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Some remarks on the theory of irregular reflection of a shock wave 
from a surface 

A. GALKOWSKI (WARSZAWA) 

DECAY of the initial discontinuity is interpreted as a mechanism of passage from a regular to an 
irregular phase in the problem of nonstationary reflection of a shock wave from a surface. 
Modification of the Mach triple point theory resulting from the hypothesis presented is con­
sidered. 

Przedstawiono hipotez~ o rozpadzie pocl<ltkowej nieciqglosci jako mechanizmie przej§cia od 
fazy regularnej do nieregularnej w problemie niestacjonarnego odbicia fali uderzeniowej od 
powierzchni. Rozwai:ono modyfikacj~ teorii punktu potr6jnego Macha, wynikajqcq z przyj~ia 
tej hipotezy. 

llpe,gcraaneHa nmoTe3a o pacna,ge Hal.JaJILHoro pa3pbiBa KaK MeXaHii3Me nepexo~a oT pery­
nHpHoH: <Pa3bl K HeperyJIHpHOH 4la3e B 3a~aqe HeCTaiU'{OHapHoro OTpa>KeHHH y~apHOH BOJIHbl 
oT noaepxHoCTii. PaccMoTpeHa Mo~<PHKa~HH TeopHH TpoH:HoH: TOl.JKii Maxa, BhiTeKaromaH H3 
npHHHTHH 3TOH rHllOTe3bl. 

1. Introduction 

PERMANENT interest in the problem of irregular reflection of a shock wave from a surface 
is observed among scientists concerned with problems of gasdynamic flow, owing to the 
strong nonlinearity of the problem which makes impossible rigorous mathematical analysis. 
As a consequence of this difficulty, the problem is studied by combination of experimental 
[1, 2], numerical [3, 4] and approximate mathematical methods [5, 6]. 

By contrast with the problem of regular reflection (RR) of a shock wave, a complete 
theory of which has been formulated by VON NEUMANN [7], the two principal problems 
of irregular or Mach reflection (MR) remain still unsolved. They are the problem of the 
type of singularity of the triple point occurring in the Mach configuration and the problem 
of the angle of regular-to-irregular reflection transition. 

In the case of irregular reflection there are three experimental situations which are 
possible, that is: 

a) steady gas flow: such a situation occurs in supersonic wind tunnels; 
b) the flow is unsteady, a stationary image can be obtained, however, by transforming 

the variables. This situation is that of interaction of a plane shock wave with a plane 
obstacle. There being no characteristic scale of lengths, selfsimilar variables can be intro­
duced. Such an image is known in the literature as a pseudosteady flow; 

c) the flow is unsteady, but selfsimilarity cannot be introduced. Such is the case of 
a plane shock wave acting on a curved obstacle or a curved shock wave acting on a plane 
obstacle. 
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838 A. GALKOWSKI 

It appears that the latter case differs essentially from the preceding ones, what is con­
firmed by the structure of the relevant mathematical models - the case a) and b) are 
described by partial differential equations of hyperbolic or elliptic type depending on 
whether the flow is super- or subsonic, nonstationary gas flow being described by a hyper­
bolic set of partial differential equations independently of the flow velocity. 

The attention of the scientists was as yet concentrated on the cases a) and b). In Sect. 
2 we present a survey of the literature on that subject and a summary of the results obtained. 

It is only recently that some experimental and theoretical works appeared, devoted 
to (truly) unsteady reflection of a shock wave from a surface. The problem of interaction 
between plane shock waves and concave or convex cylindrical obstacles was studied 
by BEN-DOR, TAKAYAMA and KAWAUCHI [8]. Such a geometry ensures continuous variation 
of the incidence angle of the shock wave falling on an obstacle, therefore also observation 
of the transition from the regular to the irregular phase in the case of a convex cylindrical 
surface, or vice-versa, in the concave case. 

The results of those experiments will be discussed in greater detail in Sect. 3. They 
have led the authors to a conclusion that the problem of criterion for the RR ~ MR 
transition, which appeared to be solved on the grounds of the experiments of the type 
a) and b), remains still open(!). 

Another example of a truly unsteady reflection of a shock wave from a surface is the 
action of a spherical blast wave on a plane reflecting surface. This problem was formulated 
by von NEUMANN [7] in connection with the analysis of the effects of explosion of an 
atomic bomb, then studied by numerical means by PooLUBNY and FoNARIEV [1 0] and by 
an approximate analytical method by VASILEV [11]. 

The Vasilev solution is constructed by expansion in double Taylor series, in the neigh­
bourhood of the point of first contact of the shock wave with the surface. The method 
used by Podlubny and Fonariev was the Godunov numerical method which yields shock 
fronts smeared to a width of a few computation meshes. In neither case it was possible 
to study the transition from the regular to irregular reflection. 

