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Stress-strain relation of integral type for deformation of brass
along strain trajectories consisting of three normal straight
branches

Y. OHASHI (NAGOYA) M. TOKUDA (TSU CITY) T. MIYAKE, Y. KURITA

and T. SUZUKI (NAGOYA)

A METHOD to formulate a stress-strain relation of the integral type for plastic deformations
of metals is set up according to the concept of the intrinsic time scale proposed by Valanis
in his endochronic theory. Since Ilyushin’s postulate of isotropy concerning the strain trajec-
tory has been ascertained to hold in the vector space corresponding to the strain deviator after
the effect of the third invariant has been modified, the method may be applied to strain tra-
jectories of the same geometry independently of their orientation in the vector space. The
propriety of this method is confirmed by applying it to the deformation of brass along trajec-
tories consisting of three normal straight branches, as an example of complex history effects.

Reasonable estimation of Ilyushin’s trace of delay is discussed also in this example.

Opracowano metod¢ formulowania zaleznoSci calkowej pomigdzy odksztalceniem i napreze-
niem dla plastycznej deformacji metali na podstawie koncepcji skali czasu wewnetrznego propo-
nowanej przez Valanisa w jego teorii eudochronicmej.‘ Poniewaz udowodniono, ze postulat
izotropii Iliuszina dotyczacy trajektorii odksztalcenia jest spelniony w przestrzeni wektorowej
odpowmdajacej dewiatorowi odksztalcenia pod warunkiem modyfikacji trzeciego niezmiennika,
wigc metoda ta moze by¢ zastosowana do trajektorii odksztalceri o tej samej geometrii nieza-
leznie od ich orientacji w przestrzeni wektorowej. Poprawno$¢ metody zostala potwierdzona
przez zastosowanie jej do problemu odksztatcenia mosiadzu wzdtuz trajektorii zlozonych z trzech
prostopadtych prostych galezi, jako przykladu efektu skomplikowanej historii. Jako przyklad

przedyskutowano réwniez oszacowanie $ladu opdinienia Iliuszyna.

Paspaboran merox GOpMyIMPOBKM HHTErpABHONH 3aBHCHMOCTH Mexmy Aedopmaiueir n Ha-

HOPsDKEHHEM JUIA IUacTHYecKol medopmanmii METAIUIOB HA OCHOBE NOHATHA

PEHHEro BPeMeHH, NPEeIIOMeHRoro Banamucom B ero sugoxporHdecKoii Teopuw. T. K. Zo-
Ka3aHO, YTO HmOCTyJAaT H3oTpomuy Mimommmma, KacarommiicA Tpaexkproun Hedopmamuu, yao-
BJICTBOPEH B BEKTOPHOM HPOCTPaHCTBE, OTBeHAlOlleM KOCOMY TEH30PY HANDPMKEHWA IpH
yemoBHu MomubuKaMH TPeThEro HHBAPHAHTA, 3HAYMT STOT METOX MOXKeT OLITH MpUMEHEHR
X TpaekTopuu Hedopmaimii, ¢ Toif camoif reomerpeil, HE3ABHCHMO OT MX OPHEHTHPOBKH
B BEKTOPHOM mpocrpaHcTBe. [IpaBWIBHOCTE METOdA MOATBEP)KOEHA IMyTeM NPHMEHEHHA €ro
K mpobneme fedopMaian JATYHA BAOMb TPACKTOPHI, COCTOALIMX M3 TPEX MePHeHNHKYIAD-
HLIX NPAMBIX BeTBed, Kak mpumep sddbexra cnoyHOM mMcTopHu. B xapakrepe nmpumepa

ofcy)/ieHa ToXKe ONEHKA clefa 3anasgpBannA Flmommma.

1. Introduction

THE DEFORMATION behaviour of metals varies according to the change of their micro-
structure due to plastic deformation. The history dependence always appears in the plas-
tic deformation of metallic materials. When the plastic behaviour is expressed by means
of the stress-strain relation, the history dependence in this relation may be estimated by
using the deformation history in the shape of a tensorial curve in the space of the strain

tensor.
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The stress-strain relation varies in accordance with the shape of the tensorial curve
whenever the history dependence appears in the deformation behaviour, and thus the re-
lation cannot be realized in the form of a definite function without assigning a definite
geometry of the curve. As a mathematical expression of deformation history, ILyusHIN [1]
used a strain trajectory in the vector space of the strain deviator corresponding to the
space of the strain tensor instead of the above mentioned tensorial curve. Relating to
this strain trajectory, he proposed a postulate which states that the effect of deformation
history of materials on their stress-strain relation depends only on the geometry of the
strain trajectory independently of the orientation (rotation and mirror transformation)
of the trajectory in the vector space. He called this postulate the “postulate of isotropy” [1].

