is a linear subspace
(1.12) J = {xeZ|d(x) = 0}.

The element x with d(x) equal to | is said to be extremely anisotropic.
1.4. The above definition is good for functions (mappings, functionals) as well. Let f be
a function f: & — % where &, % are two Banach spaces. Let I" be a group operating both
on % and %:

(1.13) X—=>a'x, Y- axy.
It leads to the operation of [ on the set of functions 2¥.
(1.14) Jf— oaxf = (ax)ofo (a1
A function is called an isotropic function if I'(f) = I, i.e.,
(1.15) axfle”!-x) = f(x) for all xeDom(f) and ael

Otherwise we say that the function f is an anisotropic function. For details, see [18].
Introducing in ¥ the linear structure and norm such that Eq. (1.5) is valid, we can
define the anisotropy degree of the function f as

_ll@x)ofo @t )l

ax e ———————
s 201711

(1.16) 8(f)

2. Anisotropy degree of tensors, tensor functions and functionals

2.1. The properties of materials in continuum physics are described by Euclidean tensors,
tensor functions and functionals of various kinds. We have to apply the formal scheme of

Sect. 1 to these situations.

Let us take
2.1 ¥ =T,=03, [I'=0 = S003).
We assume that the norm in &, is given by
2.2) Al = (A~ A2,

Tensor operations are described in the Notations.
The orthogonal group @ operates on 4 , according to

(2.3) A—-R«A, Re0.

It is obvious that the conditions (1.2) and (1.5) are satisfied.
The isotropic tensor A is defined by 0(A) = @ (see Eq. (1.4)), ie.,

(2.4) RxA = A for any Re (.

The subspace J = 7, for any p is described in many papers.

6*
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The anisotropy degree of an anisotropic tensor A is equal, according to the definition
(1.9), to

[[R*A—A]|
2:5 0(A) = max —— =,
) )= o oy
For extremely anisotropic tensors we have d(A) = 1, i.e.,
(2.6) |[R+A—A[| = 2[|Al]
for some R € 0. It is possible only for A- (R * A) = —A - A, i.e., the tensor A is extreme-
ly anisotropic if
2.7 RxA = —A.

2.2. Let us take several examples

EXAMPLE 1. Vectors, & = 3®2a, I’ = 0. The only isotropic vector is 0. Forany a #* 0

we have a rotation R that, according to (2.7), R xa = —a. Therefore
(2.8) d@a) =1 forall az#0.

EXAMPLE 2. Vectors, & = 9®09, I'= 0(k), where k # 01is given. For any a # ¢, we have
2.9 o(a) = sin(a, k).

Vectors Ak are isotropic with respect to group @(k). The extremely anisotropic vectors
are /n, nk = 0.

ExAMPLE 3. Symmetric second order tensors, . = Syma®3, I' = 0. This case has
been studied in [8]. For any & = o;n;®@n; +o,0, @0, +o;0;@nN;, oy > oy = o0y, WE
have

‘ 2 oy — oy |

10 o = VEmm

B (=) 2af +oz+a3)'?

Hydrostatic pressures o, = o, = a3 are isotropic, pure shears o, = 0, ay = —o; are
extremely anisotrpic.

Let A" be the subset of tensors with nonnegative eigenvalues: 1, = 0, «, = 0, a; = 0.
We have

(2.11) max d(a) = V2
aet” 2
ExAMPLE 4. Let us take into consideration a linear tensor function /.7 , — .7 ,, which
is uniquely determined by a tensor L

(2.12) I(X)=L-X forany XeJ,.

There are two interesting possibilities, among others, to define the anisotropy degree
of the relation (2.12) with respect to the orthogonal group 0. One is to consider the func-
tion / as an element in the Banach space of all linear tensor functions from .7, into
7, with the induced norm defined by

[1AXI
2.13 -
(2.13) (/11 sip x|
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An other problem is to consider / or its equivalence L as an element in the Banach space
7 pyqwith the norm defined by Eq. (2.2). The following discussions are restricted to the
last consideration. The first case deserves another paper.

ExAMPLE 5. The same scheme as the last paragraph can be applied to tensor functionals.