Some computation results obtained by the method of characteristics have recently 
been presented by GALKOWSKI [12] on the grounds of a model for which an asymptotic 
solution of the problem was used as well as the Vasilev result (in the case of regular reflec­
tion). 

The computation method used in that paper takes into consideration all the singularities 
of the flow, that is the shock waves and contact discontinuities, what enables accurate 
study of the dynamics of the RR ~ MR transition. Starting out from the requirement 
of internal consistency of the mathematical model a criterion of RR ~ MR transition 
was formulated for the problem under consideration. This leads to a hypothesis that 
initial discontinuity decay is a cause of generation of the Mach wave. This hypothesis 

(1) This class includes also problems of diffraction of a plane shock wave by a cylinder, a sphere or 
a cylindrical wedge, which are discussed in the monograph by WITHAM [9]. Due to the difference in the 
method of analysis they will not be discussed here, however. The method used by Witham is known as 
the CCW (Chester, Chisnell, Witham) method. It enables the dynamics of the shock front to be represented, 
but gives no information on the flow behind that wave front. In this connection it does not involve tran­
sition from regular to irregular reflection, the Mach wave occurring as a secondary (shock-shock) wave. 
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has some consequences in the theory of triple point. A study of those consequences is one 
of the aims of the present paper. 

In Sect. 2 the criteria for the RR +± MR transition will be formulated for a situation 
of the type a) and b). The nomenclature and the symbols will be established in agreement 
with the convention proposed by BEN-DOR [13]. 

The results obtained in [8] for truly unsteady action of a plane shock wave on a concave 
and a convex cylindrical surface will be discussed in Sect. 3. In the case of a convex cylin­
drical surface a wave pattern is obtained, topologically equivalent to that of interaction 
between a spherical blast wave and a surface. 

The latter problem is analysed in Sect. 4, in which the consequences of the hypothesis 
adopted for the singularity type of the triple point are discussed. 

Sect. 5 contains a summary of results. 

2. Steady and pseudosteady flow 

Figures Ia and 2a show the scheme of the process in the case of pseudosteady flow. 
An incident shock wave i falls on a wall inclined at an angle Ow to the direction of wave 
propagation and undergoes reflection which is regular (Fig. Ia), if the angle Ow is sufficiently 
large, and irregular (Fig. 2a) if it is small. In the latter case a typical wave configuration 
is formed. It is composed of a reflected waver, a Mach wave m and a slipstreams. If there 

a 
M· t 

FIG. 1. Diagrammatic representation of regular reflection of a shock wave from a plane surface; a) pseudo­
steady image, b) steady image in a reference frame connected with the reflection point G. 

a 

FIG. 2. Diagrammatic representation of irregular reflection of a shock wave from a plane surface; 
a) pseudosteady image, b) steady image in a reference frame connected with the triple point T. 
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are regions of homogeneous flow in the vicinity of the reflection point G (or the triple 
point T), the local flow may be reduced to a steady flow by Galilei transformation along 
the trajectory of the point G (or the triple point T). For a strong shock wave the flow 
behind the reflected wave is supersonic and homogeneous, therefore such transformation 
may be applied. If there are nonhomogeneous subsonic regions in the flow, a steady pat­
tern can be obtained by similarity transformation, there occurs, however, a non-conser­
vative field of external forces, in proportion to the local velocity field - and a source of 
mass in proportion to the local density [23]. 

The wave patterns in a reference frame connected with the point of reflection G or the 
triple point T are represented in Figs. 1 b and 2b. The symbol 4> 1 is used to denote the 
inclination angle of the shock wave i to the flow before its front. In the case of regular 
reflection we have 4> 1 = n /2- Ow and in the case of irregular reflection - 4> 1 = n /2-
-(Ow+ x), where x- the inclination angle of the virtual wall, that is the trajectory of the 
triple point T, to the real wall. 

The remaining symbols are as follows: 

Ci inverse strength of the incident wave i; Ci = p 0 jp1 , 

Cr inverse strength of the reflected wave r; Cr = p 1 jp2 , 

01 , 2 , 3 flow deflection after the passage of the shock wave i, r, m, res­
pectively, 

Mi, Mm Mach numbers of shock waves i, m, respectively, in unsteady reference 
frame (Figs. 1a and 2a), 

where Di, Dm - speeds of shock waves, a0 - speed of sound in 
undisturbed medium, 

M 0 , M 1 , M 2 , M 3 Mach numbers of flow in the regions 0, 1, 2, 3 (in a steady reference 
frame); M 0 = Mi cosec¢ 1 , 

y ratio of specific heats of the gas (at constant pressure and voluine), 
4> 2 inclination angle of the reflected shock wave r to the direction of 

flow before the wave front, 
4> 3 inclination angle of the Mach wave to the direction of flow before the 

wave front. 