The isotropic tensor space cannot always be transformed into the isotropic vector space
because both the vector space and the corresponding tensor space are not necessarily equi-
valent. Therefore, the postulate of isotropy does not always hold with sufficient accuracy
on the basis of the experimental results obtained for real materials. However, if modified
amounts are taken by considering the distribution of the third invariant of the deviatoric
tensor in the vector space [2-5], the postulate can be ascertained to hold on the basis
of real materials.

By using the vector space, a geometrical concept of deformation history may be se-
cured easily by drawing curves. Moreover, the postulate of isotropy which states that
deformation history depends only on the geometry of the curve (sequence of applications
and magnitudes of strain components and their variations in the history) independently
of the orientation of the curve in the vector space (kinds of strain components) has a signif-
icant meaning in systematizing the varieties of complicated deformation histories.

When the curve expressing deformation history is assigned, the stress state at an arbi-
trary instant in the deformation process may be expressed by a stress vector in a local
vector space of the stress deviator established at the corresponding point on the curve.

If two points closely adjacent are taken arbitrarily on the curve, the stress increment
between these two points depends on the corresponding strain increment what can be ex-
pressed in the following form;

(1.1) do = K'de.

Here K’ plays the role of the influence coefficient of the strain increment to the stress incre-
ment. If the deformation property does not vary completely, K’ may be expressed in
terms of a matrix having constant elements and is independent of the geometry of the curve.
This situation corresponds to the elastic deformation. When the history dependence appears,
the influence coefficient varies at each point on the curve according to its geometry. The
coefficient of de at the preceding point contributing to the stress increment do at a point
considered on the curve may be a function of arc length together with the geometric para-
meters (curvature, torsion and others) of the curve. Accordingly, the stress state at a cer-
tain point (s) on the curve may be expressed by an integral form

(1.2) o(s) = f K(x; 5, 5)de(s"), 0<s'Ks
0
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of the stress increment taken at every preceding point (s'), where s and s’ denote the arc
length of the curve s = V (2/3)de;jde;; up to the corresponding points, and #;(s”) are the
geometric parameters. Ilyushin proposed other integral forms,

(1.3) o(s) = f K(x%: s,s')de(s"), s—h<s' <s,
s—-h

restricting the range of integration to a definite arc length A(s—h < s’ < s) preceding the
point (s) instead of 0 < s’ < s, by taking into account the fading memory which appears
in real materials. The arc length A is called “trace of delay”. This hypothesis is called
ILYusHIN’s “principle of delay” [1]. According to this principle, the expression of the his-
tory effect may be remarkably simplified as the effect can be considered by taking account
of the geometry of the curve only in a finite range preceding the point considered.

In the linear viscoelastic theory, for the stress-strain relation of history-dependent
materials, the stress components at a certain instant ¢ in the real time scale during the de-
formation process have been expressed in the following form:

(1.4) ay,(t) = 6[ Kijm(t, ©)demn (), 0< <1

In this form, since the stress-strain relation is expressed in terms of real time as a para-
meter, the influence coefficient may be understood as a function of real time. That is, the
deformation property may be understood to vary according to real time. However, since
the deformation property of real materials depends not on time but essentially on deform-
ation history, the concept expressed in the form (1.4) is not always accurate because it
may express definite deformation phenomena only when a certain relation between deform-
ation history and time is given for the influence coefficient.
In the linear viscoelastic theory, the form [6]

(1.5) 0i(t) = [ Kym(t—7)dem(r), 0< <1
0

is often used as a special case of Eq. (1.4) together with
(16) Kl.i'nﬂl(r—t) - Pljme_ur_')

for convenience of calculation as well as for the consideration of fading memory. Such
a coefficient of the difference type is a fairly strong limitation since it is effective only for
the deformation in which the influence function may always be described using Eq. (1.6).
for the arbitrary instant ¢.

Recently, VALANIS [7] proposed an “endochronic theory” for materials with memory
depending on deformation history. According to this theory, the relation between the
stress deviator Sj; and the strain deviator e;; is expressed in the following form:

deyy

dt’ az

z 4
) Su=2[ Ke2)%ar = 2 [ k{0, 200}
o 0
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with the use of an intrinsic time scale z, where an intrinsic time measure £ is defined as
(1.8) dl? = k*de, de;;, (k > 0: material parameter).

