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Thermodynamics of a beat conducting Maxwellian fluid 

K. WILMANSKI (PADERBORN) 

IT IS SHOWN that compatibility of the model with rate type equations for deviatoric stresses 
and heat fiux with thermodynamics yields only the positivity of heat conductivity K, shear 
viscosity fl and both relaxation times c, and cq, appearing in rate equations. It does not limit 
the non-objective terms in heat flux equation. Hyperbolicity implies additionally an upper bound 
for the magnitude of heat flux. Some aspects of transition by regular perturbation to second 
order fluids are briefly discussed. 

W pracy pokazano, ze zgodnosc modelu z r6wnaniami ewolucji dla dewiatora napr~zen i stru­
mienia ciepla z termodynamik~ wymaga jedynie dodatnosci przewodnictwa ciepla K, lep­
kosci p, i obu czas6w relaksacji Cr i Cq, wyst~puj~cych w r6wnaniach ewolucji. Termodynamika 
nie ogranicza czlon6w nieobiektywnych w r6wnaniu strumienia ciepla. Warunek hiperbolicz­
nosci wprowadza dodatkowo kres g6rny dla modulu strumienia ciepla. Przedyskutowano 
r6wniez pewne aspekty przejscia przy pomocy regularnej perturbacji do modelu cieczy drugiego 
rz~du. 

B pa6oTe IIOKa3aHO, liTO COBIIa~eime Mo~eJIH C ypaBHeHHHMH 3BOJilO~HH ~ ~eBHaTopa 
HaiipH>KeHHH H IIOTOI<a TeiiJia C TepMO~HHaMHKOH TPe6yeT TOJThKO IIOJIO>KHTeJibHOCTH TeiiJIO­
IlpOBO~HOCTH K, BH3KOCTH p, H o6omc BpeMeH penaKca~HH C, H Cu BbiCTyiiaro~mc B ypas­
ueuuax 3Bomo~HH. TepMo~aMHKa ue orpaHHtmBaeT ueo6neKTHBHbiX l.IJieHoB B ypasHeHHH 
IIOTOKa TeiiJia. Y CJIOBHe rnrrep6o~OCTH BBO~ ~OIIOJIHHTeJibHO BepxmoiO rpaHHey ~H 
MO~YJIH IIOTOKa TeiiJia. 06cy>K~eHbi TO>Ke HeKOTOpbie acrreKTbi rrepexo~a, IIpH IIOMO~H pe­
ryJIHpHOH rrepTyp6a~HH, K MO~eJIH >KH~OCTH BToporo IIOpH~a. 

1. Introduction 

IN THE RECENT paper [1], I. MuLLER and myself have investigated an extended thermody­
namics model of a non-newtonian fluid. It was shown that deviatoric stresses t<,"> fulfil 
in such a model the equation of the following form 

where the inertial Cartesian frame of reference has been used, angular brackets ( · ) de­
note trace-free symmetric part of tensors, 

D. • 
t<tJ>: = t<tJ> + t<tk> v[k,Jl + t(Jk> v[k, n (1.2) 
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218 K. WILMANSKI 

is the objective, so-called co rotational, time derivative of t<iJ>' e<IJ> is a constitutive quantity, 

p- pressure (p : = - + t .. ), {J., {J,, {J.- material parameters. 

The rate-type equation (1.1) indicates that extended thermodynamics leads to a Maxwell­
type model of non-newtonian fluids. 

We have shown in the paper that the presence of a non-zero left-hand side of equation 
(1.1) yields non-objectivity and, simultaneously, it makes impossible the transition to 
incompressible fluids. We have argued, however, that both these effects are very small 
in normal circumstances and can be neglected if one considers a non-newtonian fluid 
as it is understood in rheology. 

It should be stressed that the structure of left-hand side of (1.1) is motivated by kin­
etic theory and it has, for this reason, a very solid physical background. 

For technical reasons, we have considered in [1] only adiabatic processes. 
In this paper, I intend to show how ordinary rational thermodynamics of such rate-type 

models can be constructed. However, in contrast to standard thermodynamic approaches, 
I shall use some of the features of extended thermodynamics, which prove to be parti­
cularly convenient in the present approach. Namely, the heat flux vector q and the stress 
tensor twill be considered to be constitutive variables; for this reason no spatial gradients 
of basic fields are going to appear as constitutive variables, in contrast, for example, to 
papers [2, 3]. The entropy inequality will be exploited by use of Lagrange multipliers. 
To preserve the hyperbolicity of field equations, the evolution equation of Cattaneo type 
for heat ~ux is postulated. 

