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Unsteady viscous shock layer near permeable surface 

A. A. MARKOV (MOSCOW) 

PRoBLEM of a shock layer confined between an axisymmetric, vibrating blunt body and a de
tached shock wave is analyzed. Fields of velocity, pressure, density etc. are represented by power 
expansions with respect to the distance from the symmetry axis, coefficients of the expansion 
depending on time and on the distance measured in the transversal direction. Nonstationarity 
is the result of variable axial, tangential and angular velocities. The problem is solved numeri
cally. 

Przeanalizowano problem warstWY uderzeniowej zawartej rni~dzy osiowo-symetrycznyrn t~pym, 
wirujqcym cialem, a odsuni~tq falq uderzeniowq. Pola pr~dkosci, cisnienia i g~stosci przedstawia 
si~ w postaci rozwini~c pot~gowych wzgl~dem zmiennej odpowiadajqcej odleglosci od osi sy
metrii. Wsp6lczynniki rozwini~cia zalei:ne Sq od czasu i od odleglosci w kierunku poprzecznym. 
Niestacjonarnosc jest WYnikiem zmian pr~dkosci w kierunku osiowyrn, stycznym i obwodoWYm. 
Problem rozwi<:tzano numerycznie. 

IlpoaHaJII13HpoBaHa 3a,D,a'I.Ja y,D,apHoro cnoH, co,D,epmaBlllerocH Me>I<.D.Y ocec.HMMeTpH'I.JHhiM 
TyllbiM, Bpa.Il.\aiOI.l.lllMCH TeJIOM H OTOllle,D,llleM y,D,apHOM BOJIHOM. IloJIH CI<OpOCTH, ,D,aBJieHHH 
11 IIJIOTHOCTH rrpe,D,CTaBJIHIOTCH B BH,D,e CTeiieHHbiX pa3JIO>I<eHHM 110 OTHOllleHHIO I< nepeMeHHOM, 
OTBe'tlaiOI.l.leM paCCTOHHHIO OT OCH CHMMeTpHH. Ko3cpcpM~HeHThi pa3JIO>I<eHHH 3aBMCHT OT Bpe
MeHH H OT paccToHHMH B nonepe'tiHOM HanpaaneHHH. Hecra~noHapHOCTb HBJIHeTCH pe3yJibTa
ToM H3MeHeHHM CI<OpOCTH B OCeBoM, I<aCaTeJibHOM M nep.HMeTp.H'tleCI<OM HanpaBJieHMHX. 3a
,D,a'tla pemeHa '-IMCJieHHo. 

I. Introduction 

IN RECENT PAPERS on the numerical calculation of viscous gas flow, it was shown that 
the calculation efficiency may be enhanced by using the boundary-layer methods and 
appropriate scales both in the complete Navier-Stokes equations and in simplified com
posite asymptotic equations [1-8]. 

The asymptotic theory of high-Reynolds-number flows yields the scales and mechanism 
of interaction between shear layers and outer locally-inviscid flow. For moderate values 
of the perturbation parameter, the composite equations often give better results than the 
higher-order asymptotic equations. On the other hand, if for high Reynolds numbers the 
correct scales of the quantities in question are not taken into account, then the solution 
obtained will not be sufficiently exact whatever equations are used, including complete 
Navier-Stokes equations. 

In the present paper the flow in a 3D viscous shock layer is analysed asymptotically, 
and a composite system of equations of a 3D shock layer is derived for different flow 
regimes where (X-+ 0, s-+ 0, ~-+ 0 ((X2 = (y-1)/(y+ 1), e2 = 1/Re0 , ~-t = (y-1) M!). 