The intrinsic time scale z, which expresses the sequence of variations of the deformation
behaviour of materials and does not necessarily correspond to real time, is defined as a mo-
notonously increasing positive function of the intrinsic time measure { as follows:

1
dar'
{1.9) dz(0) = dC[f() or z(0) = | w5+, dz/dl > 0.
J 7O

It may be found from Eq. (1.8) that the intrinsic time measure { is a certain parameter
expressing the deformation behaviour in relation to the deformation history of materials,
.and thus the measure is related with the form and intensity of deformation. As follows
from Eq. (1.9), if a converted time scale reflecting the history dependence is used for
establishing a stress-strain relation (taking into account the variation of the deformation
property since this variation due to history may be reflected only in the function f((:)), the
formula (1.7) having the same form as Eq. (1.4) may be expressed in an analogous
form as Eq. (1.5) together with Eq. (1.6). The corresponding influence coefficient of
the difference type K{z({)—z({')} is free from the above mentioned limitation for each
value of z({) according to which Egs. (1.5) and (1.6) founded on the simple concept have
been restricted. This is so because the value z({) — z({’) is not constant but is always a func-
tion of the corresponding value of {. Consequently, the stress-strain relation may be
formulated reasonably for plastic behaviour under arbitrary deformation history if Va-
lanis’ endochronic theory is used together with Ilyushin’s postulate of isotropy and prin-
«ciple of delay.

As an example of the application of his theory, VALANIS calculated a plastic deforma-
tion under tension after torsion [7]. He expressed Eq. (1.8) in the form d(? = k,de*+
+k,dn?, used a linear function f({) = 14 B of {, and established a stress-strain rela-
‘tion for tension after torsion, by using the parameter {, = k,7, showing torsional pre-
strain as well as a cross-hardening parameter §. Moreover, in the tensile deformation the
relation { = {4k, & or df = k,de is assumed, and a new parameter f§, = k, f is deter-
mined under the assumption that the stress-strain curve under uniaxial tension, starting
.at the state where torsional prestrain has vanished after pre-torsion, would tend to a
linear form

{(1.10) o= E‘; (148, 9

B
for a sufficiently large value of the tensile strain e.

However, his method as quoted above was not found to be sufficient to approximate with
high accuracy the experimental results of plastic deformation of brass under a severe his-
tory eff>ct mentioned in the previous paper [8]. There, thin-walled tubular specimens are
«deformed along strain trajectories of three straight branches intersecting normally in the
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vector space of the strain deviator under combined load of torsion and axial force. This
may be attributed to the fact that the influence coefficient and the intrinsic time scale z were
not found in suitable forms to reflect reasonably a severe history effect.

In the present paper a method is proposed to formulate the experimental results of
plastic deformation of brass having a severe history effect in the form of the integral type,
by selecting the influence coefficient and the intrinsic time scale z so as to be able
reflect reasonably the history effect.

2. Fundamental equations

The history of the strain deviator appearing in the thin-walled tubular specimen under
torsion and axial force may be described as curves showing the strain trajectory in a vector
plane of the strain deviator (‘e1 €y, €3 = 2912/f ), where ey, and e, denote the
axial and shear components of the strain deviator calculated from the experimental results
of the thin-walled tubular specimen, and the indices 1 and 2 correspond to the axial and
circumferential directions of the specimen, respectively. The states of the strain deviator
and its increment at each point on the curve may be expressed by a strain vector e =
= elln1+(2/pf3_)e,_2n2(|e| is equal to the effective strain &) and de = de,;n, +(2/
WV ?) de,,n,, respectively. Moreover, the state of the stress deviator may be expressed
by a stress vector @ = 0,0, +}/ 30,,n, (|o| is equal to the effective stress o,,) in a local
vector space of the stress deviator (Sy; = (3/2)0y, = (3/2)0y, S1; =04, = 0'3/]/3) where
o;; and o,, denote the axial and shear stress components. These components appear
in the specimen after modifying the effect of the third invariant in the vector space, as
mentioned in the previous papers [2-5] in detail. n; and n, are the orthonormal base vector
in the stress and the strain vector space in common.

By using the components mentioned above, the formula (1.2) is expanded into the
following forms:

5 2 5
Oy = fKu(S, s'; %) dey, +]_/§f f K, 2(s,5'; %)dey,,
(21) 0: ’ s
- 2
]/3 T2 = f Ky (s,8'; )dey +— f K;5(s, 8'; %)) dey 5,
3 V3;

where #; in the arguments of the influence functions in Egs. (2.1) are the geometric pa-
rameters of the strain trajectory expressing the deformation history of materials quanti-
tatively. If the history effect including the effect appearing in the case of zero-curvature
is reflected in the functional relation z(s) by putting { = s, and the influence coefficients
are expressed as Kj; {z(s), z(s")}, the above formula (2.1) may be transformed as follows:

Gy = "—Sn = fKn {z(s), 3(3')} en ds’+ fKu {z(s),z(s’)} 13 ds’,
22

V30, =y38, = fKn {z(s), z(s")} —~ de“ ds' + szz{z(s) z(s')} ” ds’.

9 Arch. Mech. Stos. nr 1/80
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Valanis defined the intrinsic time measure ¢ in relation to the features of strain state
and the response of the material to that state in the material parameter k in Eq. (1.8).
He also determined the influence coefficient in the form of the scalar function due to
the proportional deformation by assuming a simple scalar relation between the intrinsic
time measure and the intrinsic time scale.