It is worthwhile to mention that the evolution equation of heat flux yields the exis­
tence of the second sound. This phenomenon is of no importance in the case of real non­
newtonian fluids due to a very short relaxation time of thermal disturbances. Hence, its 
presence in the model should be considered as technical means of preserving hyperbo­
licity rather than an effect of real physical importance. It proves to be particularly useful 
in constructing wave solutions of field equations. We shall not consider, however, this 
problem in the present paper. 

2~ Governing set of equations 

We consider a class of processes, which can be described by the following set of fields on 
the classical space-time R x R 3 

v" - velocity, 

(2.1) T- temperature, 

qk - heat flux, 

t"' - Cauchy stress tensor. 

Throughout the paper we use a Cartesian rectangular frame of reference. 
Field equations for those fields are assumed to have 'the following form 

(2.2) e+evk,k = 0, 

(2.3) (!Vt = ltl, I' 
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(2.4) 

(2.5) 

(2.6) 

where 

(2.7) 

and 

!:,. 

ei+qk,k = tklvk,l' 
!:,. 

Cqqk+qk+KT,k = 0, 
!:,. 

Crt(kl)+t<kz)-2pv<k,l) = 0, 

e = e(T,qk,tkl), 'q = Cq{T,p), K= K(T,p), 

I 
p:= -3tkk' 

(2.8) qk:= i]k+~qtv[i,kJ+yqqtvu,k>' 

(2.9) ~<">' = i<•l} + l<">vr1.n + 1<11> v,,,., +y, ( l<u> v(i,., + 1<11> v(l, ,, - -} t<IJ>v<'·" 11 • .). 

219 

Equ~tions (2.2)-(2.4) are, certainly, mass, momentum and specific internal energy con­
servation equations. 

On the other hand, evolution equations (2.5) and (2.6) do not follow in this approach­
in contrast to extended thermodynamics- from any balance equations and they 'should 
be considered - similarly to (2. 7) - as the part of definition of the class of materials 
under considerations. 

The structure of equation (2.5) follows from considerations, concerning the propaga­
tion of thermal waves and initiated by the paper of C. Cattaneo [4]. Definition (2.8) of 
the time derivative of q contains two parameters: ~ and y q. In the case: ~ = 1, y q - ar­
bitrary, this time derivative is objective. Such a choice of ~ is neither motivated by kin­
etic theories, which would rather yield ~ = -1 nor by macroscopic arguments. For 
instance, Cattaneo rigid heat conductor, a model following from (2.2-9) by assuming 
vk = 0 and described by the fo1lowing equation for heat flux 

oqk 
Cq 7ft +qk+KT,k = 0 

• cannot be made objective. Its transformation to non-inertial frame (xt) yields 

(2.10) 

where 

* qk = okl ql' 0 - orthogonal time-dependent matrix of transformation, 

wkl = oki oli - matrix of angular velocities of non-inertial frame with respect 
to inertial one. 

In the steady-state case, we have 

(c5kl+CqW",)q, = -KT,k 

4* 
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220 K. WILMANSKI 

and it means that the non-inertial frame would have to rotate with angular velocity 
ro "' 1 gq for non-objective term to have an influence. It does not seem to be very realistic 
in normal circumstances. It very well may be that an equation for q, derived as a moment 
equation from a proper kinetic theory, should contain two different time derivatives -
one non-objective, arising from transport terms in kinetic equation and another one­
objective, coming from collision term in kinetic equation. Such a situation has been dis­
cussed in [1] for deviatoric stresses. A kinetic equation, appropriate for non-newtonian 
fluids has as yet not been constructed. Therefore, we are satisfied with Eqs. (2.5) and (2.9). 

On the other hand, the structure of Eq. (2.6) enables us to classify the material under 
considerations as a Maxwell-type non-newtonian, belonging to the rate type materials, 
investigated by J. G. OLDROYD [5]. Definition (2.9) of time derivative oft has an objective 
form, which again, does not follow from kinetic theory. However in this case, in contrast 
to heat conduction, objectivity is supported by macroscopic observations as well as esti­
mations mentioned at the beginning of this work. Simultaneously, the coefficient 'Yt may 
have an arbitrary value -similarly to y q. In the case 'Yt = 0, derivative (2.9) is called 
corotational. Rheologists consider often two cases: 'Yt = ± 1. Such models are called 
upper and lower Maxwellian, respectively. 