The unsteady equations of a viscous shock layer are simplified in the neighbourhood 
of the stagnation point of a blunt body which rotates about its symmetry axis at an angular 
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796 A. A. MARKOV 

velocity of D1 and is flown around by a hypersonic stream with a vorticity of !J. We have 
also simplified the unsteady equations for the neighbourhood of the stagnation line on 
a wing of infinite span flown at the sweep angle {30 • The equations for a thin shock layer 
have been solved numerically using an implicit finite-difference iteration method of so-cal
led subdivided iterations, based on the scalar "progonka" process. The solution thus 
obtained was employed as the initial approximation to solve general equations for a viscous 
shock layer, using an implicit finite-difference method with Newton iterations in conjunc
tion with the vector "progonka" and for the equations written in the conservative form. 
The linearization error was estimated in the course of solution and did not exceed the 
approximation error. The partial derivatives were approximated on nonuniform networks 
that took into account the solution scales. 

Calculation were performed for shock layers near a wing and near a rotating body, 
including unsteady effects caused by blowing-in, rotation of the body, and external vorti
city. Calculations were confined to the neighbourhood of the wing critical line and to the 
neighbourhood of the stagnation point. 

2. Asymptotic analysis of flow regimes 

We shall write the Navier-Stokes equations in a curvilinear coordinate system q = (ql, 
q2

, q3
) attached to the body surface, assuming that the coordinate line q3 is orthogonal 

to the body surface and to the coordinate lines q1 and q 2 • Let ui denote contravariant 
velocity components in the system q, e- density, and h- enthalpy. 

Depending on the relation between the perturbation parameters rx2 = (y-1)/(y+ 1), 
c: 2 = Re01, c:5- 1 = (y-1) M~ and the body surface curvature K (see [3]), the shock layer 
is either completely viscous or contains an inviscid region and a viscous sub1ayer whose 
thickness depends on the relation between the perturbation parameters. 

The thickness L1 of the shock layer is determined by the body geometry and by the 
parameters of the oncoming flow. Estimates [3] lead to the following result: O(k) ~ 

~ L1 ~ 0 Jl'k: where k is the ratio of the densities on either side of the bow shock. If the 
principal curvatures K1 and K2 of the body surface satisfy the inequalities 0 < Ki < oo, 
i = I, 2 for rx ~ 0, then L1 = O(k) = O(rx2 ). In the case of very blunt bodies Ki = rxK!, 

K! i: 0 we have L1 = 0 ( 1/ k) = 0( rx). 
Consider a shock layer of thickness L1 = O(rxD), 0 < D ~ 2. The pressure gradients 

oP I oqi' i = I ' 2 are appreciable in the sub layer 0 ~ q3 ~ L1 p of thickness L1 p = 0( rxD+ 1) 

(cf. [3] for D = I, 2). 

The equations for the leading terms in the expansion of the vector function f = ( u1 , u2
, 

u3
, (!, h)T with respect to a parameter rx are similar to those for a boundary layer, but in 

this regime the longitudinal pressure gradients oPfoqi, i = I, 2 can be neglected. The 
oP 

equation for the normal velocity component is then reduced to the form oq3 
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UNSTEADY VISCOUS SHOCK LAYER NEAR PERMEABLE SURFACE 797 

= ~ ~~; eu'um. For a given regime the entire shock layer is viscous, i.e., LJ., = L1 (L1 v is 

the layer thickness within which the viscosity is essential) and Lt., > LJ p· 

At the outer boundary the equations are closed by relations behind the bow shock, 
which contain terms with viscous stress and thermal flux [4]. 

2.2. Intermediate regimes e2 = O(cx20
-

2 + L), 1 ~ L ~ 3 

For a given family of regimes L is a parameter. s2 = N(1.2D-l+L, N > 0. 
The shock layer of thickness LJ = O((l.v) consists of an inviscid part Lt., ~ q 3 ~ LJ 

and a viscous sublayer 0 ~ q3 ~ Lt., of thickness Lt., = O((I.D+L/ 3). 

At the outer boundary we impose the Rankine-Hugoniot conditions. The pressure 
gradients oPfoqi, i = I, 2 have a relative order of 0((1.2- 2LI3) and can be neglected for 
L < 3 but they become important for L = 3 when the viscous sublayer thickness Lt., = 
= O((l.l+D) and Lt., = LIP. 