However, his method is not suitable to formulate reasonably deformation behaviour
along the strain trajectory with a corner. On the other hand, in order to reflect the experi-
mental fact in which the response of materials is affected essentially by the existence of
corners, the influence coefficients and the functions z(s) and z(s") in Eqgs. (2.2) are assumed
to have different characters before and after the corner.

In the following, the experimental results [8] along the strain trajectories consisting of
three straight branches intersecting normally, will be formulated by using Egs. (2.2). As
shown in Fig. 1, the experimental results have been obtained along the strain trajectory

26,/3(%)
L ($1=2.0 %) —2 G (S=20 %)
K(S=1.0 %) —1 F (S=1.0%)
315205 %) E (5,05 %)
I (S£025%) 1 I D (5,-025%)

H(SF0 %)
1 S 2
{:%_ 5% ) ey (%)

FiG. 1. Strain trajectories consisting of three normal straight branches.
consisting of the first branch (de,; > 0, de,, = 0, 0 < 5 < 5,), the second branch (dey; = 0,

dey, > 0, 50 <5< 5;) and the third branch (dey; # 0, de;, = 0, 5, < 5), and thus the
stress-strain relation will be formulated in relation to each branch.

2.1. First branch (0 < 5 < 50)

Since de;; > 0, de;; = 0 and there is no shear stress (o,, = 0) in this branch, the
stress-strain relation may be established from Egs. (2.2) by using K, and z,(s) as the in-
fluence coefficient K, ;, and the intrinsic time scale z(s) as follows:

@3 5u) = 5 [ Kuleuls), 20} Stk as
0

If a function of the difference type

Ko {2(5), 2(s")} = pae™ O ~%aD 4, — const,
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is used as the influence coefficient, then the contribution of the strain increment de at
the preceding instant of the intrinsic time scale z,(s") to the stress increment do at the instant
Z,(s) decreases from a constant amount do = yu,de exponentially in relation to the intrin-
sic time interval between these two instants, and Eq. (2.3) is described as follows:

@4) Su) = o™ [0 Bt g gy g
0

Since the variations of the deformation property are reflected in the functions z,(s) and
z,(s"), the coefficient of the difference type may be applied to arbitrary values of s and s,
and the above equation can formulate the experimental results with high accuracy.

2.2. Second branch (5o < 5 < 5o+5y)

When a point under consideration (s) lies on the second branch, the contribution of
de at the preceding point (s) to the stress increment do at the point (s) is quite different
from that in the previous Sect. 2.1. For example, de(de;, > 0, de,, = 0) on the first
branch changes suddenly into de(de,, = 0, de;, > 0) at the corner point s = 5o, while
|del/dt(= s) is kept constant along the trajectory, and S,, decreases quickly at first and
slowly afterwards along the second branch. This trend may be attributed to the relaxa-
tion of Sy; due to the sudden vanishing of de;, and a kind of instability of microstruc-
ture of materials at the corner s, = e;;. The instability may correspond to a release of
dislocations which have piled up during the deformation process along the first branch by
a disturbance de,, applied after the corner in another direction (release of a locked po-
tential energy) [5]. By taking into account these effects, the influence coefficient on the
second branch is distinguished as K, which is different from K, on the first branch. More-
over, for the same reasons the intrinsic time scale should also be different according to
whether the preceding point (s') lies on the first or second branch. Therefore the influence
coefficient at the point (s) on the second branch may be selected as

K, {25a(5), 20a(s")} = pbeh{‘bd(’)"ba{f)},
for  z(so) < z(s) € z(so+5y), 2(0) < z(s") < z(s0),

2 Ky {20p(5), 2op(s")} = ppe™ 08O =705}
for  z(so) < z(s) < z(so+51),  2(s0) < 2(s') < 2(5),

and the stress-strain relations on the second branch are found from Egs. (2.2) in the follow-
ing form:

u = —fK,,{zM(s) Zu(s’)} deu ds' = i Pbé’ﬂb“(’)fe’b“{ﬂ dj;'l ds’,
(2.6) d '
—zpals de ;
Sy = —pr{Zw(s),zw(sf)} df—';z ds' = 3 = e b,s()fezu(:’) d;’; ds'.
s

g%
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because de;, = 0(0 < 5 < 5o) and de,; = 0(so < 5). The influence coefficient K, is equal
to 0 because there is no shear stress S,, on the first branch, and X, is neglected for little
contribution of torsional strain to S;; on the second branch.
By using the expression S;(s,) = 0, 0o may be found from Egs. (2.4) and the follow-
ing relation is obtained from Egs. (2.6)
2 o de
0o =3 p,,e""‘“("“)f e"’“{()——#——d‘:f ds’.