It should be mentioned that lack of direct coupling between Eqs. (2.5) and (2.6), for 
instance of the type qi t<ik) in (2.5) or q<k q1> in Eq. (2.6), leads to a rather artificial sepa­
ration of waves, which shall be briefly described in the sequel. 

3. Entropy inequality 

Constitutive quantities (2. 7) are still rather arbitrary within the model presented in 
Sect. 2. They must, certainly, satisfy some smoothness conditions but otherwise they 
are not specified. 

It is customary in thermodynamics to require in addition that all solutions of (2.2)-(2.6) 
should satisfy the entropy inequality 

(3.1) e~+hkk ~ o, 
where 

(3.2) 

is the specific entropy and 

(3.3) 

is the entropy flux. 
The aboye requirement imposes some restrictions on Eq. (2. 7) which we now m­

vestigate. 
Due to the fact that inequality (3.1) should hold only for solutions of (2.2)-(2.6) we 

seek the class of solutions of (3.1) restricted by the field equations. This can be done by the 
method of Lagrange multipliers (e.g. see [7]). It means that we solve the inequality 

(3.4) e~ +hk,k-A(>(e +evk,k) -Av"(evk- tkz,z) -A8 (e8 +qk,k- tklvk,z) 

~ kl ~ 
-Aq"(Cqqk+qk+ KT,k) -A< >(Ct t<kz> + t<kz> -2p,v<k.l)) ~ 0, 
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THERMODYNAMICS OF A HEAT CONDUCTING MAXWELLIAN FLUID 221 

which should hold for all fields vk, T, qk, tkl· The multipliers Ae, A 11
t, Ae, Aq", A<k1> are 

functions of the above fields themselves and relations (2.7), (3.2) and (3.3) should be 
satisfied. 

The linearity of (3.4) with respect to vk indicates 

(3.5) 

The inequality (3.4) is also linear with respect to 'l.'k,l· The following separation of this 
gradient 

(3.6) 

indicates then 

(3.7) eAc:?+pAe+ ~ CrYrA<k'>t<kl>+ + CqyqAq"qk = 0, 

(3. 8) A 't<.,> + 2,uA <" >- C, y, (A< ">t <II)+ A <">t<••>- ~ A <'1>t<,1> b.,) 

- ~ t.r.(A••q,+A••q.- ~ A••q,b.,) = 0, 

(3.9) Cr(A<ik>t<tl>- A<il>t<ik>) + ~ Cq~(Aq~cq,-Aq'qk) = 0. 

Making use of the chain rule in evaluation of time derivatives in (3.4), we find it to be 

linear with respect to f, qb ~~~ <5k" t~kl>, which leads to the following identities 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

In the similar manner, we find the inequality (3.4) to be linear with respect to T,k, qz,k, tiNe. 

This yields 

(3.14) 
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Bearing in mind the above results, we can write (3.4) in the form of the following residual 
inequality 

(3.15) 

Integrability conditions of Eqs. (3.14)2 easily indicate 

aaA• ( ~ti ~u- ~lJ ~tk) = 0 => A• = A'(T, tlj). 
qj 

Substitution of this relation in Eq. (3.14)2 yields 

(3.16) 

For isotropic fluids the second term must vanish- one cannot construct an isotropic 
vector function from a tensor of the second rank and, siumltaneously, we expect the equilib­
rium part of h to be zero (compare: (3.21)). Then the substitution in Eq. (3.14)3 

yields 

(3.17) A• = A•(T). 

Relation (3.14)1 , indicates, in turn, 

(3.18) 

On the other hand, relations (3.10)-(3.13) can be written in the following compact 
form 

(3.19) 

where constitutive relations for e and fJ have been used. At the same time, formula (3. 7) 
leads to the following relation for multiplier Aq: 

(3.20) A P A• 2 CrYr A<k' . 1 C4 y4 dA• 
Q =- -- - --- >t(kl)- --- --qkqk. 

e 3 e 3 eK dT 

To proceed further, we need the notion of thermodynamic equilibrium. For processes 
under considerations, we define a state of thermodynamic equilibrium as such for which 

(3.21) qkiE = 0, l(kl)iB = 0. 