For this limiting process Lt., = O(s 1/ 0C) (cf. [3]) and Lt., ~LIP, so that Lt., < LIP < Lt. 
The shock layer is now subdivided into an inviscid external part G1 , LIP ~ q3 ~ L1, of 
thickness 0((/.v), an in viscid transitional part G2 , L1., ~ q3 ~ L1 P, of thickness 0((1.1+ D), 

and a viscous sublayer G3 , 0 ~ q3 ~ Lt.,, of thickness O(s ]IOC). In the region G1 the pressure 
gradients oPfoq!, i = 1, 2 can be neglected, in the first approximation, and variation of 
the pressure across G1 depends on all the terms appearing in the equation of motion for 
the normal component for the inviscid flow. In the region G2 , the gradients oPfoq1 must 
be taken into account, but the viscous effects can be neglected. In the first approximation, 
the pressure does not change across the layer 0 ~ q3 ~ LJ P for regimes 2.2 and 2.3. 

The asymptotic analysis performed in this paper justifies the composite system of 
equations for a shock layer of thickness LJ = 0((1.~) (see [3]) which contains all essential 
terms for the regimes considered above. Unlike classical equations for a 3-D boundary 
layer in our system of equations, the longitudinal pressure gradients aP 1 oqi i ~ 1, 2 are 
not given a priori, and pressure variations across the shock layer take into account alI 
the terms in the equations for the inviscid flow projected onto the normal to the body 
surface. 

3. Conservative form of viscous shock layer equations 

We shall write the composite system of equations for the viscous shock layer (VSL) 
in a strictly conservative form that is convenient for numerical calculations of flows with 
internal shocks, shear layers and discontinuities of parameters of blowing. We shall intro
duce some notations. Let (y1 , y 2 , y 3 ) be Cartesian coordinates, (q1 , q2 , q 3) = (~, 'YJ, C)
curvilinear coordinates of a point M, (ut, u2 , u3) = (u, v, w)- contravariant components 
of velocity. Let us introduce the covariant basis ai = {oy 1 foqi, oy2 foqi, 8y3foqi} and 
the contravariant basis ai = {oqifoyl, oqifoy2, oqifoy3}, then the components gii, gu, 
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798 A. A. MARKOV 

i,j = 1, 2, 3 of the metric tensor can be expressed as follows: gil= ai · ai, gii = ai · ai. 
Let us denote g = det IIKiill and consider the vectors ai, aJ at two points M and M 0 , employ
ing index zero for point M 0 • Following the paper [8], we shall introduce the coefficients 

c;t: 
G~(M, M 0 ) =a~· ak. 

We have the following relations of orthogonality 

ai · ai = l5J, Gf(Mo, Mo) = £5,, 

£5) = 1 for i = j and £5j = 0 for i =f. j. 
The VSL equations can be written in the following form for the point M 0 (index zero 

is omitted): 

(3.1) a ( .. 1- ') a {· 1- 1 (p jk ._k)t 1 o { .. 1- , [ur!3 a ( .. 1- ) - v geu + - . v gGk g +euJu- f - - --- J' gGk ---=- --- v g w 
at oqJ Re0 oC y g oC 

+pg33 
:, (G!u' -u')+pg"3 ~ (G~u5 -w)]} ~ 0, 

(3.2) o ( .. r - ) a ( - .) Tt J' g(! + aqi v geuJ = 0, 

(3.3) a I~ ;-- J o ( .. 1- . ) 1 a { .. 1- [ fl ah 7ft V ge(e+ek) + oql v geuJH -Reo 7i[ V g Prg33 3[ 

uw a ( , ... ) 33 , o ( k s k) a ( 3 s )]} _ 0 + v'i a[ y' gw +p,gk,g u -aT Gsu -u .. +p,w a,- Gsu -w - ' 

1 i . h (y - l) 
H = h+ek, ek = Tguu uJ , e = y ' p = - y- -- eh, 

(3.4) 
2 1 

fl = hw , U = - -fp,+fl2 • 2 :::; W < 1, 

p,2 is the second coefficient of viscosity (p,2 ~ 1). 
Summation over repeated indices in the range l, 2, 3 is assumed. 