3. Solving equation

3.1. In the investigation of the anisotropy degree of the p-th order tensor which is conside-
red as an element in the Banach space with the norm defined by Eq. (2.2), it is fundamen-
tal to calculate the diameter

(3.1) d(A) = max || X—Y|| = max||R«A—A||.
X, YeOxA Re@

If one discusses the maximum values directly from Eq. (3.1), the calculation will be
very complicated because of the root. But we have

(3.2) d?(A) = (max||R+A—A]|)? = max||R«A—A||%.
Re® Re®

So one can first calculate d2(A) which in fact, is equal to
(3.3) d*(A) = max2(A - A—(R+A) - A).

Introducing the Lagrange multiplier &, one has the Lagrangian function as follows:
(3.4) DAR) = 2(A-A—(R+A)- A)—a- (R'R-I).

After calculating the partial derivative of the obtained Lagrangian function with res-
spect to R, we get the condition for the stationary values

JDAR "
_a_é_ ) _ _z; 7 AQ[(1QR® ... ®R);A]— 2R«

i=1

(3.5)

14
=2 ) (1®R]® ... ®RD(0;A)O0,A—2Rat = 0.
i=1

The Lagrange multiplier can be derived out from Eq. (3.5)
P

(3.6) a= - s AOIRSR® ... @R) Al

i=1

Lo 4
= - D I(R'®R'® ... ®RN,Al00A = — D) R™+0,A)QA.
i=1 =1

1

As the restriction condition R"TR—1 = 0 is symmetric, it is enough to take a symmetric
multiplier, i.e.,

3.7 a=a"—a=0
which can be further expressed in terms of Eq. (3.6) as

(3.8) G AQR+0;A)— (R"x0,A)O0;A = 0.
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Because of the asymmetry of the tensor a®, Eq. (3.8), in fact, is equivalent to three
scalar equations which, in addition to the three orthogonal conditions and three normal
conditions, can be used to determine all rotations R which make |[R * A—A|| have sta-

tionary values.
3.2. When A = a is a tensor of the second order, Eq. (3.8) degenerates into
(3.9 RlaRa}+Ria'Ra—aRla’R—a’'RaR = 0.

When a further is a symmetric tensors, Eq. (3.9) is simplified into
(3.10) R’aRa = aR’aR.

It is well known that two symmetric tensors of the second order are commutative if
and only if for some orthogonal base m,, n,, n,

(3.11) B= RI“R = fin;®n, +£,m,@n,+F3n;@n;,
(3.12) o = oI +on,®n;+o3n;®n;.

On the other hand, B has the same eigenvalues as a. The eigenvalues of & must be
some permutations of those of a. Therefore, Eq. (3.10) holds if and only if R is such that the
eigenvectors of a permute. This result is the same as [8] and leads to equation (2.10).

3.3. When A is a tensor C of the fourth order with the symmetry properties

(3.13) Cimt = Cijwe = Gy
then Eq. (3.8) becomes
(3.14) 4((R"+C)OC—-CO(RT+C)) = 0.

This case is especially interesting to us as the mechanical behaviour of a linear elastic
solid can be described completely by such tensor. In the two following paragraphs, the
attention will be paid to a detailed investigation of various equivalent conditions of Eq.
(3.14) and the calculation formulae of the anisotropy degree 4(C) for transversely-iso-
tropic, cubic and orthotropic linear elastic materials.

4. Elasticity, eigenstates and true rigid moduli

4.1. The constitutive equation of elastic materials has the form

4.1) ¢ = f(F) = Rxg(U),

where F = RU is the deformation gradient with respect to a fixed undistorted configura-
tion, R, U are, respectively, the rotation tensor and the right stretch tensor, ¢ is the Cauchy

stress tensor.
Let us rotate the reference configuration by a rotation Q and then apply the same de-

formation F. We have

“4.2) f(FQ) = R+[Q+g(Q"+V)].
After taking

4.3 Ae = R+[f(FQT)—f(F)],
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we obtain for 46 = Rx/e that
(4.4) 4§ = (Qsg—g)(U).
We take d(g) as the anisotropy degree of the elastic material.
4.2. For small rotations and deformations, the constitutive equation (4.1) takes the classi-
cal form of Hooke’s law
(4.5) c=C'e, €e=S-0,
where € is the tensor of small deformation and C the rigidity tensor, S is the inverse of C
satisfying
(4.6) CoS=SoC=1.
According to Eq. (1.8), we take 8(C) as the anisotropy degree of the linear elastic ma-

terial.