The theory of regular reflection including the head-on reflection (Ow = n /2) has been 
formulated by von Neumann [7], the point of departure being the condition of 01 +02 = 0, 
from which a quadratic equation is found after some transformations. This equation 
determines the inclination angle of the reflected shock wave to the surface of the wall. 
Only one solution of that equation is realized physically, namely the solution for the 
weaker wave (greater Cr). For a certain value of the angle 01d the two solutions coincide, 
no real roots existing for 4> 1 > 4> 1d due to negative determinant. A typical feature of the 
von Neumann solution is that the entire increase in pressure, P2 /P0 = (C,Cr)- 1 decreases 
with increasing angle 4> b reaches a minimum for a certain value 4> 1 m 1n, then increases to 
a value above that at head-on incidence. The latter effect occurs with weak shock waves 
(large Ci) and is referred to as an anomalous regime of regular reflection [15]. 
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Further increase in the angle 4> 1 leads to irregular reflection, which means formation 
of a triple point and a Mach shock wave. 

The critical value of the angle 4> b that is the angle of regular reflection-irregular reflec­
tion transition will be denoted by 4> i. There are the following criteria for the RR +Z MR 
transition: 

a) The von Neumann criterion. This is the criterion of maximum angle for which regular 
reflection is possible. The RR +Z MR transition takes place for an angle 4> i = 4> Id· 

b) The Hornung-Oertel-Sandeman criterion [I6]. The RR +± MR transition takes place 
for an angle 4> T = 4> 15 such that the flow behind the reflected shock wave becomes purely 
sonic, that is if M 2 = I. 

The relevant critical angle is, as shown by numerical means [I4], somewhat smaller 

than c/> 1d. We have M 2 < I for c/> 1s < c/> 1 < Old and M 2 > I for c/> 1 < c/> ts· 

The HOS criterion can be formulated in a more general manner, as a "length scale" 
criterion which tells that RR ~ MR transition occurs when the length scale of the process 
is available at the reflection point. In the case of pseudosteady flow this formulation leads 
to the condition of M 2 = 1. For steady flows it is equivalent to the Henderson-Lozzi 
criterion. 

c) The Henderson-Lozzi criterion [I7]. RR ~ MR transition occurs an angle 4>! = cp 1 p 

such that the pressure behind the reflected shock wave is equal to the pressure behind 
a single shock wave normal to the flow direction in the region (0). This situation enables 
formation of an infinitesimal Mach shock wave and further development of irregular 
reflection. Then the RR ~ MR transition process goes on without pressure jump, no 
additional waves with finite amplitude thus being generated. 

The HL criterion yields critical angles 4> 1 differing considerably from those resulting 
from the von Neumann and HOS criterion. Thus, for instance, for y = 7/5 and C1 = 0 
we have: 

cf>td = 39.97I 0 , c/> 1s = 39.910° and c/>1 P = 2I.769°. 

Another criterion has been put forward lately by Henderson [6], according to which 
the RR +Z MR transition occurs when the incidence angle of the shock wave is 4>! = 4> 1m1n 

(minimum entire increase in pressure). Henderson argues that a hypothetical mechanical 
system in which the reflecting wall is kept at torque equilibrium about the point P owing 
to the moment of force due to the pressure of the shock wave being equilibrated by an 
opposite external moment, would not be stable for 4> 1 > 4> 1 m1n, because in such a case 

o(Pz/P0 )/o0w < 0. 

This hypothesis is of a somewhat speculative character and has not been confirmed 
by experiment. As a result there are only three criteria which are considered in reality, 
namely the von Neumann, HOS and H-L criterion (2). 

The three criteria above can most easily be illustrated by shock polar diagrams [18]. 
The letter i in Figs. 3, 4 and 5 marks the polar diagram of the incident wave and, pos­
sibly, the Mach wave (with fixed M 0 ) and r is used for the diagram of the reflected wave 

(2) Those criteria are sometimes given other names in the literature. Thus, the von Neumann criterion 
is termed the detachment criterion, the HOS criterion is known as sonic crition and the H-L criterion is 
referred to as mechanical equilibrium criterion. 

4 Arch. Mech . Stos. 6/89 
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(with fixed M 1). Because the total flow deflection must be zero for regular reflection, the 
final state lies at the point of intersection of the diagram r with the axis of abscissae. 

Figure 3 illustrates the von Neumann criterion for three different strengths of the inci­
dent wave. Von Neumann classifies incident waves into strong and weak depending on 
whether the point of contact of the diagram r with the axis of obscissae lies inside or 
outside the diagram i. According to this classification the wave I is strong, III - weak 
and II is an intermediate wave. 