(1]

In this way we get

So

de 3
Tpals’) Y€11 d t =T g, a5
f ds T

Consequently, the stress-strain relations on the second branch may be established as follows:

Q1) Su) = 00e WOEN, 5, (5) = gy [ gond Bz g,

2.3. Third branch (so+5; < 5)

Since the method for deriving the stress-strain relation is almost the same as those
in the previous section, only the results are described without detailed derivations. On
the third branch there are de;, # 0 and de,, = 0, and thus the stress-strain relation may
be expressed as follows:

4

Sl ="%"Pr;e_zm(')f Zoe(8) deu d-?"l' ‘u e-z‘:?{’) f ezc,,(.f) d:;;l d.'i',
1]

3
So+51
(28) . 2 Sot+ 5y d
_ 2 -z f 2 Q€12
MNP 3 He® 4 o ds'.

So

If the values of Sy, and S, at the second corner s = 5,+5; are denoted as o; and 7y,
the following relations are obtained from Egs. (2.8):

o So+51
f Zeals') del.l it 30 3 g elm(&'o+31) f lcﬁ({) dell ds' = i 7,€ cp(’n‘i-ll)
J d ’ 2”: 1 ] dsi %

So

Consequently, the stress-strain relation on the third branch may be established as follows:
]
S11(5) = o6~ Feal—7euloots0} 4 % poe” e f P d:;,* ds’,
(29) So+ 81
S.t 2(3) =18 (Iga(f)—z.-,p(loﬂt)}-
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3. Determination of the intrinsic time scale z(z,, sy, Zog, Zcas Zeps Z0;) and the coefficient
(s s Hoc)

3.1. First branch (P.n zc)

The following equation may be obtained by the Taylor expansion of Egs. (2.4) in the
vicinity of s = 0 and after disregarding the infinitesimal terms higher than the second

order:
2 d 2
Gl A4Sy = Su(d9)-5u(0) = 5 it ds = Tuds,  (ds = deyy).

By using Eq. (3.1), u, may be determined from the tensile stress response in the early
stage of deformation.

The formula to find dz,
(32 dz, = [(Z[S)y,deu —dSy,]/811
may be obtained by transforming Eqs. (2.4) to a differential type. The values of z,(s)
and dz,(s) may be calculated by using Eq. (3.2) from the experimental results obtained
by uniaxial tension.

3.2. Second branch (i, Zoa, 2b8)

The expression (2.7), has the same form as Egs. (2.4). Thus the following formula may
be found in the same way as that for Eq. (3.1):

2, deis
374
By using Eq. (3.3), u, may be found from the relation between shear stress and shear

strain measured just after the corner. After transforming Eq. (2.7), into a differential form,
the following formula to find dz,; may be obtained:

2
(33) A4Sy, = Sy,(so+45)=S12(5) = ds = ?,“uAS, (4s = dey,).

(34) dzps = [(2/3) ppde;s —dS,2][Sy2-
In the same manner the formula
(3'5) dzba = —dS“(S),J’Su(S)

may be found from Eq. (2.7);. By using these formulae the values of z,(s) and zy(s)
as well as dzy.(s) and dzys(s) may be found from the experimental results on the second
branch,

3.3. Third branch (so+5, < 5)

By transferring the first term of the right hand side of Eq. (2.9), to the other side,
and indicating the left hand side as X(s), the following formula may be obtained:
= ~Ceal® ettt 0} _ 2 =28 ze,() dey
X(s) = S,,(s)—a,e o =3 Hee ey e = ds’.

So+ 51
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Then the Taylor expansion of X_(s) in the vicinity of s = 5o+ 5, may derive
(3.6) AX = X(So +5 +AS) —X(So+.5'1) = SI_I(SO +-."'1 +AS) —Sll(.fo +SL)

_{zm(.rn+.h+d.l]—zm(so+s.}}_1) __g' dEu A —
e He — 45 =
3 ds

after disregarding infinitesimal terms higher than the second order.
If the condition z.(s) = z.,(s) is assumed for simplicity, the formula

2
—0oo(e -S—Pcdeu

3.7) ey = d2ey = [(2[3) proders —dS,)/Sis
is found from Eq. (2.9),. The formula
(3.8 dzeg = —dS;5(5)/S12(s)

is also obtained from Eq. (2.9),

By using Eqs. (3.6), (3.7) and (3.8), the values of ., Ze.(s) (=2c,(s)) and z4(s) as well
as dz.,(s) (= dz.,(s)) and dz.s(s) may be obtained from the experimental results along
the third branch.