4.3. We are going to present closed formulae for the anisotropy degree of several kinds
of linear elastic matrials. The method is based on the approach to linear elasticity given
in [9]-[16]. Let us present a brief outline of the approach.

The rigidity tensor C is considered as a linear operator mapping 6-dimensional space &
of the symmetrical second order tensor into itself. We have in & the scalar product
(o, B) — o - B. There exists the following spectrum theorem [12] for C:

For every elastic material C, there exists such an orthogonal expansion

4.7) S =20 .07, o<6,
P 1P, for i#]j,

and such a sequence

(4.8) )"l p e p AC" }.,1 ?{: Aﬁ fOr o :;1' ]))
that
(4.9 C= 4P+ .. +7,P,,

where P; is the orthogonal projector from % on P;, and

l — Pl+ +Poa
(4.10) .
PiOP!=Pi, PiOPJv:PjoP!:O fOr I?l:_,
For every w € 2;, we have
(4.11) C'w=w.

so A, are eigenvalues and w eigenelements of the operator C. The parameters A; are called
the true rigidity moduli and w are called the eigenstates of the elastic material C.
For elastic energy, we have the expression

4.12) 2E(e) =€ C-e= Aiei+ ... +4,6
where e = €.P;- €. Therefore we must have
4.13) 4 20,...,7,>0.
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If the orthogonal base w,, ..., ws in &, w; wx = d;, is taken in such a way that
every w; belongs to some Z;, then

(4.14) C =200+ ... + ws®w,.
For isotropic material the expansion is as follows:

(4.15) C = 1gPs+ 15Pg,

where

(4.16) Py = 1 101

is the orthogonal projector from . onto the 1-dimensional space of isotropic tensors,
4.17) P, = |—-§,1®1

is the orthogonal projector from & onto the 5-dimensional space of deviators, and
(4.18) Ag = l+2/1, Ag = 2u,
where 4, p are the Lamé’s moduli. It corresponds to the case

(4.19) w; = »3/1, =13y, lh=li=..=l=2u=19

in the formula (4.14).
For cubic crystals, we have

(4.20) C = iPs+uP,+vPs,
where Py is given by Eq. (4.16) and

(4.21) P,=K- ;——1@1, Pz = 1-K

where

(4.22) K =n,®n;®n,®@n; +n,®dn,®n,@n, +n,@n;@n;@n;.
For transversely-isotropic materials, the expansion is

(4.23) C=A4P +1,P+ 4P+ 1,P,,

where

P, = _-sin*x1®1+ 1/23 smxsm(xo—x)(l®n+n®l)+%Slnz(%o—“)“®"a

[ 39

/5
4249) P, = -é— cos?x1®1— ]'23‘ cosxcos(wo—x)(1®r:+n®l)+% cos? (3, — )R,

P, = o (01-+os= ) x [1-m)@(1 -],

1
P, = 5 (o1 +o)x[mTR@A-n)+(1-m)®=n], == kk,

where 0 < » < 7 is called the distributor, ¢,, o, are two permutation operators o, =
= [1324], o, = [1432] and & the unit permutation operator, & = [1234], tgxo = /2.
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For orthotropic materials, the eigenstates are

too,, 0 0!
(4.25) w, =10 o, 0| L=1,2,3,
| 0 0 wps|
where
=
(4.26) W, Wy = 0piOx; = Opn,
i=1
1010
w,=Y2 100,
|10 0 0
[0 0 1|
|/2
(4.27) ws = 7727,!000!,
i1 00!
100 0,
wg = I'; 10 0 1.
101 0]

5. Anisotropy degree of linear elastic materials

5.1. For linear elastic materials, after substituting Eq. (4.9) into (3.14) and taking into
consideration Eq. (4.10), we have

e=1

(5.1) D (= 1) (= 1) [(RT4P) OPy — PO (R"+P,)] = 0

e, fi=1
or, written in terms of eigenstates,
5
=1 5
(5.2) 2 (li—ls)()uj—/.ﬁ)((Rf*mi) c @) [(RTsw,)w; — w;(RT+w,)] = 0.
i, j=1