For y = 7/5 the separation condition for inverse strength of the incident wave is 
' i = 0.433, which corresponds to Mi = 1.46. 

P/i?; 

e 8 8 

FIG. 3. Illustration of the von Neumann criterion, i- polar diagram of the incident wave, r- polar 
diagram of the reflected wave, a- critical points of regular reflection, b -critical points of irregular 

reflection. 

P/~ 

{) 8 8 
FIG. 4. Illustration of the Homung-Oertel-Sandeman criterion. 

FIG. 5. 11lustration of the Henderson-Lozzi criterion. 
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Figure 4 illustrates the HOS criterion, according to which the transition to the Mach 
reflection takes place for a somewhat smaller angle 4> 1 , such that the flow behind the 
reflected wave is strictly sonic. The final states of regular reflection are marked by the 
letter a and the three different diagrams r correspond to a weak, intermediate and strong 
shock wave. In this case the separation value of the inverse strength of the wave is different 
and is Ct = 0.375 for y = 7/5. In both cases, that is those of the von Neumann and HOS 
criterion (Figs. 3 and 4, respectively), the letter b marks the points corresponding to the 
Mach configuration for angles satisfying the criterion of transition. 

If polar diagrams are used to illustrate truly unsteady reflection of a shock wave (accord­
ing to the method of BEN-DOR and TAKAYAMA [24]), then, for a strong wave RR ~ MR 
transition occurs with decreasing pressure, therefore the transition should be accompa­
nied by an unsteady rarefaction wave. The case of a weak wave is opposite, the transition. 
occurring with increasing pressure, therefore an unsteady shock wave is to be expected 
For intermediate strength the transition is not accompanied by any variation in pressure. 
Such an image of the RR ~ MR transition suggests an analogy with the Riemann problem 
(initial discontinuity decay), in which a combination of self-similar shock waves and 
rarefaction waves is also generated, depending on the parameters of initial discontinuity. 
This analogy will be studied later on. 

It is required by the HL criterion (Fig. 5) that the RR --4 MR transition should occur 
with no pressure jump. The figure shows a shock polar diagram r for the critical angle. 
It is seen that this criterion can be satisfied only by a wave which is strong in the von 
Neumann sense. 

The results of experiments and analyses of the case of steady and pseudosteady state 
can be summed up as follows [8]. In the case of steady flow and a strong wave in the von 
Neumann sense the Henderson-Lozzi criterion is valid. The HENDERSON Lozzi [17] and 
HOS criterion [16] are valid for pseudosteady flows and strong waves. For weak waves 
the question of correct criterion has been solved neither for steady nor pseudosteady 
flows. It should be stressed that the disagreement between the von Neumann criterion 
and the experiment still exists in the case of pseudosteady flow behind a weak shock wave 
and is known in the literature as the von Neumann paradox [1]. 

3. Unsteady flow 

Truly unsteady gasdynamic flows with diffraction of shock waves were studied experi­
mentally by BEN-DOR, TAKAYAMA and KAwAucm [8]. The subject of their studies was 
a plane wave acting on a cylindrical obstacle (Figs. 6a, b). In such a configuration the 

a b 

FIG. 6. Unsteady interaction between a plane shock wave and a cylindrical surface; a) concave cylindrical 
surface; MR ~ RR transition, b) convex cylindrical surface; RR ~ MR transition. 

4 * 
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angle </> 1 varies in a continuous manner from oo to 90° (for a convex cylindrical surface, 
Fig. 6b) or from 90° to oo (for a concave cylindrical surface, Fig. 6a), direct observation 
of the dynamics of the RR ~ MR transition thus being possible. The results obtained 
led the authors to a conclusion that the existing criteria for RR ~ MR transition do not 
explain the phenomena occurring in the case of unsteady interaction between the shock 
wave and the obstacle. Another phenomenon observed by Ben-Dor, Takayama and 
Kawauchi was that of hysteresis, consisting in the fact that the RR--+ MR transition 
occurs for a different value of the angle </> 1 than the MR --+ RR transition . 

. With increasing angle </> 1 the RR --+ MR transition occurs in the following order of 
events (cf. Fig. 7): regular reflection (points d, c, e, f), RR--+ MR transition according 
to the von Neumann criterion (/--+ a) and irregular reflection (point a). Conversely, if 
the angle</> 1 decreases in a continuous manner starting out from 90°, we have irregular 
reflection (point a, b, c), then MR--+ RR transition according to the Henderson-Lozzi 
criterion (point c) and, finally, regular reflection (point d). 

