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Free vibrations of thin, elastic, segmented shells of revolution
reinforced with circumferential rings

B. BLOCKA (GDANSK)

THE sUBJECT-MATTER of this paper is a method for calculation of frequencies and modes of free
vibration of thin, elastic, segmented shells of revolution reinforced with internal or external
circumferential rings. The shape of the meridian and the change of thickness of the shell in
the meridional direction may be arbitrary. Material and structural orthotropy of the shell have
also been taken into account. The problem is posed in a variational form. The functional asso-
ciated with Hamilton’s principle has been expanded into trigonometric series in the circumfe-
rential direction and finite-difference method has been applied along the meridian. In conse-
quence, the problem has been converted into a generalized eigen-value problem. Numerical
examples, calculated with the program DYSAR based on an algorithm presented here, expose
the possibilities of the method and the program itself. Analysis and comparison of these numeri-
cal results with the experimental data published in the literature confirm their correctness and
accuracy, which turn out to be quite sufficient for practical applications even in the case of
relatively small number of nodes of the finite difference net.

W pracy podano metode obliczania czestodci i postaci drgaf wlasnych cienkich, sprezystych,
segmentowych powlok obrotowych, wzmocnionych wewnetrznymi lub zewnetrznymi pierscie-
niami kotowymi. Opracowany algorytm uwzglednia dowolng geometri¢ poludnika powloki,
zmiang jej grubosci wzdluz potudnika, ortotropi¢ materiatu oraz ortotropi¢ konstrukcyjna.
Zadanie sformutowano w postaci wariacyjnej. Zbudowany funkcjonat typu Hamiltona dla drgan
harmonicznych rozwinigto w szeregi trygonometryczne w kierunku obwodowym oraz zdyskre-
tyzowano w kierunku potudnikowym stosujac réznice skoriczone. W rezultacie zadanie spro-
wadzono do uogoélnionego problemu na warto$ci wlasne. Przyklady numeryczne, obliczone
programem DYSAR opracowanym na podstawie przedstawionego algorytmu, pokazuja efek-
tywno$¢ metody i programu. Analiza i poréwnanie wynikow obliczeni z danymi eksperymental-
nymi zamieszczonymi w literaturze wskazuja na ich poprawno$¢ i dokladno$¢ wystarczajaca
dla celéw praktycznych, nawet przy stosunkowo niewielkiej liczbie weztéw siatki roznicowe;.

B paGoTe npuBeaeH MeToJ pacyera UacToThI X (opMbl COOCTBEHHBIX KOJNE0aHMH TOHKHX Y-
PYTHX CETMEHTHBIX 060JI0UeK BpAIEHHUsT, YIPOUHEHHLIX BHYTPDEHHMMH WM BHEIIHUMH KpYy-
TOBBIMH KOJIBLAMH. Pa3paGoTaHHbIH anropHTM YUYHTHIBa€T IPOH3BOJIBHYIO TEOMETPHIO Me-
puanaHa o0OJIOUKH, M3MEHEHHE €C¢ TOJIIWHBI BHOJF MEPHIWAHA, OPTOTPOIHIO MaTepHana
M KOHCTPYKLHMOHHYIO OPTOTPOIHIO. 3ajaua IOoCTaBJIeHa BapHanmoHHOM Buue. IlocToeHHBIH
¢yHKIHOHaN THNA ['aMMIIBTOHA IS TapMOHHYECKHX KoJieGaHHi pasiyioyeH B TPHTOHOMETDH-
YeCKHE PAJIbI 110 KOHTYPY M JHCKPETH3HPOBAH 10 KOHTYPY B HAaIPaBJIEHMH MEPH/IXaHa C HCIIOJIb-
30BaHMEM KOHEUYHOH pa3HOCTH. B peaysbrare 3ajaua cBommTcs K 0000ILEHHOI 3amade HA cob-
CTBEHHbIE 3Ha4YeHHA. UHCIIOBble NpHMEDHLI, pacudTaHHble mo nporpamme DYSAR, pas-
paboTaHHOH Ha OCHOBE INPEACTABJICHHOTO AITOPHTMA, HIULIOCTPUPYIOT 9¢¢eKTHBHOCTE Me-
TOJa M NpOrpaMMmbl. AHAaJH3 M CPaBHEHHE DPEe3YJIETATOB DPacdeToB C O9KCIEePHMEHTAJIBHBIME
JaHHBIMM, HAXOJANMMHUCA B JIMTEPATYpe MOATBEPMAAIOT HX NPaBHJIBHOCTh M TOYHOCTB, JIOC-
TAaTOUHYIO JUIsl NMPAaKTHYECKHUX IleJied, Ha)ke IIpM OTHOCHTEIBHO HeOOJNBIIOM KOJIHYeCTBe
V3JI0B PA3HOCTHOH CETKH.