In a similar way, the calculation formula of the norm ||R * C—C]|| can be simplified
to

5 5
(53 ReC—Cl =2 X (h=1~2 D) (1= Ae)(%— ) [(RTsw)) - w0,
i=1 ihj=1
or

e~-1 e-1
(5.4) [RxC—Cl12 = 2 X da(la= 3 =2 Y [(ham A)(Ay— A) [(R+P,) - Py,
a=1

a, f=1

d, = TrP,.
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5.2. For the fourth order tensors satisfying the symmetry property (3.13), the condition
(2.7) can be expanded into

(5.5) AR+P,+ .. +A,R«P, = —1,P,— .. —j P,

For each tensor, there exists exactly one system of pairwise mutually orthogonal pro-
jectors. As its result, Eq. (5.5) holds if and only if there exists a permutation o of [1, 2, ..., o]
such that

(56) R*Pa = Pn(cz);
(57) Ae = — Aa(a)s
(5.8) TtP, = TP,

For elasticity tensors of real materials, Eq. (5.7) can not be satisfied because all ri-
gidity moduli are nonnegative and there exists at least one nonnegative rigidity modulus.
Therefore there is no extremely anisotropic linear elastic material at all.

5.3. Cubic crystals. Taking into account Eq. (4.20), the solving equation for cubic crystals
can be simplified to

(5.9) (u—)?* (R™+K)OK ~ KO (R"+K)) = 0
which can be led to
3
(5.10) (g—)? > (Rn)*(R"n,@n,—n;@R"n)) = 0.
i,j=1

When u = », the material degenerates to a trivial case: the isotropic material for which
the parameter constantly equals zero for all rotations R. If g # », let R = R;n;®n;,
Eq. (5.10) is led to

8 |

) (R?jRik—R-'JkRu) = 0.

A

(5.11)

A|

—

i=

In order to find the solutions of the above equation, we will use the following genera
representation formula of the rotation tensor

(5.12) Ri; = cos@d;;+ (1 —cos@)k k;+singe,; k;,

where k is the rotation axis and ¢ the rotation angle of R.

If one tries to find all solutions of R directly from Eq. (5.11), the calculation will be
very complicated. The solution for maximum can be guessed in terms of the character-
istics of the problem. The solutions are believed to be

1 7
.1 2 = 2 —] 2 [ Jpe— = —
(5.13) ki=k k 3 ¢ 3
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In this case,

| _2_ __l 2_1
1 0\‘ S 3k o0 o
1 2 2 1] | |
(5.14) R= 0 +1 0 § S 200 0 +1 0
L0 sl 22 2 0 0 s
' - 1 2 2| -
T3 3 3
[t is obvious that such R satisfy Eq. (5.11).
The diameter of the (@-orbit is
12
(5.15) (€)= 2 (o
27
because of
(5.16) (R"+K)-K = b2
. * = 27 :

The anisotropy degree &(C) is

d(C) _( 32(u—») )”"‘

e "0 = gl =\ ez w3

The maximum anisotropy degree for materials with cubic symmetry is

(5.18) Supd(C) = lim  &(C) = 0.7698.

Mu,v[u—0

From Eq. (5.15) the diameter d(C) is independent of the rigidity modulus 4 whose pro-
jector represents an isotropic volume deformation. When g = », d(C) = 0, the material
degenerates to an isotropic one.

The parameter a = (C;;—C,,)/Cas4 for cubic crystals, expressed by eigenvalues, is
/v, which, like d(C), is independent of the rigidity modulus A. The parameter a represents
the ratio of two rigidity moduli x and » which are equal to each other for isotropic ma-
terials.

5.4. Transversely-isotropic materials. Taking into account Egs. (4.23) and (4.24), after
some tedious but simple calculations, one has

(5.19)  (R'P,)OP,—P,O(R™+P,)

=y —:12;— sin2(xo — %) [p2sin 2(so — %) —sin2(xg + )]t @k — k®t),
where
(5.20) y =tk, t=R"k.