4. Unsteady shock layer near stagnation stream line of rotating body 

Consider the above equations for a shock layer near the stagnation point of an axisym
metric cooled surface rotating about the longitudinal axis with an angular velocity of Q 1 • 

We shall assume that in the neighbourhood of the symmetry axis the parameters of 

the oncoming flow satisfy the conditions rot V~ = (!J, 0, 0), V~ = (u~ , u;<m u~ cxJ , 

(!~ = const, p~ = p~Ct) +r'2e~!J2 /2 (prime notation refers to dimensional quantities, 
r is the distance to the x axis). The system of equations is closed by the Rankine-Hugoniot 

relations behind the bow shock and by the relations u1 = u!, u2 = !J1 q1 y g22 , u3 = 
= u!, h = hw at the body surface. The quantities u~(t), !J1 (t), uUt) are known func
tions of time. For t = 0 some steady-state distributions are also given, which corres
pond to a steady-state flow. 
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An approximate solution is sought in the form of expansions: 

(4.1) u(l) = ~(u~'(~, t)+ ... ), u(2) = ~(v~(C, t)+ ... ), u(3) = w~'(C, t)+ ... , 

(4.2) p = p~' (C, t) + e(Pt (C, t)/2 + ... ), e = e~ (C, t) + ... , h = h~ (C, t) + ... . 
In these expansions the dots denote quantities vanishing for ~ ~ 0; u(l) = u1 1/ ii1- , 

u(2) = u2 y g22 , u(3) = u3
, q 1 = ~' q 2 = 'Y), q 3 = C, u(i), i = 1, 2, 3 are physical con

travariant components of the velocity vector, ~ varies along the body surface, C, along the 
normal to the body, and 'YJ is the angular coordinate. 

Introduce the notations 

u0 =u~';-yg;;, V0 =V~/yg1t' Wo=w~', Ho=h0 +w~/2, 
(!o = gu(!~, f-lo = p~' gu, PfJ = gup{/, f3 = 0, I. 

The system of equations for the leading terms of the expansions ( 4.1) and ( 4.2) can be 
written in the form (the index 0 is omitted) 

(4.3) _a_l!_(f) + oA(f) +B(f) =_a_ C(f) of, 
at az oz az 

(4.4) 
(y-1) 

P = ---- eh, 
y 

f = (u, v , w, (!, hf, z = C!iJ(t), the vectors E, A, Band the matrix Care functions of the 
vector f whose components are dependent variables. 

Et = (!U, E2 = (!V, E3 = (!W, E4 = (!, £ 5 = e(h/y+w2 /2), 

At = (!UW, Az = (!VW, A3 = (!W 2 +p, A4 = (!W, As = ewH. 

B 1 = p 1 + e(3u2 + 2uw-v2
), B 2 = 2ev(2u+ w), 

(4.5) 4 a ( p, w aw) 
B3 = 2ew, B4 = 2eu, Bs = 2euH- 3 Tz Lf2 Reo oz · 

cmn = 0, m =I= n, m = 1, ... , 5, n = 1, ... , 5, 

C3 3 = C11 = C22 = p,LJ- 2 Re0 1
, C44 = 0, C55 = C11 /Pr, H = h+w2 /2. 

The boundary conditions on the surface of the body are of the form 

c = 0, u = u*, v = Q1, w = w*, h= hw. 

Here the quantities u*, w* determine gas blowing from the surface. 

5. Modified shock conditions 

Behind the surface of bow shock we employ the modified Rankine-Hugoniot (R-H) 
conditions (see [3]). Let us denote by V 00 (3), v(3) the normal and V 00 (i), v(i), i = I, 2 
the tangential components of velocity with respect to the surface S of bow shock; then 
the R-H conditions take the form 

w(3)e = W00 (3)(! 00 = m, 

(5.1) 
. Bv(i) . 

v(z)-p,*an = v<Xl (z), i = 1, 2, 
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(5.1) 
[cont . ] 