P/~ 

FIG. 7. Polar diagram for unsteady interaction between a shock wave and a surface. Illustration of the 
phenomenon of hysteresis. 

Ben-Dor and the other authors conclude their work by stating that: 
... "the question "what is the general criterion (concept) that explains whether the 

RR ~ MR transition represents steady, pseudosteady and non-stationary flows?" is 
reopened". 

Some of the consequences of the facts observed (and some modifications of the theory) 
are considered in [19, 20]. The phenomenon of inverse Mach reflection [20] occurring 
if the angle</> 1 decreases in a continuous manner to a value corresponding to the MR --+ RR 
transition is analysed in particular. 

The notion of inverse Mach reflection has been introduced by CoURANT and FRIEDRICHS 
in their monograph [18]. 

In [19] BEN-DoR assumes that, during unsteady MR--+ RR transition, the phase of 
inverse Mach reflection occurs between the points c and d, that is transition to inverse 
Mach reflection occurs first at the point c and is followed by regular reflection, which 
starts at the point d. 

Our principal subject being the RR --+ MR transition, we shall not consider that ques­
tion in greater detail. 
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4. Interaction between a spherical shock wave and a plane reflecting surface 

The results obtained in [12, 14] enable us to analyse the mechanism and the dynamics 
of the RR --+ MR transition in truly unsteady gas flow behind the front of a spherical 
blast wave reflected from a perfect plane. 

Figure 8 represents the wave pattern of the phenomenon in the regular and irregular 
phase of reflection. It may be assumed that the irregular phase is a manifestation of an 
asymptotic property connected with the fact that the action of a spherical blast dipole is, 
for distances which are long as compared with the height of burst, equivalent to the action 
of a single blast of double strength (Fig. 9). 

l 

Jnetdent shock wave 

ReFlected shock wove 

Mach shock wave 

~ z r 
T ~Regular reflection point 

FIG. 8. Unsteady interaction between a spherical blast wave and a plane reflecting surface. 
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FIG. 9. Reflection of a spherical shock wave from a surface is equivalent to the action of a blast dipole. 
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Making use of this asymptotic property a one-dimensional model was proposed in 
[12] which enabled the problem to be solved in the neighbourhood of the reflecting plane 
and, therefore, the mechanism of the RR -+ MR transition to be analysed. According 
to the results of that work the RR -+ MR transition is a consequence of the decay of the 
initial discontinuity which was formed in the regular phase of the process. From the theory 
of the Riemann problem [21] it is known that waves of various types may then be genera­
ted, depending on the parameters of initial discontinuity. As regards the case under con­
sideration, a shock wave, a contact discontinuity and a rarefaction wave are generated. 
Figures 10 and 11 which have been taken from [12] show diagrams of pressure and density 
at a few instants of time just after the decay of the initial discontinuity and the RR -+ MR 
transition. The rarefaction region is represented by two dashed lines. The rapidity of 
decay of that wave is seen. Figure 12 shows the wave pattern of the entire phenomenon 
of interaction between the spherical shock wave and the surface. The diagram concerns 
the close neighbourhood of the reflecting plane. 

o=7/s 

1 

0 

contact discontinuity 

Mach shock wave 

: rarefaction wave 
I 

1.4 

FIG. 10. Pressure diagrams at consecutive instants of time in the irregular phase of reflection of a spherical 
shock wave from a surface. 

In the classical configuration of the triple point [7] the shock wave corresponds to the 
Mach wave and the contact discontinuity- to the slipstream. The rarefaction wave has 
no counterpart. Von Neumann contemplated the idea of the rarefaction wave being intro­
duced into his theory of triple point but he did not find sufficient reasons for such a modi­
fication of that theory. He tried to explain the observed disagreement between the theory 
and the experiment in another way, independent of the origin of the Mach configuration, 
what may be justified for steady or even pseudosteady flow, but is not justified for unsteady 
flows. 

In the subsequent sections we shall consider the consequences of introducing a rare­
faction wave into a Mach configuration of shock waves, then the criterion for RR -+ MR 
transition will be analysed in the light of the results obtained. 
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0= 7/s 

0.7 0.8 09 10 
Radius 

contact discontinuity 

1 Mach shock wave 

rareroctton wave 

11 1.2 1.3 
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1.4 

Fro . 1 1. Density diagrams at consecutive instants of time in the phase of irregular reflection of a spherical 
shock wave from a surface. 

0= 7/s 

I , / 

.~·,.....,. 
I •1 

·-·-f 

I I 

0 

/' 
,/ 

-x-

R~gular reFlection- Mach 
reflection transition 

regular reFlecTion point trajectory 

c- characteristic curve : dr/dt= v-a 

contact discontinuity: dr/dt= v 

Mach shock wave 

1.4 

FIG. 12. Wave pattern of the phenomenon of reflection of a spherical shock wave from a surface. 