Similarly, for any « and §, it is easy to prove that

(5.21) RT*P,)OP;—P;O R+ Py) = pf(#)(t@k—k®1), o # f,

where f,; are functions of y2.
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Now the solving equation is led to

4
(5.22) y| X S0 hadp)] t@k—k@) = 0.
a, =1
It can be proved by direct calculation that if A; ¢ 4;, i  j, then,
4
&y _
(5.23) D s fusyd > 0.
a,fi=1

There exist two possibilities for the solving equation to be satisfied:

(5.24) t@k—k®t = 0
or
(5.25) y =0.

Equation (5.24) holds when and only when t = R"k = k, i.e., R is a symmetric rota-
tion of the matrial. At this case, ||R « C—Cl| equals zero.
Equation (5.25) means, in fact, that

(5.26) tk = 0, or equivalently, kRk = 0
which implies that the rotation R rotates k to the plane perpendicular to k itself. The sta-
tionary value in this case can be calculated in the way presented in Tabl. 1.

Table 1. The coefficients (RT*Pa)‘Pﬁ.

————————e s — . .
} i P, P. | P, P,
]‘ — L A ——— ——— - ———— —— — S S——— NE— —
! | 9 | |3 i
’ RT» P, —— sin?xsin? (2% — %) —— 8in?2(xq — ) | 0 | —sin?(xo—%) |
| 4 | 16 | 4 ‘
_ - S R |
. 9 9 3 *
RT * P, —— sin?2(% — %) — c082xCos2(2x — ) 0 | —cos*(xp—%)
i‘ 16 4 4
o — i o
RT » P, | 0 0 1 1
- i e R TR e ——— ISR (T —_— — - - ‘—_ S | e e il
RT + P, i sin? (o — %) — €082 (3o — %) 1 1
4 d 4 ) 4
|

According to Eq. (5.4), the stationary value is
(527 d*(€) = (A= 22)* +2(A3 = As)* + (A1 — A0)* + (A2 — 1)’

9
g [(A; — A4)sinxsin(2xy — %) — (A, — A4) cos xcos(2x, — #)]?,

where we have used the equalities

ol

. 2y2
(5.28) sin2x, = %, cos2x, = —-;,—, cosdny, = —
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For transversely-isotropic materials,

5.29 Sup 6(C) = li ——— = — — = 0.66144,
(28 wpo Q= Jim ST s

= —a0,——=2

s T A

where the supremum is taken with respect to the elasticity tensors of all transversely iso-
tropic materials.

The following special cases seem to be interesting to us:

i) When 4, = 1,,

(5.30) d*(C) = 2(As— A,)*+ 3‘(3—1 — 47
ii) When = =0

(5.31) d*(C) = (A — 242 +2(A3— )%+ (A, — A)* + ; (42— A4)%
iii) When » = 7

(5.32) d*(C) = (A, —2,)24+2(As— A)* + (A, — A)* + ; (A, — 24).
iv) When » = «,

(5.33) d*(C) = 2(As— A+ ;(Az—i,‘,)z,
v) When

(5.34) =%, and A, = i3 = 1,.

the material becomes isotropic and, therefore, d?(C) = 0

In engineering applications, the material constants of transversely isotropic materials
usually are given through elastic moduli E(k), E(n), Poisson’s ratios »(n), »(k) and shear
moduli G(n, k), where n is an arbitrary direction normal to the symmetry axis k. The
relations between the engineering constants, the rigidity modululi and the distributor
are

I O 1 »(n) 20(k)
B3 =3l e
111 I »(n) 20(k)
— %= 2\ E E e B
(5.37) iy = 2G(n, k),
- _ EMm
(5.38) By ==

The distributor is determined by means of Eq. (5.36) and the equation

(k)
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ExAMPLE. Most of fine-grained and laminated rocks can be regarded as transversely
isotropic materials. LEKHNITSKII [4] has given the elastic constants of a coarse dark-grey
aleurolith containing 60-70 percent of fragments of quartz and feldspar and 30-40 per-
cent of argil. The constants are as follows:

Em) = 6.09x10° Pa, E(k) = 5.57x 10° Pa,
(5.40) G(n, k) = 2.24x10° Pa, w»(n) = 0.22,
r(k) = 0.24.
The rigidity moduli and the distributor for such material are
Ay =9.74x10° Pa, 4, = 4.90x10° Pa,
(5.41) Ay = 4.49x10° Pa, 7, = 4.99%10° Pa,
»x = 0.955.