In such a state, relation (3.19) has the form 

(3.22) 

Comparison with classical Gibbs relation yields 

A'iE = ~. 
Bearing in mind relation (3.17), we obtain 

(3.23) A• = _1_ 
r· 
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This result yields quite an explicit form of Eqs. (3.16) and (3.18) 

(3.24) 

Hence, the model, considered in this paper, leads to the classical relation between heat 
flux and entropy flux. 

It remains to eliminate multiplier A<k'>. To this aim, let us rewrite relations (3.8) and 
(3.9). We have 

(3.25) 

(3.26) 

where 

1 Cqyq L A<ti> 
t<"'> + 2 KT q<" q,> = - <kz><ti> , 

A<'k>t<u>-A<Ll>t<,"> = 0, 

(3.27) L<.,>W>: = pT (~ .. <I"+ ~~~ ~.,- ~ ~ .. ~11) 

- ~ c. y, r( f(tk) ~)I+ f ( 11) 6,. + f(jk) <~u + f()l) <1,.- ~ t(kl) 61)- ~ t (lj) d.,). 

This linear mapping: A<li> 1---+ t<"'> + + ';!; q<"q'> is, as it is easy to see, non-singular 

and, hence, can be inverted. It is particularly simple for the corotational model 
(y, = 0): 

(3.28) A<kl> = - 2~T (r<••>+ ~ ~~ q<•q•>)· 

Substitution of Eqs. (3.24) and (3.28) in Eq. (3.9) yields 

(3.29) 

Hence the non-trivial model is possible only if (C, ¥= 0, Cq ¥= 0) 

(3.30) yq = 0, 

which means that corotational form of derivative (2.9) leads also to the corotational form 
of Eq. (2.8). 

Let us collect the results for this particular case 

(3.31) A'= _I_ 
T' 

Then, according to Eq. (3.19), 

A q" = - __f!!!__ 
KT2

' 
A(kl) = t(kl) 

- 2ftT. 

(3.32) Td1J = de+pd( ~) - e~T q.dq.- 2~~ t<••>dt<••>· 

It is convenient to introduce the free enthalpy 

(3.33) 
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Then 

(3.34) 

The set of integrability conditions for (3.34) is of the form 

:T ( +) = - ~; ' ~• ( ~ ) = :p ( e;;T ) q,' 
a ( cq ) a'Y) 

<3·35) oT eKT qk = - oqk ' 

Then 

(3.36) 

K. WILMANSKI 

~~ = - '1· ~! = e ::. = e ~Tq', ::.
1 

( b,. b"- + b., bu) = 2~j; t<.,>. 

Particularly simple results follow from Eqs. (3.35) and (3.36) if we assume incompressibil­
ity, i.e. pressure should enter the constitutive relations only through its explicit presence 
in Eqs. (3.33). Then, due to Eqs. (3.35)1 , 2 , 5 

(3.37) e = const 

and relations (3.36) yield 

(3.38) 

as well as 

dgo 1 d ( Cq ) 1 d ( Ct ) 
'YJ = - dT - 2:i dT KT qkqk- 4e dT (!# t<kt>t<kt>' 

(3.39) 1 [ cq d ( cq )] 1 [ Ct d { ct )] e =eo+ 2i KT -T dT KT qkqk+ 4e /i-T dT /i t<kt>t<kt>' 

dgo P 
eo:=go-T dT - e' 

Simultaneously, the residual inequality (3.15) takes the form 

(3.40) 

This inequality should hold for arbitrary q" and t<"'>' i.e. 

(3.41) K > 0, I' > 0. 

At the same time, stability of thermodynamic equilibrium (i.e. convexity of g) indicates 

(3.42) Kcqr > o ~ ell > o, _f_ > o ~ ~, > o. 
(! (!# 
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THERMODYNAMICS OF A HEAT CONDUCTING MAxwELLIAN FLUID 225 

These inequalities are certainly satisfied if cq and Ct are relaxation times for heat flux 
and deviatoric stresses, respectively. 

Complicated form of relations (3.25) and (3.27) does not make it possible to carry 
through similar considerations in the general case. For this reason, we limit our attention 
in the remaining part of this work to the corotational model. 

It can easily be proved by use of (3.8) and (3.9) that the condition yq = 0 (with 
cq =I= 0 !) implies ?'t = 0, i.e. again a full corotational form of (2.8) and (2.9). 