1. Introduction

A NUMBER of papers have been devoted to the problem of free vibration analysis of thin
elastic shells of revolution reinforced with circular rings. At first mainly analytical methods
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were applied, restricted mostly to special shell geometries or to special simplified theories
with simple boundary conditions [10]. A series of special methods of analysis and compu-
ter programs for dynamical calculations of shells of revolution of arbitrary meridional
geometry were created with the application of computer techniques. Among the methods
applied were: finite element method [16, 19], the numerical integration method [6, 11, 17],
the classical finite-difference method [1], or the energy finite-difference method [4]. Util-
ization of large computer system like SAP IV, ASKA based on the finite element method
is also possible; however, it is not convenient due to the complicated process of input data
preparations and long computer time, when compared with the specialized methods.

This paper presents a modified method of free vibration analysis of a thin-walled struc-
ture, modelled by a thin elastic segmented shell of revolution. Within this model the
geometry of the meridian of a shell segment may be arbitrary, and so may be the change
of the shell thickness along the meridian. The orthotropy of the shell material and the
structural orthotropy arising from the presence of the circular reinforcing rings, are also
taken into account. Arbitrary homogeneous displacement conditions may be imposed
on the boundaries and the joints between the neighbouring segments.

The problem has been formulated in the variational form and then solved by separa-
tion of variables. The independent variables of the functional (the displacements of the
middle surface of the shell) are expanded into trigonometric series in the circumferential
direction. Then they are discretized in the meridional direction. Imposition of the station-
arity condition on the resulting algebraic quadratic form yields a generalized eigen-
value problem, numerical analysis of which leads to the free-vibration frequencies and

modes.
A similar method was applied by BUSHNELL [4]. In contradistinction to the papers by

Bushnell, the Lagrange multiplier method has not been applied here to the boundary
conditions and the conditions of compatibility of the displacements between the shell
segments. Appropriate elimination of rows and columns and aggregation of the stiffness
and mass matrices have been applied, instead, in a way similar to the one employed in
the finite element method [9]. This modification eliminates fictitious nodes, apearing
beyond the boundary region of the shell and arising from the finite difference scheme
assumed. Otherwise, these fictitious nodes might generate additional non-existing eigen-
values. Besides, this procedure decreases the dimension of the eigen-value problem. This
is particularly important when the system comprises many segments or is reinforced along
the meridians, since the harmonics are coupled in the latter case [3].

The numerical examples presented in the paper show correctness and efficiency of this
modified method and broad capabilities of application of the program DYSAR.

2, Basic assumptions

It is assumed that the shell as well as the beam elements are thin. This allows to express
all the quantities describing the state of displacement of the shell through the displacements
of its middle surface, and the state of displacement of the stiffeners through the displace-
ments of the centroids of their cross-sections. The analysis is based on the Sanders’ variant
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of the linear shell theory [15] and the theory of weakly curved rods [14]. Besides, it is
assumed that the rings are fastened to the shell along the parallels and the joint of the
middle surface with the centroids of their cross-sections can be modelled by stiff elements.
Figure 1 presents the local (s, 6, {) and the global (x, 8, z) systems of coordinates on
the shell and the main geometric parameters R;, R,, r describing the middle surface of
a shell of revolution. Figure 2, instead, illustrates the parameters describing location of

F1G. 2. Location of a circular ring; displacements and rotations of the cross-section of the ring #., v,
We, B¢, Oxe, P43 displacements of the shell in the global system u*, v*, w* ¢f.

the ring stiffener on the shell. It is determined by a vector a(a,, 0, ,) lying in the plane
perpendicular to the middle surface and the meridional coordinate s; along the line of
joints between the ring and the shell. External and internal circular rings may be stiffe-
ners as well as boundary elements or elements joining two neighbouring shell segments.