The @-orbit diameter d(C) and the anisotropy parameter d(C) of this matrial are
(5.42) d(C) = 1.84x10° Pa, 4(C) = 0.072.

From Eq. (5.41), it is obvious that the material is very close to isotropic material whose
elastic constants satisfy Eq. (5.34).

It seems that the following material [1] deviates a little more from the isotropic material.
The elastic constants are

Em) = 11.17x10° Pa, E(k) = 5.19x10° Pa,
(5.43) G(n, k) = 1.94x10° Pa, »(n) = 0.067,
r(k) = 0.328.
The rigidity moduli and the distributor for such material are
Ay = 18.32x10° Pa, 4, = 4.52x10° Pa,
(5.44) Ay = 3.88x10° Pa, A, = 10.47x10° Pa,
x = 1.141.

The @-orbit diameter d(C) and the anisotropy parameter 6(C) of this matrial, respectiv-
ely, are

(5.45) d(C) = 11.23x10° Pa, o(C) = 0.256.

5.5. Orthotropic materials. If one substitutes Egs. (4.25) and (4.27) into Eq. (5.2) directly
the equation will be very complicated. It is easy to see that if the rotation R is such that
w,, ws, W, permute with each other, then all rotated tensors of w,, ..., g remain per-
pendicular to each other. Equation (5.2) is satisfied because

) i,j24, @R'sw) w, =0 or R'sw, =w,,
(5.46) i) iz4, /<3, (Rlsw) w; =0,
i<3, j=4
i) i, <3, (Rxw)w; = w;(R"+w)).
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The correspondence relation between the exchanges of [456] and the exchanges of
[123] is as follows:

(45) — (23),
(5.47) (56) - (12),
(46) - (13).

Because each permutation can be decomposed into multiplications of finite exchanges,
the relation (5.47) induces naturally a correspondence relation between the permutations
of [456) and [123].

The stationary values in these cases are

3
(5.48) d3(C) = 2 [ 3 - Z b= D hiy@mmawu)?,
i,j=4 ki, ji=1

where o is a permutation of [123456] such that the first half part and the last half part
satisfy the correspondence relation (5.47). For different permutation o, Eq. (5.48) will
lead to different stationary values, the largest of which is what we need: maximum d(C).

For orthotropic matrials, the relations between the moduli of rigidity 2,, 4,, 43, A4
Js, A, the distributors w,; and the engineering constants are

1 wi, w3, w3,

EXN T A TR T

1 _ w%z w%z w%z
P BV = A A A
i l m%37+_“’§3 W33
E(Z) A A, Ay
HXT)  wuwy: | 0a® | 0n®s
E(Y) A ﬂ.z Az ’
(Y, Z) WipWy3 | WaWa3 W32W33
5.50 —— B .- s ) a8
G) E(Z) 7 % PR
_MX,Z) | o0 | @055 | 031033
E(Z) A As As ?
i _ 1
4G(X,Y) 24
(5.51) - ~if—f == :

AG(Z,X) ~ 25 °

1 1
4G(Z,Y) ~ 22

Equations (5.49) and (5.50) can be combined into a matrix equation

(5.52) WT[;L-]W = U,
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where U, [—i—] and W are defined as follows:

1 o _v_(_{l:__Y_)_ B X, 2Z) |
‘ EX) E(Y) EZ) |
1 w(Y,Z) |
5. e
(5:53) = | EY) ~ E@)
| Symmetr —1 ‘
| y y E(Z) }
|
| |
R
l | | (l)ll [OFD) (1)13
(5.54) [)J :i 0 *; = 0 5 W— ‘U)ZI Wsa (1)23 .
’ | 2 | [ W31 W32 W33
0 —

J. RYCHLEWSKI AND ZHANG JIN

MiIN

In other words, U can be diagonalized into [1] by the orthogonal matrix /. In order

to find the rigidity moduli 4,, 4,, 43 and the distributors W, one needs only to consider the
diagonalizing problem of U. The following are four calculation examples for orthotropic
rocks. The material coefficients are taken from LuMa and Vutukuru’s “Handbook on

Mechanical Properties of Rocks” [3]

Table 2. Engineering elastic constants of the four rocks.