Let us notice that the above thermodynamic reults do not involve the constant ~ 

The general result (3.24)2 eliminates the second term in relation (3.9), which is the only 
place of appearance of constant ~- It means that both objective: ~ = I and non-objective 
form: ~ = 0 of definition (2.9) lead to thermodynamically admissible models. From the 
macroscopic point of view, the choice of~ should follow from observations. We demon­
strate a possible argumentation in the next Section. 

4. Simple example of shear flow 

To demonstrate some properties of corotational model of incompressible heat conduc­
ting Maxwellian fluid, let us consider a shearing flow, shown in Fig. I. 

Let us first select those fields (2.1), which may appear in the description of the above 
flow under the assumption that all fields depend only on t and J02 = x. 

Xz=X 

T2(t) V{t) .... 

FIG. 1. 

Incompressibility condition 

(4.I) 

implies that, provided the walls are inpenetrable, the second component of velocity must 
be identically zero 

(4.2) 
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226 K. WILMANSKI 

Let us also assume that shear stresses vanish on planes perpendicular to x3-axis: 

(4.3) 

Then the momentum balance implies 

{4.4) 

provided the initial value of v 3 was zero. Hence the flow is one-dimensional, as indicated 
in Fig. I. It also means that there is no difference between material and partial time deri­
"Vatives. 

We have 

0 
1 av 

0 0 
1 av 

0 2 ax 2 ax 

(4.5) (v(k,r>) = (v<k,l)) = 1 av 
0 0 2 ax 

' (v£k, r1) = 1 av 
-T OX 0 0 

0 0 0 0 0 0 

'Where v = v1 • Relations (4.5) indicate 

(4.6) 
t,. aq3 aq3 -t c 
q3 = Eft~ C, 7ft +q3 = 0 => q3 = q3(1 = O)e 't 

:and, assuming that initial heat flux in ~3-direction was zero, we have 

{4.7) q3 = 0. 

·searing in mind the above considerations, we see that the flow is described by the follow­
·1ng fields: 

~4.8) v1 = v, T, 1< 11 > = s1 , 1<22> = s2, t12 =a, q1 , q2 

-with the obvious relation 

r(4.9) 

Assuming for simplicity that K, p, C11 and C, are constant, we can write Eqs. (2.2)-(2.6) 
:Jn the form 

av 1 aa - 0 ar--e ox - , 

oT 2 ar 1 aq2 2 · < 2 2) 1 ( )2 2 1 Tt - lJT q2 ax + 7; ax = KTlJ ql +q2 + p,lJ [ St +s2 +a -StS2 ' 

(4.10) 
aql 1 av 1 
---~q2-= --ql al 2 ax cq ' 
aq2 1 av K aT 1 - + - ~ql - + - - = - - q2 
at 2 ax Cq ax C, ' 

asl OV 1 
·a~ -a ax =- -r;sl, 

os2 av 1 
--+a-= --s2 
El ax C, ' 
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THERMODYNAMICS OF A HEAT CONDUCTING MAXWELLIAN FLUID 227 

(4. 10) 
[cont.] 

where 

(4.11) 

and Eq. (3.39)2 has been used. 
In addition, the momentum balance equation implies the following relation 

(4.12) 

This relation, overdetermining the system (4.10), imposes constraints on solutions of 
(4.10) and may lead to problems of their existence. To avoid those difficulties, we assume 
the thickness H to be small enough for neglecting (4.12) entirely. In such a case, we con­
sider solutions of Eqs. (4.10) as approximations without going into problems of exis­
tence. 

Let us first notice a peculiar structure of Eqs. ( 4.10)3 ,4 • In the case of steady-state flow 
we would have 

(4. 13) 

_!_ EC ov 
oT 2 ~~ ox 

qt = - K - --------:::-

ax I + ! eq ( ~: r ' 
ql = -K oT ------~ 

ax I+ ! '2c: ( ~: r . 
Hence the objective time derivative of q: E = 1 demands the existence of heat flux compo­

nent q1 perpendicular to the temperature gr~dient ~~! This effect would, certainly, 

not appear in the non-objective case E = 0: 

(4.14) qt = 0, ql = -K ~~ . 