3. Vartiational formulation

The problem of free vibrations of thin elastic segmented shells of revolution reinforced
by circular rings has been formulated as the problem of minimization of the functional
associated with Hamilton’s principle, namely

? Arch. Mech. Stos. nr 2—3/88
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L5
(3.1) 6H =6 [ (T-E)dt =0,
to
where, in the case of free vibrations, E denotes the elastic and T the kinetic energies of
the system. Particular component parts of these energies may be presented in the form
E, = %ffn,re,rdﬂds, E,= —;— nle.Rd0,
(3.2 5 2 o

2

w? — w T
Ts = -“2— llsMsllsrdeS, Tc = TfucMcucRde.
s 6 ‘]
Here n, and n, are generalized vectors of forces in the shell and the ring, respectively, and
their components are as follows:
n, = {N; N2z2Nia Myy My,2M 1,37, o, = {(NM, M. M.},

_ 1 - 1
le =—2—(N12+N21)’ M12 :7(M12+M21)-

The quantities €;, €, with the components

(3.3)

€ = {611622812%11%22%15}7, Hya = ?("12’{'?‘21),

3.4

€ = {scxxcxzcxc}:r,
are the corresponding vectors of strain in the shell and the ring, respectively. M, M,
are the corresponding matrices of inertia coefficients, and u,, u, vectors of generalized
displacements in the shell and the ring. Their components are the displacements and ro-
tations
(35) u; = {HUW¢1¢2}T, u, = {uc‘vcwc@xcﬂzc}T‘

Obviously, not all of these components are independent variables. The Kirchhoff-Love
hypothesis yields the relations
(3.6) {p1¢,}" = B,u, u={uvw},
3.7 {O:c%..} = Bou,, w, = {uo.w 8.},
where By, B, are differential operators describing the relations between the dependent and
independent components of the vectors (3.5).

The variational formulation given here guarantees automatical fulfilment of the dy-

namical boundary conditions. So, the objective now is to find the stationary values of the
functional H from (3.1) at some kinematical boundary conditions.

4, The boundary conditions

Homogeneous kinematical boundary conditions for the shell may be written down
in the local coordinate system (s, 0, ¢) in the form

@.n {ugvawad 4}’ = Gul,,, {upvpwpdp}’ = Gu|s=.v.x
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where u,, v4, W4, ¢4 and up, vz, wp, Pp denote generalized displacements of the shell
middle surface on its boundaries, that is for s = s, and s = sp, respectively. In the global
coordinate system x, 0, z these conditions will assume the following form:

(4.2) {uiviwiod}" = G*ulsoy,,  {upviwidi} = G*ul,_,,.
Displacements u*, v*, w*, ¢¥ in the global coordinate system are illustrated in the Fig. 2.

The operators G and G*, appearing in the formulae (4.1) and (4.2), have the following
representations:

[ r 0 __dr"'
"1 0 R, ds
0 0 1 0
(4.3) G=] 0 O 1 1, G* =1 dr 0 r
ds R,
1 0 d
R, 4, L, 28
| Ry~ Os_

The boundary conditions (4.2) in the global coordinate system x, 8, z are also employed
as the compatibility conditions between neighbouring segments of the shell system.

5. The constitutive and kinematical relations

The form of the constitutive and kinematical relations for the elements of the reinfor-
ced system of shells of revolution results from the hypothesis assumed for the model of
the shell segments and circular rings. For the Sander’s variant of the linear theory of
shells [15] and the theory of weakly curved beams [14], the constitutive relations can be
written in the form
(51) n; = Csess n, = Ccec;
where C, and C, are elasticity matrices of the shell and the ring, respectively [2].

The relations between the strains and displacements in the shell and ring may be for-
mulated as a function of independent displacement parameters
(5.2) € = A, € =Amu,
and the differential operators A; and A, are given explicitly in [2].

Employing (5.1) and (5.2), the elastic energies of the shell segment and the ring may
now be presented as functions of the displacement vectors u, u,.

(5.3) E = é- f f (A, W)TC,A urdids, E, = %(Kcﬁc)TCcA'cﬁcRa’B,
s 0

where the components of u, u, are given in (3.6), and (3.7),.