| , \ | ]
!(xfo(;x;a)(xfgga) (5(120)9?5:‘,10);)‘ fgof)(i(rof) VX, ) : VX, Z) V(Y Z)
S N il W e 0 Wi I
’Rockl \ 1.70 i 148 | 072 \ 0.61 | 0.63 | 075 = 0.005 0.058 0.087
R A R e T N
RockL| 8.30 ! 7.85 ‘ 7.33 1‘ 2.91”71 3.01 \ 3.19 1 0.314 ] 0353  £3_06
'Rock III | 11.27 ‘ 1039 | 960 | 3.58 j 3.72 1 4.17 : 0.278 0.276 ! 0.317
S \ ‘ N IO S _ - » .
| Rock 1V l 9.90 ‘ 830 | 608 | 236 ; 2.33 ’ 355 0.185 0258 | 0.329
Table 3. The rlgldlty moduli of the four rocks (unit = 10° Pa)
- | zrlr } iy *~ s | | I
" Rock 1 ’ 1.72 1 g om : 12 | 125 P
A o R
iRock 11 u 559 } - 610 L s ; 6.02 6.9
Rock 11T 84 | 2687 746 ‘ 713 | 745 93l
I B e B [ -
| Rock IV | 776 o200 | | L o710 |

4.66
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Table 4. The distributors for the four rocks.

Rock 1| ‘ 0.994 : 0.048 | 0.099 | —0.050 1.000 ‘ 0.011 —0.100 | —0.016 i 0.995

ek | o] oo | —oum) oo

Rock 11 i 0.618 0.556| 0.556| —0.474 | —0.301 ‘ 0.828 —0.628 0.775 1! —-0.077

Rock 111 :; 0.779 | —0.571 | —0.258| 0.605| 0.579| 0.546 —0.162 | —0.582 0.797
. ;\oc};; 7: 0.732— —0.667 | —0.142| 0.634 0.589I 0.502 —O.éST . ;(EI_ 7(@

Table 5. Orbit diameters and anisotropy degrees.

d(C), Pa a(C)
Rock 1 | 1.449 x 10° 0.219
;IZk 7Ii RS 2.498 % 10° 0.045
bRock IIIW W 4.079 x 10? 0.063
Rock I—V_ ) 6.548 x 10° 0.131 7

Now we have established a total order in the set consisting of all linearly elastic materials
according to their anisotropy degrees. For two arbitrary elastic material C; and C,,
we write C; > C, if 8(C,) > 6(C,). Therefore, according to Table 5, we have the follow-
ing relation:

(5.55) ROCK I > ROCK IV > ROCK IIl > ROCK II.

Notations

A three-dimensional Euclidean vector space is denoted by 3, its elements by x, m, ...,
scalar product by xy.

The Euclidean tensors of the p-th order are elements of the p-th tensor power ®P?3.

Second order symmetric tensors are denoted by a, ..., orthogonal tensors of the se-
cond order are denoted by R, Q. They are elements in the orthogonal group @ = S0(3) =
= Auts = {Q €5®3/Q"Q = QQ" = 1}.

Group 0 operates on ®Ps according to the rule A — Q % A, O« is a linear operation
defined on decomposable tensors by

0+a® ... ®b) = 0a® ... ®Cb.

Permutation of the sequence (1, ..., p) is denoted by o = (g(1) ... ¢(p)). Permutations
form a group which operates on ®P”» accordingto A — ¢ x A, where o x isalinear opera-
tor prescribed on decomposable tensors by

ox(a;® ... ®A,)) = 2,H® ... as(,-
The permutations o;, i = 1, ..., p are given as o; = ({12...(i—1) 1 (+1)...p).

7 Arch. Mech. Stos. 5/89
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To translate all formulae to well-known Cartesian index language, you may use the

table
X,0 X, A
Xy XiVi
x®y x;y;
a, 1 @55 Oy
af %ip By
a®@p 04 Bt
a- ﬂ apqﬁmi
A Aij
AOB AipcaBipena
Rxn Riyn,
Rxa = RaRT Rip Rj o,
Rz A Ry oo RygAiis
(I®R® ... ®RYA i, R, ... Ry, Apy...r
C Cijkl
C-D Coars Pues
CoD Ciqu Dp.','ki
L = 5 (s + 8.
We have

for all x €9, o € symI®o.
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