On the other hand, it can hardly be expected that this effect could be observed in normal 
circumstances: ratio of transversal to normal component of heat flux for E = 1 

(4.15) ql - 1 c ov 
th- 2 ll ox 

would be large enough to have any bearing for : - :. and this, in tum, would re­

quire extremally high velocity gradients for usual non-newtonian fluids. 
We expect the system (4.10) to be hyperbolic. Let us consider the conditions yielding 

this type of equations. It is easy to notice that Eq. (4.10) is written in the normal form, 
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which means that characteristic speeds of weak singularities coincide with eigen-values 
of the matrix of x-derivatives: 

-A 0 0 0 0 

0 _ 2q2 _A 0 
1 

0 or b 
1 

0 -A 0 - - ;q2 0 
(4.16) 

2 

1 K 
- ;ql T:; 0 -A 0 
2 
-(}' 0 0 0 -A 

(}' 0 0 0 0 

- [ _!:'_ - _!_ (s1 -s2)] 
Cr 2 

0 0 0 0 

The above characteristic equation can be easily solved and we get 

(4.17) 

(4.18) 

(4.19) 

In the linear case 

(4.20) 

A1,2 = + v _E_ _ _ I~ s, -s2 
, - eCr 2 e ' 

.<3,4 =- :~ ±y' b;~2 + ~.' 
A = 0 (triple root). 

where c11 is the so-called speed of second sound. 

0 
(! 

0 0 

0 0 
= 0. 

0 0 

0 0 
-A 0 

0 -A 

It coincides with Landau formula for liquid helium if ~ = eTrJ 2 ~, es and (!,being 
!,q (!, 

the mass densities of supercomponent and normal component of helium, respectively 
(e.g. see: [7]). As indicated by this relation, we should consider K/Cq as temperature­
dependent, which would lead to some changes in considerations of this Section. We 
shall not go, however, into this problem any further. 

On the other hand, the eigen-values ( 4.17), being candidates for speed of shear pulses 
and eigen-values ( 4.18) - for speed of thermal pulses are not coupled through the fields. 
The reason for this discoupling has been explained in Sect. 2. 

It is easy to write necessary conditions for hyperbolicity of Eq. (4.10)- to this aim, 
ks must be real for arbitrary s1 , s2 and q2 : 

(4.21) 
K 
ocq > o. 

In rheology of non-newtonian fluids, the normal stress difference s1 -s2 is related to the 
so-called first normal stress coeflicient 
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THERMODYNAMICS OF A HEAT CONDUCTING MAXWELLIAN FLUID 229 

( av )
2 

(4.22) s1 -s2 = 2 ax C(1 < 0, 

the inequality following from many experimental data. It means that the inequality 

(4.23) Ct > o 
together with Eq. (3.41h is sufficient for inequality (4.21)1 to hold. 

Simultaneously, the inequahty 

(4.24) cq > o 
together with inequality (3.41) 1 leads through inequality (4.21h to 

(4.25) 

This condition imposes an upper bound constraint on the magnitude of the heat flux q: 

(4.26) lql < v ec,~T' 
which, however, does not seem to be of physical importance due to smallness of cq. 

Let us mention that the linear part of formula (4.17): V ~~ coincides with for­

mula (5.8) of the paper [1] for the speed of propagation of shear pulses. 
Easy calculations show that the above conditions are sufficient for linear independence 

of left eigen-vectors of the matrix, whose determinant appears in Eq. (4.16). It means, 
however, that system of differential equations (4.10) is indeed hyperbolic. 

5. Transition to fluids of the second order 

It is customary in rheological models of non-newtonian fluids to approximate relations 
(2.6) by constitutive relations of the form 

(5.1) t = t(A<1 >, A< 2 >, ... , A<n>) 

(see: [8]), where A (1 >, ... , A <n> are so-called Rivlin-Ericksen tensors: 

(5.2) Ak/> = 2v<k,t>' A~;>= A1P+A1Pvt,t+Afl>vi,k' etc. 

Such models are called fluids of the n-th order. In particular, the fluid of the second order 
is defined by the relation 

(5.3) t + ~ - A<t>+ A<2> + [A<J>A<t> 1 A<t>A<t>~ ] kl pukl - fl kl C<1 <kl> C<2 kt il - 3 il il ukl · 

It is easy to see that relations of this form follow from Eq. (2.6) by regular perturbation 
method, which in kinetic theories is called a Maxwell iteration procedure. Namely, the 
zeroth approximation is defined as 

(5.4) 

i.e. Navier-Stokes fluid. Then 
!:::. 