6. Ring-to-shell joint

Due to the diversity of functions that the circular rings may play in the shell system
(elements reinforcing the shell segments, boundary rings or elements joining two seg-

2
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ments), it is convenient to write down the conditions of compatibility for the displace-
ments of the rings and the shell in the global coordinate system x, 6, z. The geometrical
relations between the displacements u,, v., w., v, of the cross-section centroids of the
ring and the global components of displacement of the shell middle surface u*, v*, w* ¢¥
(Fig. 2) may be represented symbolically as @, = F*u*, where

1 0 0 0
u*
a, d a, a d
6n r=| ra " Tv@w %L g
*
0 0 1 _— v
*
0 0 0 1 ¢

Next, employing the relations between the components of displacement in the global
and the local system, that is u* = G*u, the displacement of the cross-section centroids
of the ring may be expressed through the three components of displacement of the shell
middle surface

(6.2) u, = F.u, F,=F:G*

7. The elastic and kinetic energy

The elastic and kinetic energy (3.2) of the shell segments and the circular rings may
now be expressed only in terms of the displacements of the shell middle surface.

Substitution of the constitutive (5.1) and the kinematical (5.2) relations together with
the relations (6.2) for the circular rings in the expressions for the elastic energy of the ele-
ments of the system yields

(7.1) E, = %ff(Agl)TCsAsurdﬁds, E = ; f(Acu)TCcAcuRdB,
s 0 b

where
A, = A_F*G*.

The same procedure may be applied to the kinetic energy. However, it is more con-
venient to write them in a modified form, separating the component parts of energy co-
ming from the independent and dependent parameters of displacement. After appropriate
decomposition of the vectors u,, u, whose components are given in (3.5), and employing
the relations (3.6), (3.7) and additionally (6.2), the Kinetic energy may be written in the
form

(02

_ T
T,= % f Bf [u™M, u -+ (B,u)"J,B,ulrdb ds,

(7.2)
2
T°=w7f f [(Fu)™™LF u+ (B.F.u)7J B.F.u] Rdf.

s 0
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The entries in the matrices of inertia My, I,, M., I. are as follows:
hz
M, = eshl(3x3)5 J; = o ﬁl(zxz)

M, = o, 4,diag|1,1,1, % J Tro=Jas
= Q¢ 1ag H A Ye — Qe _ch ch s

where g., o are the densities of the shell and the ring, respectively, 4 is the thickness of the
shell, A, is the area of the cross-section of the ring and I, I, I, I, are its moments
of inertia. I stands for the unit matrices.

8. Solution of the problem

The functional H (see (3.1)), whose components are the elastic (7.1) and the kinetic
(7.2) energies of the shell elements and the rings, has an integro-differential form. This
functional will be now reduced to an algebraic quadratic form via separation of variables,
expansion of the parameters of the displacement into trigonometric series in the circum-
ferential direction and discretization in the meridional direction.

The displacement vector u, which is a function of two variables s, 6, has been expanded
in a trigonometric series in the circumferential direction in the following way:

N
®.1) u(s, 0) = ) (Tiuf +Tiu3),

n=0
where T}, T3 are diagonal trigonometric matrices
= diag[sinnf, cosnl, sinnf], % = diag[cosn0, sinn0, cosn0].
Vectors u] are skew-symmetric and uj—symmetric components of the displacement
vector u. Such expansion of u enables us to carry out exact integration of the expressions

for energy with respect to the circumferential variable 6. For instance, integrating the elastic
energy of the shell segment (7.1); one can obtain

2 (A TEu)TCAThuzrdd = (A% ul)"ChsA%u;, k,n=0,1,...,N.
o,f =

The operators Al resulted from differentiation of the operators A; with respect to 0,
and the matrices C&s have the form

(82) Cit'zlﬁ = 6&,8 6knrcsdiag[(1 i 5:10)9 (1 i 6;:0); (l $ 5;.0), (1 i 6"0)1 (1 i anO): (1 $ 6n0]:

where .5, O, are Kronecker deltas. In the diagonal matrices above, the upper signs
refer to the case o = f = 1, and the lower ones to the case o = f§ = 2.

The operator A%, and the matrix CX; connected with the circular ring, can be obtained
in an identical way. We can write this matrix as follows:

(83) Cg:ﬂ = 6a,ﬂ 6knRCc dlag[(]- ¥ ano)(l + 6n0): (l + 5::0); (1 + 6:10)] g
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Absence of couplings between the components of the trigonometric series (8.1),
stemming from the form of the matrices C%; (8.2) and Ct%; (8.3), allows to write the com-
ponents of the elastic energy for a single reinforced shell segment in the following form:

N
2+t f (Amu")TCH Anutds,

n==Ngs

(1450 Z 2‘ (AwTCIATY,

n==N c=1

E;

(8.4)

||
S

where C is the number of rings on this segment.
We have introduced the following conventions in Eq. (8.4) for the sake of bre-
vity:

u for n >0,
u'={u for n<0, k=1,2,..,N,
T2 +T9u for k=0,
AL, for n>0,
(8.5) A7 = 1 AL, for n<0,
A=A, for n=0, k=1,2,..,N, g=s,c,
i Cit, =Ck, for n>0 and n<0O,
L Chi=C); for n=0, k=12,..,N, g=s,c.