34. Values of 1 and z found from the experimental results

The values of u and z were determined by using the experimental results along the
strain trajectories shown in Fig. 1. Since the stress-strain curves obtained from the experi-
mental results did not tend to straight lines for large values of strain, the functional
form f({) = 1+ B¢ used by VALANIS [7] was not suitable to reproduce them. On the other
hand, the functional form f(s) = a(s+ ¢)® was ascertained to be able to approximate every
stress-strain curve with high accuracy. The corresponding values of @, b and ¢ for each
branch differ from each other. Since the amounts s, = 1.5 per cent (= const) as well as
5; =0, 0.25, 0.5, 1.0 and 2.0 per cent have been assigned, the values of a, b and ¢ on the
third branch should be functions of s, . Moreover, there are remarkable differences between
the trends in the values of a, b, ¢ and p, along the third branches of the group D through G,
in which the magnitude of the stress vector continuously increases along the branch,
and those along the third branches of the group H through L, in which the magnitude
of the stress vector decreases in the early period of the third branch shown in Fig. 1.
The differences correspond to the experimental results in which a strain-anisotropy anal-
ogous to the Bauschinger effect appears along the third branch in the latter group and
decreases with an increase of s,. The functional relations of these characteristics relating
to s, were obtained as follows:

Zgt  a(s) = 5.26x 10~3(1 —0.6067¢~89-4551),
and for Ithe group H through L
pe(s)/3 = [1000(1 —e~3145:)+1500] —3.17 x 1055, 62505,
Zeg = Zey:  A(8y) = (7.047e~5:4-7.013) x 10-3,
b(s,) = —0.4682s, +2.611,
o(s,) = —0.03414s, +0.4297.
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The values of u and z obtained from the experimental results along the strain trajec-
tories in the group D through G and the group H through L are summarized in the
following tables (cf. Table 1 and Tables 2 and 3 from page 140).

Table 1. Values of x4 and z for the first and second branches

wkef/mm?) |z a b c
e = 14000 Z; 3.38x1072 0.266 8.34x 102
e = 7500 Zoar 5.26x1073 0 0

2p | 5.98x107

0.246 7.03x103

These values have been determined from the experimental results with s, = 1.5 percent.
However, the values relating to the second and third branches may be functions of s, in
general. On the other hand, it has been, ascertained that the experimental results along
the second branch for s, = 1.17, 2.2 and 3.2 per cent obtained in the previous experiment
[9] are approximated with high accuracy by using the values shown in Table 1. This ve-
rifies the well-known property that the effect of pre-strain s, saturates for pre-strain of

so = 1 per cent.

4. Comparison of theoretical results with experimental ones

By using the characteristic values determined above, after the saturation of pre-strain
S,, definite stress-strain relations may be realized for arbitrary deformations of brass along
the above-mentioned strain trajectories for any amount of s, . Moreover, since the modi-

05, ( kgf/mm?2

O v aoexperimental
calculation
——— Valanis’ theory

2e,2 fﬁ

0

2
4s (%)

FiG. 2. Comparison of calculated results with experimental ones for group D—G (oy,).
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fication of the effect of the third invariant has been conducted on the stress value, the
stress-strain relation thus obtained may hold for any strain trajectory of the same geometry
oriented in any direction in three-dimensional vector space (e, RIV3) (e11/2+2es,),
(2/¥/3)ey,) [5). Corresponding stress values expected to be measured in the experiment
may be obtained by restoring the effect of the third invariant from the stress values calcu-
lated by the above formulae. The stress-strain relations established above are compared
with the corresponding experimental results by using the following figures.

The relation between the value oy, = (3/2)Sy, or /3 0,, = /35y, and the arc length
As = s— s, relating to s, < s for the group D through G is shown in Fig. 2 or Fig. 3. The

30 T T

V305, ol —|
DAVO maAve experimental

—— calculation

Valanis’ theory

20

10

1071, Y305, (kgf/mm?)

4s (%)

Fic. 3. Comparison of calculated results with experimental ones for group D—G(s|, ]/ 30:2).

thick solid curve corresponds to the calculated result, and the various kinds of points show
the corresponding experimental ones along the trajectories indicated by the inserted small
figure. The thin solid curves in Fig. 3 show the relation between the resultant modified
stress intensity |6*| = }/0}7+307, and As found from the thick curves in Figs. 2 and 3.
Figures 4 and 5 show analogous curves for the group H through L as compared with
the corresponding experimental results. As found from these figures, the calculated results
may approximate the corresponding experimental ones with high accuracy.

The dashed curves in Figs. 2 and 3 show the results calculated by VALANIS’ method [7]
briefly mentioned above. There are considerable differences between the solid and dashed
curves.
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20

2912/ﬁ [
1\
L o0-2
! K v—1
A J ]
Ay 10 sy I S 1 |
E . = 0 1502 ey
> A Q{0 o vaom experimental
o O A W o} calculation
-x ] -
— ) v, o 0O
=0 S| | 2 |
A o .
.. A Y O
) v, O
0 ®
-10 }— ’ \ —
uRA L, ®
» A v )
Pl S ¢
290 | g O —
=, .
Vv o—
0 1 2 3
AS (%)

F1a. 4. Comparison of calculated results with experimental ones for group H— L(ay,).