4.1. Theory of Mach configuration of shock waves 

The subject of our considerations will be a configuration of waves in a reference frame 
connected with the triple point T (Fig. 2b ). 

In the local theory it is assumed that the wave fronts have the form of rays and the 
flows in regions bounded by those rays are homogeneous. It is assumed, in addition, that 
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- - - --- --- - -- -----

on both sides of the slipstream s the pressure is the same and the flow velocities have the 
same direction. 

The theory is based on the complete set of Rankine-Hugoniot conditions: 

{!JUJ = (!tUi, 

PJ + {!jUJ = Pi+ (!jUf' 

u~ +v~ a~ u~ +v? a~ 
_ J __ J + _ _ J - = ' ' + --'- -

2 y-I 2 y-I ' 

Pk = RkekTb 

where p- pressure, a- speed of sound, a2 = yp/(!, (!, T- density and temperature, 
respectively, u - mass velocity component normal to the shock wave, v - tangential 
velocity component. The indices i, j denote states on the two sides of the discontinuity. 
The R-H conditions can be expressed in the following form convenient for further trans­
formations: 

(4.1) 

(4.2) 

where 

Mf Ff3u+ I 2(Ff3u+ I) 2 -- - ----- + ----::---:-::::;----'---::-'-:-=--:-----'----:-:--~ 
MJ - (T+f3il)f3u f3u(F+f3u)(y-1)MJ (y-I)M}' 

r = (y+ I)/(y-I), 

flu = PdPJt 

Mf = (u~ +v~)/a~. 

It in assumed in the von Neumann theory that there are three shock waves in a Mach 
configuration (Fig. 2b), that is the incident wave i, the reflected wave r, the Mach wave 
m and the slipstream s. The angles () in Fig. 2b denote the deflection of the flow after 
passage across the shock wave, and the angle </> - the orientation of the shock waves 
with reference to the undisturbed flow. 

From the Rankine-Hugoniot conditions we obtain the following relation between the 
angles() and</>: 

MJsin2</>-I 
tg() = 2ctg</> M2( 2</>) 2. 

1 y+cos + 
(4.3) 

From geometrical relations we find, in addition, 

(4.4) 
tg(</>- ()) 

rx, . = -----
} tg¢ 

because 

tg(</>- ()) u, v u, 
tgcp = -v- -u-

1 
= -u-

1 
= rxu. 
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Since the flow direction is the same in the regions (2) and (3), the following relation is 
obtained for the angles 

(4.5) 

where, by virtue of ( 4.3), 

M5sin2l/J1 -1 
tg01 = 2ctgljJ1 M 2 ( 2l/J ) 2 , 0 y+cos 1 + 

Mfsin2l/J2 -1 
tg02 = 2ctgljJ2 M 2( 2l/J ) 2 , 

1 y+cos 2 + 

2 
M5sin 2l/JJ-1 

tg03 = ctgl/JJ MJ(y+cos2l/JJ)+-2. 

Because M 1 is expressed in terms of M 0 by the formula (4.2) and {310 is expressed in terms 
of the angles ljJ 1 and Oh by the formulae (4.1) and (4.4), therefore, finally, the equation 
(4.5) is a relation between the orientations of the shock waves and the slipstream. 

From the condition of equality of pressure on both sides of the slipstream s we find: 

(4.6) f33o = f32tf3to, 

where 

r-rxij f3u = by virtue of (4.1), 
Frxu-1 ' 

tg(l/J- 0) 
tgljJ 

by virtue of ( 4.4). 

Thus, the orientations of the rays s, i, r, m must satisfy in agreement with the von 
Neumann theory, the two conditions, (4.5) and (4.6). 

4.2. Theory of Mach configuration with Prandti-Meyer expansion 

If the rarefaction wave is taken into consideration in the Mach configuration, its counter­
part in the local theory is a Prandtl-Meyer expansion fan described by a function v 
relating the flow deflection with the Mach number of the flow (cf. Fig. 13): 

FIG. 13. Prandtl-Meyer expansion fan. 
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(4.7) 
- -./M2 -1 

v(M) = v' Ftg- 1 Jl r 

A. GALKOWSKI 

The function v is termed Prandtl-Meyer function [22]. In addition, as a consequence 
of the law of isentropic expansion, we have: 

(4.8) [ 
'\J-1 ] - " p-1"' 1+ -' -2- M2 y-I. 