Having applied the same procedures to the terms of kinetic energy (7.2) and after
integration with respect to 6, we obtain

N
T, = 0?2 (1400 ) [ w0 M+ (Bu)a;8pwlds,
(86) n=;N s .
T.= 0?3 (1+0,0) D) > [(Frur)TMzFzur-+ (B3R 2Bz Rz

n==N c=1
The notation in (8.6) is identical with that used in (8.5), and the matrices of inertia
have the form:

M3l = 0up SurM,diag(1F 8,0), (1 £ o), (17 o),

8.7) ,aﬁ = Oup Onr s diag(l F 6,0), (1 £ ,0),
M5 = O 0 RM. diag(L F no)s (11 840), (1 F dno), (1 F 6r0)s

Jeg = OupOun RI(1 £ 8,0).

The sign convention for the entries in the diagonal matrices remains the same, too.
Within each segment the meridian of the shell has been divided in to m subsegments.

In each of these subsegments the geometrical parameters of the shell have been replaced
with discrete values. The derivatives with respect to the meridional variable s have been

replaced with central finite differences [2]. The displacements of the shell middle surface
has been expressed through the displacements of discrete points on the shell meridian.
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The integral within respect to the meridional variable s has been replaced by a sum
of integrals calculated on each subsegment 4,. The fictitious points, lying beyond the bound-
aries of the shell and introduced to unify the notation, are eliminated via the relations
linking these points with the true boundary displacements ¢, u,, v, w, and ¢g, ug,
vg, wg for s = 5, and s = sg, respectively. Eventually, the integro-differential functional H
can be transformed to the following algebraic form

(8.8) H= 2 Y‘ Z(uP")T(K" —w?M)uf"
where

K, = (APDTCE A A, + 8, 2 8, (APTCER APS,
(8.9)
= M+ (BE)TIZIBE + 8y 2 8., {(2)T[M22 + (BE)TIZr BETIF2: .

m,, determines the number of subsegments in the segment p, and P — the number of the
shell segments. Local stiffness matrices K}; and matrices of inertia Mj; in the segment p
are calculated as a sum of the respective local matrices for the shell and the ring, as shown
in (8.9). The Kronecker delta d;;, appearing there, determines the location of the joint
between the ring and the segment. The matrices AP}, A27 BE", B2 and F27 resulting from
the relevant operations A?, AZ, BZ, B: and F? after application of the finite differences,
whereas the matrices of stiffness CIf', CZf and inertia M#7, J*F, M2%, J27 are the matrices
described by (8.2), (8.3) and (8.7), calculated for each respective subsegment. Summation
with respect to the indices i and p, appearing in (8.8), is carried out by introduction of the
global vectors @" and matrices K® and M", reduced suitably to the boundary constraints
imposed.
The functional H (8.8) may also be represented in the form (8.10)

N
(8.10) H= ) (@ & —w’M)i.

n=-1

The stationarity condition for the quadratic form (8.10), due to the absence of coup-
lings between the harmonics and the relation stemming from the existence of symmetry
with respect to the xz plane

@KW = @)K, n=1,2,...,N
@)™ = @)™, k= —-1,-2,..., — N,
leads to N+1 eigen-value problems
8.11) KWw" = w*MW', n=0,1,...,N.

The matrices K" and M" are symmetric banded matrices. Moreover, the matrices of
inertia M" are positive definite. The definiteness of the stiffness matrix K" depends on the
boundary conditions imposed.
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The solution to the N+ 1 generalized eigen-value problems (8.11) gives the free vibra-
tion frequencies and the corresponding modes for the segmented shell of revolution
reinforced with circular rings.

11. Numerical calculations

Basing on the algorithm presented above, a program DYSAR written in Fortran IV
has been implemented on the R-32 computer in the Institute of Fluid Flow Machinery of
Polish Academy of Sciences in Gdansk. This program has been tested in a number of
examples. One of them which we are going to present below was the test of convergence
of the finite difference method.