5. Relation between fading memory and limit of integration

As found from the experimental results, the stress-strain relations of materials just
after the corner of the strain trajectory are subjected to a severe history effect and the effect
decreases with an increase of deformation thereafter without severe history effects. By
taking this trend into account, Ilyushin proposed Eq. (1.3) instead of Eq. (1.2). Since the
suitable choice of the length £ of the “trace of delay” included in Eq. (1.3) has a signif-
icant meaning for effective use of the stress-strain relation obtained above in accurate
analyses of plastic deformation of structures, a reasonable estimation of the length &
will be discussed in the following.

When the trend of fading memory is assumed in the form of the exponential type,.
the effect of preceding disturbance to the instant considered, though it decreases with an
increase of the interval between the relevant two instants, does not vanish completely
for the finite interval. Thus the concept of the trace of delay is an approximation and
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30 I !
EU{z 0l

0AVO mAY® experimental
—_— —— calculation

4s (%)

FiG. 5. Comparison of calculated results with experimental ones for group I—L(ja|, }/30,).

the length # may be regarded to depend on the deformation history as well as on the
materials. The length & should be determined in complying with the accuracy required
for the calculated results. On the other hand, this concept is very effective for simplyfying
<calculations for complicated history, and thus the necessity to discuss the relation between
h and the accuracy of corresponding calculation should be emphasized for establishing
the general plastic theory.

In the following, the relation is discussed according to the examgles mentioned above.

5.1, Stress-strain relation within the length / along the strain trajectory consisting of three normal branches

The stress-strain relation within the length A may be expressed in the following man-
ners.
Along the first branch:

_ 2 e " ) dess .,
* 11 = a "
.0 R P fe o) Benr g
3 rr ds
Along the second branch:

So

#be_,k(;) f e:m(")_%},dg” (s—h 2 s0),

s=h

2
52) Su() =13

0, . - (5o < s=h);



STRESS-STRAIN RELATION OF INTEGRAL TYPE FOR DEFORMATION OF BRASS 139

5.2 T
((cont.)] -i— ybe_zf’ﬂ(’] f P )% das', (s—h<sy),

S12(s) =

5

2 —zpa(8) zp5(5) deu '
= e~ b fe"’ﬁ ——=ds', (s < s—h).
3 e ds

When the value of Sy, concerning % at s = s, is indicated by a symbol gy, og is known
from Eq. (5.1), and the following expression

So

ZM[S'} dell oo 306 Sh(.fn)
;.3 fe o ds £ 7 €

so—h

may be found from the relation
2 ° d
’ - e
Oo = 3 fhe *bo%0) f £ —-—d:,‘ ds’

so—=h

obtained from Eq. (5.2),. By substituting Eq. (5.3) into Eq. (5.2), the following relations
may be obtained:

S11(s) =
s=h 5o
B aée"{"’“(’)"“f“‘)}[l— f &) __de;} ds’x f bl —d:;,l dv'], (s—h < so),
- so—h so—=h
> So < 5—- 3
0. ( h)
(5.4) s
‘i_‘ube_,bﬂ(’) fe‘bﬂ[") d;;fz d“!’ (S "'h '-<... 30)’
5o
S12(8) = 4
2 -z 25) €12
— pupe” 8 fe*ﬂ —=2ds', (50 < s—h).
3 2 ds

In the same manner, the following relations are obtained along the third branch:

a-h
o 2 de
5. =¢q'e {Zpa(8) = 2o0(50 + 31)} 1-— Ze(s) “€11 4,
1 1 e N ds
so+8s1=h

L] ] -

f o) % ds"] + _;_ pe e~ %/® f ezcy(r)_d% ds’,  (s—h< so),
o+8—h fo+a1

(5.5) L+

Su4(5) = = e~ [ e g, (s < s—h < sots0),

fo+ 8y
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5

2 - (8 z de
(55 Sul) = 2™ [ go L

ds', (So¥s, <s—h);

(cont.) Z
S12(8) = o~ FepO=Zepbotsd) (g p < 50,
s—h de So+8 i
S1a(s) = wie” CepO7eplorm) [l - f SO f e ds’] ,
sotsi—h So+8—-h

(50 < s—h < 50+5,),
SIZ(S) = 0! (SO+SI < S'—k),
where o) and 7 are expressed as follows:

5o

=2t [ gunon gy
fo+81—-h
(5.6) .
' 2 -z ﬂ(lo'}-l() f I ﬂ({) deu z
Ty =7 M€ C ecB—= ds',
2 So+s1=h ds

The corresponding values of 4 and z in the above formulae are the same as those
shown in Tables 1 through 3.