(5.5) Ctt<~~~+tA~~-2pv<k,l> = o 
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defines the first approximation. It is easy to see that, for incompressible materials: A£~> = 0, 
(see Formula (2.9)) 

(5.6) to>- A<1>_,. [A<2>+( -t)(A< 1>A0 > I A< 1>AO>~ )] <kl>- !-' dch '-:.t!' <kl> Yt kl il - 3 iJ iJ ukl 

if!-' is assumed to be constant. Comparison of Eqs. (5.3) and (5.6) yields 

(5.7) fl1 =-!'Co fX2 = -tXl(l-y,). 

In the case of corotational derivative (y, = 0), the result (5.7h coincides with that obtained 
by DuNN and FosDICK [9] and, apart from the sign, contradicts experimental data (com­
pare: [1]). 

Inequalities for p, and C, yield 

(5.8) (ll < 0. 

It has been shown, however, by DuNN and FosDICK [9] that such a model is thermody­
namically unstable if considered in its own rights (not as an approximatio·n of a Maxwel­
lian fluid). 

Similar problems arise in the case of Maxwell iteration applied to Eq. (2.5) 

q~0 > = -KT,b 

ql 1> = -KT,k-Cq(KT,k)t:.. 
(5.9) 

In contrast to Fourier relation (5.9)1 , the relation (5.9h yields the instability of thermo­
dynamic equilibrium for K > 0, Cq > 0. Moreover, as it is easy to show, Maxwell itera­
tion transforms the hyperbolic system of equations into a parabolic one- the speeds of 
shear pulses and of the second sound become infinite independently of the degree of 
approximation. 

The reason for those problems is obvious. The expansions oft and q into power series 
in ,, and cq, respectively, and subsequent use 0f perturbation method reduces necess­
arily differential Eqs. (2.5) and (2.6) to algebraic relations. It is due to the fact that C, and Cq 
appear in front of the differential operator. It means, however, that proper approxima­
tion of solutions of (2.5) and (2.6) must be sought by the method of singular perturba­
tion. It follows that Maxwell iteration method is inappropriate if we want not only to 
achieve the quantitative agreements but also to preserve such physical features as finite 
speeds of pulses. 

6. Quadratic evolution equations 

Maxwell iteration procedure, demonstrated in the previous section, seems to indicate 
that, if the quadratic model is to be constructed, it is not essential if we replace in Eqs. (2.8) 

and (2.9) the terms with coefficients y, and /'q by terms quadratic in t<k'>' qk, i.e. if the 
evolution equations are assumed to have the form 

1:::. 

Cqqk+qk+KT,k+fltt<kz>q, = 0. 
(6.1) 
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where 
/j. 

(6.2) q" = ti~c+~q,v£t,kJ' 
/j. • 

t<u> = t(kl) + t<ki) v(t,lJ + t(lt> v[i, kJ 

and coefficients {31 , {3 2 , {3 3 are independent oft<"'> and q". 
Inspection of inequality (3.4), corrected by additional terms arising from Eqs. (6.1) ,. 

shows that the above statement is false. It is obvious that, in comparison with the case 
'Yt = 0, y q = 0, the only change in thermodynamic relations appears in the residual ine­
quality. In the present case, we obtain 

(6.3) 

where 

(6.4) A<"'> -
1 

t o - - 2 p,T <"'> · 

The above inequality can easily be solved: 
1) assuming t<"'> = 0, we get 

(6.5) K> 0; 

2) assuming qk = 0, t 11 = G, t22 = G, t33 = t 12 = ! 13 = t23 = 0, we obtain 

(6.6) {J3 = 0, fl > 0; 

3) assuming q1 = q, q2 = q3 = 0 and the stress tensor as in 2), we get 

(6.7) 

The above relations are necessary and sufficient for the inequality (6.3) to hold for ar­

bitrary t<"'> and q". 
Hence, equations (6.1) must have the form 

/j. KT 
Cqqk+qk+KT,k- 2p, {Jt(kl)ql = 0, (6.8) 

/j. 

Ct t(kl) + t<"'>- 2p,v<"·'> + f3q<"q'> = 0. 

It is obvious that coupling of those two equations is entirely different from coupling of 
(2.5) and (2.6), whatever the coefficients y,yq may be. Particularly striking in such a model 
is the presence of heat flux in the equation for stresses. It means that, in general, time­
dependent deviatoric stresses would appear even in a rigid heat conductor and their evo­
lution would depend on the history of heat flux. 
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