Ov(3) 
p+mw(3)-,u*-~- = P oo +mw00 (3), 

ull 

( 
1 2 ) av(3) oh 

'l'fP + e h + 2 v (3) w(3)- ,u*v (3) - on -},* Tn 

A. A. MARKOV 

= VfP oo + eoo ( h oo + ~- v;, (3)) w 00 (3); 

.A. - _ _!!____ __ _ 
* - Re0 Pr' 

4 f-l 
fl* = 3 Re

0
' 

r!oo = 1, 

1 I r 2 
_ 1 1 ( 2 

(5.2) hoc = (Y-=._ 1)M! , Poo = -yM~ + T.f.F, T oo = T y-1)M00 + 1, 

h = ( 1-+ (y-~)Md · T, w(3) = v(3)-vf> W00 (3) = v 00 (3)-vf, 

v1 is the velocity of bow shock, the coordinate n is varied on normal direction to the sur
faceS. 

Let us simplify the R-H conditions (5.1) for the small region near the stagnation 
stream line, using the expansions ( 4.1 ), ( 4.2). The following result can be obtained: 

(5.3) 

K;/ = K- 1 +L1, 

The quantity v21 can be determined exactly only if calculation of the shape of bow shock 
has been done for~ # 0. We use the approximation v 21 = 0 (see [3], [5-7]). The indices 
zero in the relations (5.3) and (5.4) will be omitted below. 

6. Viscous shock layer near infinite swept wing 

Consider the equations for a viscous shock layer near a smooth infinite-span wing 
with a slip angle {30 • Let q 1 = ~, q 3 = C be coordinates along the profile of the wing and 
normal to it, respectively; the coordinate q2 = 'YJ is along the generator and K(~) is profile 
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curvature. The metric coefficients gii, gii, Gj depend on the parametrization of the wing 
surface. We assume 

gll = (1 +CK(~))2ait(~), g11 = 1/glt, gii = gii = 1, i = 2, 3, 

gt1 = 0, i # i, g = det jjgiJII = g11· 

If the wing profile is given in polar coordinates by the equation r = r w(O), then we 
have~= 0 

where r:V = drw/dO, r:: = d2rwfd02
• The components N(i), i = 1, 2, 3 of the vector N, 

normal to the wing surface, can be written as follows: 

N(l) = 0, N(2) = (r~sin0+rwcos0)/a11 , N(3) = (rwsin0-r~cos0)/a11 • 

For the angle of attack IX and swept angle {30 , the components u00 (i), i = 1, 2, 3 of upstream 
velocity take the form 

U 00 (1) = cos{30 (coso::N(3)-sino::N(2)) , u00 (2) = sin{30 , 

u00 (3) = cos{30 ( coso::N(2) + sino::N(3) ). 

We consider below a simplification of equations and R-H conditions for the case 
IX = 0 and parabolic profile of wing. In the neighbourhood of the stagnation line, we 
represent the solution as expansions: 

u(l) = ~(u0 (~, t)+ ... ), u(2) = v 0 (C, t)+ ... , u(3) = w0 (C, t)+ .... 
(6.1) 

p = Po(C, t)+~2 (Pl(C, t)/2+ ... ), e = eo(C, t)+ ... , h = ho(C, t)+ .... 

The system of equations for the principal terms of expansions can be written in the 
vector form (4.3) with the following equation for the pressure: 

(6.2) ~ b1 = 2Keu2
• 

The components of E(D, A(D, C(j) are given by the relations (4.5), and 

B 1 = 2QU2 + p1 , B 2 = (JUV, B3 = fJUW, B4 = fJU, 

4 a ( "'v av) 
Bs = euH- 3 oz- L'PRe

0 
Tz . 

This system is closed by the initial conditions and the boundary conditions on the wing 
surface 

(6.3) 

and behind the shock C = Cs (f), 
n 

{3 = -- fJo 
2 

Us= Ksin{J+(Ks-K)w, vs = cos{J, W5 = (p-(sin{J+(p)les, 

-1 ( 2 ) 1 2 [ ( . {J . )2 1 - y ] 
fJs = y-1 + M!(sin{J+(p)2 y+ (' Ps = (y+ 1) sm +tp + 2yM! . 