If the rarefaction wave is taken into account in the triple configuration of shock waves, 
the pattern described in Sect. 4.1 changes in an essential manner due to the fact that the 
Prandtl-Meyer discontinuity is of the point type, what means that it is only at the point 
T (Fig. 14) that the velocity changes in direction and modulus in a jump-like manner. 
The variation in the remaining region of the Prandtl-Meyer expansion fan is of the con-

/ (1) 

FIG. 14. Mach configuration of shock waves with Prandtl-Meyer expansion fan. 

tinuous type. If, therefore, we consider the local theory of triple configuration, then, strictly, 
we should have, instead of the single line pm corresponding to the Prandtl-Meyer discon­
tinuity, two lines bounding the expansion region. If the rarefaction wave is weak, the line 
pm may be interpreted as a shock rarefaction wave, the variation in entropy being a third­
order quantity in wave strength, therefore the error committed will be insignificant. 

In the theory of triple configuration with Prandtl-Meyer expansion taken into account, 
the conditions at the line of the slipstream s have the form: 

(4.9) 01 +02+03 = 04, 

where 
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the symbol v denoting the Prandtl-Meyer function (4.7), and 

(4.10) 

where 

tg(~- 8) 
tgfJ ·, for u = 40, 10, 21. 

For ij = 32 we have, according to (4.8) 

(I+ y~l M~r-• 
fJ 3 2 = ......:__ _ _ __ __.:_-,..----,--. 

( 
-1 )y/y-1 

1+ -y--Mi 
2 

851 

All the quantities (except M 3 ) involved in the conditions (4.9) and (4.10) are expressed 
in terms of the orientations of the rays i, r, s and m and, of course, the Mach number of 
undisturbed flow and the characteristics of the gas. As regards the quantity M 3 we have 
no relation of the type ( 4.4) which would enable us to relate that quantity with some 
known quantities. Thus, a new, unknown variable occurs in the set of equations (4.9) and 
(4.10). By eliminating it we obtain a single equation, which must be satisfied by the orien­
tations of the rays i, r, s and m, by contrast with two equations in the von Neumann theory. 
Thus, the image of the Mach phenomenon and the limitations imposed by the theory on 
the experimental results are modified, if the Prandtl-Meyer expansion is taken into account. 

It is worthwhile to observe that if the hypothetical rarefaction wave is weak, it may 
be unobservable by the usual diagnostic methods, but its presence influences the theor­
etical interpretation of the experiment by introducing an additional degree of freedom or, 
to express it in a different manner, by eliminating one limitation interrelating the parameters 
of the wave pattern of the problem. 

As already mentioned, a rarefaction wave occurs as a result of decay of the initial 
discontinuity, which was formed during the regular phase of reflection. It follows that 
this wave would be characteristic for truly unsteady flows and would have a transitory 
character connected with the establishment of a new regime after decay of the initial discon­
tinuity. Such a transition wave was observed in numerical experiments described in [12]. 

The occurrence of a rarefaction wave is in agreement with the HENDERSON-LOZZI 

postulate [17] which tells that if RR ~ MR transition is accompanied by a jump in press­
ure, an unsteady wave with constant amplitude or a sequence of such waves is generated 
in the flow. An identical conclusion was formulated in Sect. 2, in which it was stated that 
RR ~ MR transition should be accompanied, in the case of a strong shock wave (according 
to an appropriate criterion), by an unsteady rarefaction wave. 

Similarly, the case of a weak shock wave is in agreement with the assumed hypothesis 
that initial discontinuity decay is a mechanism of formation of a Mach configuration. 
For appropriate values of the gas parameters on both sides of the initial discontinuity 
it is possible that two shock waves propagating in opposite directions are generated. 
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By using the term of "weak shock wave" we mean that a finite counterpressure occurs 
before the front of the incident shock wave. Under such conditions the blast wave is no 
more selfsimilar, which makes the analysis much more difficult. The theory of the Riemann 
problem [21] tells that a configuration with two waves is generated if the fo1lowing condi­
tion is satisfied: 

(4.11) 
v 
-> 
ao 

z 

-[ +1-]172' 
'Y 1 + 'Y 2y z 

where v - mass velocity behind the initial discontinuity front, a0 - speed of sound in 

the medium at rest before the wave, z = p-po- strength of the 1initial discontinuity, 
Po 

p- pressure behind the discontinuity, Po- pressure before the discontinuity. 
By transforming the inequality (4.11) we obtain the following condition for the strength 

of the discontinuity: 

(4.12) 

If the pressure behind a regularly reflected shock wave, referred to the pressure before the 
incident wave, satisfies the relation (4.12) at the moment of RR --+ MR transition, four 
shock waves should be expected in the wave pattern of the Mach configuration (not three 
as in the classical image). This suggestion requires some quantitative studies. A particular 
question to be answered is as to whether there exists a subdivision into strong and weak 
waves (cf. Sect. 2) that is identical with the condition (4.12) and what is that subdivision. 
This problem will be the subject of a separate publication. 