Table 2. Values of u and z for the third branch: Growp D—G

pe(kgf/mm?) z EAVA a b ¢
10010 Zea = Zcy 4.64x1072 | 0.259 8.12x10-3

Zep 0.25 2.71x1073 0 0

0.5 347x103 0 0

1.0 3.92x10-2 0 0

20 4.76x 1073 0 0

Table 3. Values of x4 and z for the third branch: Group H—L

51 He(kgf/mm?) z a b c

0 4500 Zea = Zoy | 13.92x1073 | 4.28x10-2 | 2.59x10°2
Zep 1.75x10-2 0 0

0.25 4850 Zox = Zey | 1274%1072 [ 420%x10-2 | 2.51x10°2
Zep 271103 0 0

0.5 5500 Zea = Zey | 11.32x1072 | 4.15x10-2 | 2.39x 102
Zep 347x10° 0 0

1.0 6600 Zoot = Zoy 9.41x10~2 | 398x10-% | 2.14x10-2
Zep 3.92x1032 0 0

2.0 7500 Zo = Zey 8.03x10-* | 3.60x10-% | 1.67x10"2
Zep 4.76x 1073 0 0
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5.2. Relation Ietween the range of integration and accuracy of calculation

It is necissary to shorten the arc length % for simplyfying calculations whereas it is
desirable to take h as long as possible for improving the accuracy of calculation. In
order to detirmine the arc length A for general application by taking these two points of
view into account, stress components were calculated along the trajectories of the group D
through G iz relation to four values of & = 0.5, 1.0, 1.5 and 2.0 per cent, for example.

Oy (kgf/mm2)

45S (%)

0

AS (%)

FiG. 7. Relation between range of integration and accuracy of calculation (oy,):H = o0, 2.0, 1.5%.
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As examples of the results obtained, Figs. 6 and 7 show the relations between g,, =
= (3/2)S;, and the arc length As after the first corner of the trajectories. Moreover, Fig. 8
shows analogous relations between J/30,, and As. In these figures the results of calcula-
tion without considering the trace of delay (h — oo) are shown with the solid curves, and
the results for & = 2.0, 1.5, 1.0 and 0.5 per cent correspond to the dashed curve, dot and
dashed curve, double dot and dashed curve and thin solid curve, respectively. In Fig. 8

{ I —

h:cD
------- h=20%
—-— h=15%
20— —--— h=1.0%
E 2 h=0.5%
:: 292/5
92 \
= £ w\ G |\ 2 — G
h=0% =3 £ A |- |
th h=co, h““’!&is \ 1 E
Ky l _I_D
h A
qu! h-F{EJ \\\ ,{‘ 6‘\ a0 1 So 2 LT
D VAR AN
A O -,
h=05(D) - > = \\l\ﬁ.:::ﬁ_
0 1 2 3 4
45 (%)

FiG. 8. Relation between range of integration and accuracy of calculation (}/3e,,):h = 0, 1.5, 1.0,.0.5%.

the results relating to & = 1.5 and 2.0 per cent almost coincided with those for £ — oo
along the trajectories D and E for s; = 0.25 and 0.5 per cent, and these resalts are not
entered in the figure.

As found from Figs. 6 and 8, there is a considerable difference between the results
relating to 2 = 0.5 or 1.0 per cent and # — co. However, it is found from Figs. 7 and 8
that the results relating to # = 1.5 and 2.0 per cent agree well with the restlts relating
to h — co. Judging from these results it may be concluded that the accuracy of calculation
is not sufficient for practical use and depends on the geometry of the trajectory for a length
h less than 1.5 per cent, but it is sufficient for estimating stress value independently of
the geometry of the strain trajectory for the length & longer than 1.5 per ceat.

6. Conclusion

In order to formulate systematically the stress-strain relation for the plastic deforma-
tion of metals with high accuracy by taking into account the history effect appearing
in their deformation behaviour, a method having a logically clear foundation was estab-
lished by selecting the methods with a reasonable foundation out of the methods which
have been proposed up to the present.
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Experimental results obtained on the plastic deformation of brass, in which a thin-
-walled tubular specimen was deformed with a constant strain rate along the strain trajec-
tory with three normal straight branches under combined loading of torsion and axial
force, were formulated by using this method in the form of a stress-strain relation.

The results calculated by the relation were confirmed to approximate the experimental
results with high accuracy. Further, for simplifying the calculation, an effective range of
trajectory to be taken into account for establishing the relation was discussed in a typical
case of the above-mentioned trajectory. It was ascertained to be sufficient to consider the
geometry of the trajectory preceding as far as 1.5 per cent to the point considered.

Though the proposed method is effective for a material with a nonlinear continuous
stress-strain curve such as brass, aluminium alloy and others, it may be applicable for
every continuous part of a stress-strain curve of mild steel except the initial discrete yield
range.

The example of a strain trajectory mentioned is rather a special case in which a re-
markable history effect appears. The stress-strain relation which should be used for the
accurate elastoplastic deformation analyses of engineering structures may also be formu-
lated by taking into account the variations of geometric parameters in the range of the
length h for various cases appearing in the process of deformation analyses.
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