FiG. 3. Geometry and material constants of the spherical shell. R = 2.54 m, & = 0.0254 m, E = 2.48 -
- 10°Nm~2, » = 0.3, ¢ = 10.69 Ns’m~4.

The object considered was a hemisphere (Fig. 3). The results obtained were compared
with those published by BUSHNELL [5] and ZARGHAMEE and RoBINsON [20]. Let us mention
here that Bushnell applied NovozHiLoV’s variant of the linear shell theory [13], whereas
the paper [20] is based on FLUGGE’S equations [8]. One should expect, though, that in
this case the influence of the variant of the theory chosen is negligible. The material
constants of the shell (Fig. 3) were taken from BUSHNELL [5].

n=0
3o ——— n=1
§ - n=2
A ——= =3
QU
SE O\
' 3
3 \
0 \( 20 30 0 50 60

T Number of notes in
differential mesh

F1G. 4. Convergence of the lowest frequencies for n = 0, 1, 2, 3 in comparison to [20] versus the number
of division of the shell meridian.
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A few lowest frequencies, corresponding to the circumferential wave numbers n = 0,
1, 2, 3, where calculated for different divisions of the shell meridian. Figure 4 illustrates
the convergence of the frequencies for each circumferential wave number n versus the
division of the meridian in comparison with the solution from [20]. The graph shows that
already at the division into 12 subsegments (13 knots of the finite difference mesh) the
difference with respect to [20] does not exceed 2%, and at 20 knots mesh, for all circum-
ferential wave numbers n, this difference amounts only to ~ 0.39.

s 13
o 22 | Number of notes
a x 33 ( In differential mesh
| -
7 o
i‘» 1=0
I H\f\%% J S
n="1
1 Mwo-o.o
\A\o
W
S
C
1 o
A A,cf"“ a =2
A A o =
' 37 XS\/ \B\
bra® -
A
1 ooy
d ﬂ'O (]m
v N n=3
s ‘Ab
zb’“&o \
= By —— i
b‘ﬁﬁ 5

F1G. 5. Convergence of the bending modes of free-vibrations corresponding to the lowest frequencies for
n=0, 1, 2, 3 versus the number of division of the shell meridian.

The convergence of the corresponding modes is shown in the Fig. 5. The modes are
normalized with respect to the matrices of stiffness and inertia, that is (G")"K"i" = w?,
@")™"i" = 1. A distinct correlation between the convergence of the frequencies and
modes is noticable (compare Figs. 4 and 5). The local perturbations of mode shapes in
the neighbourhood of the shell apex result from geometrical singularity at this point (e.g.
Fig. 5a, c). In this particular problem the total error comprises the error stemming from
too thin finite difference mesh and the error coming from the singularity in the point
x = 0 (Fig. 3). Due to the singularity in this point (+ = 0), the energy of the shell was not
calculated in the point x = 0, but at a distance from it, equal to 4/4 (here 4 is the length
of the subsegment in the finite difference scheme).

The rest of convergence discussed above seems to give satisfying results.

The Fig. 6 shows schematically the modes obtained for » = 0, 1, 2, 3.
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FiG. 6. Free vibration modes of the hemisphere.

Q
U

I

X

F1G. 7. Geometry and physical data of the segmented shell (cone-cylinder): @ = 0.1270 m, / = 0.3048 m,
H=0.1524 m, £E=689-10°N m2, 7 =0.3, p = 2.767- 10> N s> m~%, h = 0.8110-* m. Boundary
conditions: for x =0—-N,, =T=0=M;,; =0, for x=I+H—¢, =u=v=w=0,

The second example is a two-segment shell. One of the segments is conical and the
other cylindrical (Fig. 7). The cone was divided into 10 subsegments and the cylinder into
15. The relation between the frequencies and the circumferential wave number is shown
in the Fig. 8. This figure also shows experimental results obtained by Lashkari and Wein-
garten [12]. These experimental results lead to the conclusion that some of the frequen-
cies correspond to such modes that each of the two segments vibrates with different cir-
cumferential wave number n. The graph of frequencies contains two minima (Fig. 8).
This indicates the existence of frequencies near or equal to each other and the possibility
of vibrations with complex modes. For instance, the composition of the mode n = 4,
m =2, o = 1099 Hz and the mode n = 7, m = 2, o = 1097 Hz results in a mode, for
which each of two segments vibrates with a different circumferential wave number (the
cone with # = 4 and the cylinder with n = 7) (Fig. 9). The following normalization has
been assumed for the graph in the Fig. 9: (i")"K"a" = w?, (a")"™M"d" = 1. Of course, vibra-
tions composed of more than two modes are also possible, for example of the modes:
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F1a. 8. Free vibration frequencies w[Hz] of the shell cone-cylinder versus the number n of circumferential
waves.