5. Summary and conclusions 

The results of some recently published papers concerned with the problem of interaction 
between shock waves and obstacles have shown that the problem of universal criterion 
for the RR +:! MR passage has been reopened. In particular some specific features of unsteady 
flows other than those of steady or pseudosteady flows were observed. In this connection 
it may be of interest to study the interaction of a spherical shock wave with a plane reflec­
ting surface. This problem is multidimensional and strongly nonlinear, which makes 
difficult the obtainment of accurate solution. From the point of view of the problem of 
dynamics of the RR +:! MR transition, in which we are interested, the numerical solution 
obtained in [12] by using one-dimensional model, in which the asymptotic properties for 
long times and distances are made use of, is sufficient. Thus, the problem is reduced to that 
of solving the Cauchy problem with initial conditions prescribed on the trajectory of the 
reflection point obtained on the ground of the theory of regular reflection. Correct formula­
tion of the Cauchy problem requires the inclination of the trajectory, at any point, not to be 
identical with the characteristic direction. Such a requirement leads to the Hornung-
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Oertel-Sandeman sonic criterion for the RR -+ MR transition. Thus, the HOS criterion 
is found to be justified by the logical consistency of the mathematical model describing 
the process. 

If we continue the above considerations we arrive at the conclusion that the configur­
ation of shock waves characteristic for irregular reflection known as the Mach configur­
ation is formed as a result of decay of a discontinuity (which does not satisfy the Rankine­
Hugoniot conditions), which had been formed in the regular phase of reflection. When 
the Cauchy problem discussed above becomes ill-posed, the reflection point moves away 
from the wall and the decay of the discontinuity leads to the formation of a Mach wave. 
This hypothesis implies that there exists a connection between the RR --+ MR transition 
and the Riemann problem. Other facts confirm the existence of an analogy between those 
two problems. Depending on the strength of the incident shock wave (the difference between 
a strong and a weak wave was discussed in Sect. 2) there is a possibility of transition with 
generation of either a shock wave or a rarefaction wave. This statement is implied by the 
analysis of polar diagrams illustrating the von Neumann criterion and the HOS criterion 
(Figs. 3 and 4). Also in the Riemann problem the occurrence of a configuration with 
a rarefaction wave or a shock wave is possible depending on the initial discontinuity par­
ameters. An answer to the question as to whether the difference between a weak and a strong 
wave (according to the HOS criterion, for instance) is in agreement with the condition 
( 4.12) requires a more detailed numerical analysis. It was shown in Sect. 4 that such an 
assumption necessitates a modification of the theory of the triple point originally developed 
by von Neumann. In the case of a RR --+ MR transition for a strong shock wave the 
Prandtl-Meyer expansion should additionally be taken into consideration for the con­
figuration of the triple point. As a result, the number of limitations imposed by the theory 
on the experimental results is reduced to one (there being two in the von Neumann theory). 
It remains to analyse the configuration of four shock waves resulting from the reflection 
of a weak wave. This problem will be considered separately in future. 

Summing up the above remarks it may be said that: 
The analysis presented above shows that the Hornung-Oertel-Sandeman criterion 

is valid for the RR-+ MR transition in the problem of reflection of a spherical shock 
wave from a surface. 

RR -+ MR transition occurs in the problem considered as a result of decay of a discon­
tinuity (which does not satisfy the Rankine-Hugoniot conditions) formed during the 
regular phase of the process. 

A hypothesis has been put forward that the analogy between the Riemann problem 
and the RR -+ MR transition problem may be of universal character for unsteady flows. 

This leads to a modification of the theory of triple point. In the case of strong shock 
waves this modification means that Prandtl-Meyer expansion should be taken into account 
in the local theory of triple point. 

As a result, the number of limitations imposed by the theory on the experimental 
result is reduced (a single equation instead of two interrelating the orientations of shock 
and contact discontinuity lines). 

It should be stressed that the above considerations do not justify acceptation of the 
HOS criterion and the theory of decay of initial discontinuity as obligatory for steady 
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or pseudosteady flows. They show rather that the cause of formation of a triple configura­
tion and the dynamics of the process as a whole cannot be neglected for truly unsteady 
flows. 

It follows that the von Neumann triple point theory may be of limited application and 
may not be suitable for any experimental situation. 

The analysis just made shows that there is essential difference between a truly unsteady 
flow and a steady or pseudosteady flow. In the former case RR +± MR transition is possible 
in the course of a single experiment, what gives rise to transitory processes and associated 
unsteady rarefaction and shock waves, which are not observed in relaxed states correspon­
ding to steady flows [25]. 
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