(6.4) 

The initial conditions are the solution of the steady-state problem. 
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7. Numerical solution of the nonlinear finite-difference equations 

The system of equations (4.3) and (4.4) with the boundary conditions (5.3), (5.4) and 
(6.3) was solved numerically by an implicit finite-difference iterative method. First, the 
steady-state problem for a thin shock layer oP 0 / oC = 0 was solved with specified linear 
distributions of u, v, w and constant p = Ps, (! = (!s in the first iteration. In each iteration 
the thickness L1 of the shock layer was determined from the continuity equation. 

The solution of equations for a thin layer was used as initial data for calculating both 
the steady-state and unsteady shock layer for op0 / oC =I= 0. 

The numerical solution to the problem (4.3), (4.4), (5.3), (5.4) and (6.3) was performed 
by the finite-difference method based on Newton's iterations in the form 

(7.1) 

(7.2) D~' > = -~ ~- (E!s>_ E(f~))+(_!~-)<s> +B~s>-( - C!_ c<s> of<s>)' 
! I 111 OZ e OZ OZ e 

where E~s> = E(f~s>), f~ = f{t 11 , ze),f~s> is a value off for time level t = In+ 1 at iteration 
with number S for the grid point z = Ze. Increment on iteration}1s+o is equalf!s+t> = 
= f~s+ 1 >-f~s>. The matrices Ef> A1 are Jacobians oEjof, oAf of, respectively. The symbols 

( ocp/ oz)e, ( --:- VJ ~cp ) are finite-difference approximations for corresponding derivatives 
uz CZ e 

on a nonuniform grid {ze}, which took into account the solution scales in accordance with 
asymptotic analysis. 

Four to five iterations, on the average, were necessary for max i/~H ' I < c. The value 
e 

of E was chosen greater than the round-off error, but smaller than the approximation 
error. The vector]<s+l> was determined by solving the linear system of algebraic equations 

(7.1) closed by the boundary .conditions that follow from Eqs. (6.3) and (5.3), (5.4). An 
additional condition opjoz = 0 for z = 0 was used, which was justified by the asymptotic 
analysis. The block tri-diagonal system of algebraic equations was solved by the vector 
"progonka" process. 

8. Examples of calculations 

The results of calculations presented below refer to the case where y = 1.4, Pr = 0. 71 , 

M 00 = 10, Re0 = 500, 50 hw = 0.2, 0.1. 
Figure 1 illustrates a comparison of the present numerical results with the computa

tions [4] of GERSHBEIN and KOLESNIKOV for the case !J = !J* = 0, R rf" = ll00, M 00 

= 10, Pr = 0.71, hw = 0.3 · h0 for two values of blowing: (ew)* = 0 (solid lines) (ew)* 
= 0.1 (dashed lines). 

The profiles I0- 2 e(z), u(z), z = C!L1 for two values of blowing w* = 0.01 (lines J, 3) 
and w* = 0.03 (line 2) are presented in Fig. 2 for Re0 = 500 (lines 1, 2) and Re0 = 50 
(line 3). The shock layer is fully viscous for Re0 = 50. 
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0 1 2 

Q=Q*=O 
Reoo=1100 
M

00
•10 

Pr=0.71 
hw=0.3h0 

803 

FIG. ] . XXXX- GERSHBEIN and KOLESNIKOV [4], (ew)* = 0- solid Jines, (QW)* = 0.1 -dashed Jines; 
z 

17 = 2Ll J ((I +zLl)edz). 
0 

Figures 4-13 for Re0 = 50, hw = 0.1, Q* = 0.5, Q = 0 illustrate the evolution of 
components of velocity, density, enthalpy and pressure for two cases of flow in a shock 
layer: 1) the flow with switching on the blowing, 2) the flow with interruption of blowing 

and beginning of suction. Switching the blowing on u* = w* = 0.03 t for 0 ~ t ~ 1 and 

1.-------------~--------------=--

u 

--
0 0.5 1 

z/~ 

FIG. 2. The influence of blowing on profiles 10- 2 ez, u(z), w• = 0.01- curve I, (Re0 = 500) and curve 3 