n=4m=2,0w =109 Hz;n=7,m=2,w = 1097Hzand n = 8, m = 2, w = 1100 Hz.
Experimental “grasping” of such complex vibrations may turn out to be difficult. Due
to the singularity at the top of the case the energies were calculated at a distance '217:1.
from the top, where 4 is the length of the subsegment in finite difference mesh.

The last example is a simply supported conical shell reinforced with three circumfe-
rential rings (Fig. 10).

The meridian of the shell was divided into 18 subsegments. Figure 11 shows how w
depends on n according to the results obtained with the aid of the program DYSAR. It
also shows the comparison with the results obtained in [7]. The dependence of w on n
for a shell without rings is shown in the Fig, 12. The comparison of the two cases, that
is of the shells with and without rings, leads to the conclusion that the stiffeners may
change the mode corresponding to the lowest frequency, for in this example the lowest
frequency of the shell with rings is @ = 1228,1 Hz and corresponds to the mode m = 1,
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F1G. 10. Geometry and material data of the conical shell and the rings. Shell: R, = 8.6995 10~2m, R, =

=0.1334m, [ = 02667 m, i = 2.54-10~>m, E = 6.83- 10!°Nm~2, » = 0.303, ¢ = 2.71-10® Ns? m~*.

Ring: b, = 6.35-10~*m, k. = 6.35- 10> m, f. = 8.89:10~2 m E, = 6.83-10'° Nm~?, », = 0.303,

@c = 2.71-10® Ns?m~*. Number of rings: 3, C; (i = 1, 2, 3) —ring attachment points to the shell.
Boundary conditions: for s =0, I—N;;, =v=w= M;; =0.

n = 3, whereas for the shell without rings the respective frequency is @ = 1060,4 Hz and
corresponds to the mode m = 1, n = 1. Additional stiffeners, in the case, increase the
basic free vibration frequencies by 15,8% as compared to the non-stiffened shell. Figure 13
shows typical modes obtained for the conical shell under discussion. The modes of the
type a) and c) were obtained for the harmonics » = 1+4. Starting with » = 5 the bending
vibrations vanish in the upper portion of the cone. The phenomenon of shortening of
wavelength with the increase in the circumferential wavelength number n occurs. This
phenomenon was described by WEINGARTEN [18]. However, with the increase in the num-
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FI1G. 12. @ versus n for a non-stiffened conical shell.

ber m of half-waves along the meridian of the shell, significant differences between the
modes of vibration for a stiffened and non-stiffened shell can be observed (e.g. n = 8,
m = 4, fig. 13). It was also observed that attachment of rings results in occurence of addi-
tional local bends in the shapes of modes in the neighbourhood of the points of attachment
(Fig. 13).
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Fi1G. 13. Typical bending free vibration modes for a simply supported conical shell.

12. Final remarks and conclusions

The analysis of the model and the numerical examples show that the rings do not
cause couplings between the circumferential wave numbers n. So, formally, the analysis
of free vibration of segmented shells of revolution with rings may be decoupled and thus
converted into N+ 1 separate eigen-value problems, as it happens to be with the smooth
shells. However, due to the concentration of frequencies in the spectrum, the real free
vibration modes may be linear combinations of the classical modes connected with the
same or proximate frequencies (Fig. 9). Besides, rings as well as angular joints between the
segments may confine the vibrations of the shell only to some of its regions.

Numerical tests proved the effectiveness of the method presented here. Comparison
of the results obtained with the aid of the program DYSAR with the experimental data
from the literature indicates accuracy sufficient for practical purposes even at the rela-
tively small number of finite difference mesh.

It is noteworthy that the method presented and the program DYSAR may be used
in the free vibration analysis of stiffened or non-stiffened fragments of shells of revo-
lution and (with adequately elected geometrical parameters) of rectangular plates (frag-
ment of a cylinder of a very large radius), provided the boundary conditions comply with
the requirements of rotational symmetry.
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