(Reo = 50), w* = 0.03 - curve 2 (Re0 = 500). 
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FIG. 3. The evolution of tangential components of velocity for switching the blowing off at the moments 
of time: 11 = 0.66, 14 = 1.26, t 6 = 1.66, ta = 2.06, 19 = 2.26, f1o = 2.46. 

v 
0.5 r-------------------, 

0.4 

0.3 

02 

0.1 

0 0.2 0.4 06 0.8 1.0 

-'/L1 
FIG. 4. The evolution of azimuthal components of velocity for switching the blowing off at the moments 

of time: t 1 = 0.66, 12 = 0.86, Is= 1.46, t,'l = 2.46. 
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-0.20 
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FIG. 5. The evolution of components of velocity normal to the body for switching off the blowing at the 

moments of the time: t1 = 0.66, t1+1 = tJ+0.2, j = 1, ... , 9. 
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0 0.2. 0.4 0.6 08 1.0 

~/Ll 

FIG. 6. The evolution of density profiles for switching off the blowing at moments of time: t 1 = 0.66, 

tJ+l = tJ+0.2, j = 1, ...• 9. 
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FIG. 7. The evolution of enthalpy profiles for switching off the blowing at moments of tirne:l1 =0.66, 
1)+1 = lj+0.2, j = 1, ... , 9. 
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FIG. 8. The evolution of pressure profiles for switching off the blowing at the moments of time 11 = 0.66, 
lj+l = lj+0.2, j = 1' ... ,9. 
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F IG. 9. The evolution of pressure profiles for switching on the blowing at moments on time: 11 = 0.66, 
1] +1 = lj+0.2, j = 1, ... , 9. 

FIG. 10. The evolution of normal to the body component of velocity for switching on the blowing at mo
ments of time: It = 0.66, IJ+t = t1+0.2, j = 1, ... , 9. 

[807] 
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FIG. 11. The evolution of density profiles for switching on the blowing at moments of time: ~~~= 0.66, 
IJ+t = t1+0.2, j = 1, ... , 9. 
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FIG. 12. The evolution of enthalpy profiles for switching on the blowing at moments of time: t1 = 0.66, 
t)+l,; tJ+0.2, j = 1, ... , 9. 
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FIG. 13. The evolution of pressure profiles for switching on the blowing at moments of time: /1 = 0.66, 
lj+l = !,+0.2, j = 1, ... , 9. 

u* = w* = 0.03 for t ~ 1. Switching the blowing off with suction is presented for the 
parameters: u* = 0.03(1-t) for 0 ~ t ~ 1 and u* = 0, t ~ 1, w* = 0.03(1-t) for 0 ~ t 
~ 2, w* = -0.03 for t ~ 2. The results of calculations are given in Figs. 4-13 for the 
moments of time: t 1 = 0.66, ti+l = t1+0.2,j = 1, ... , 9. 

Figure 14 shows the dependence of dimensionless heat flux Cn on time for the cases: 

Q = 0, u* = w* = 0.03 t, 0 ~ t ~ I, u* = w* = 0.03, t ~ 1 (line 1); Q = 0, u* = 0.03 
(1-t), O~t~ 1, U*=O, t> 1, W*=0.03 (1-t), O~t~2, W*= -0.03, t~2 
(line 2); Q = 0, u* = w* = 0.03 (1-t), t ~ 1, u* = w* = 0, t > 1 (line 3); Q = 0.3; 

t 

FIG. 14. Dependence of heat flux on time for switching blowing during rotation. 
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u* = 0.03 (1- t), t :::; I, u* = 0, t ~ I, w* = 0.03 (1- t), t :::; 2/3, w* = O.OI, t > 2/3 
(line 4) where CH is given by the relation (prime notation refers to dimensional quantities) 

flW (()h) .. ;- 2 (,, ()T') . 1- 2 
CH = ReoPr a[ w y Reo (y-l)Moo = IL ar w Jl Reo(Y -l)Moo . 
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