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Wave propagation in thermo-viscous materials with hidden variables
A. MORRO (GENOVA)

Suock waves and acceleration waves in heat-conducting viscous materials are considered. The
material properties are expressed through response functions dependent on the temperature, the
deformation gradient and the hidden variables and through an evolution function dependent
also on the temperature gradient and the velocity gradient (Sect. 2, 3). The investigation of
the propagation condition shows that the theory allows for the existence of shock waves (Sect. 4),
acceleration waves and higher order waves (Sect. 5). Finally (Sect. 6), the paper presents a mo-
del of heat-conducting viscous fluid accounting for wave propagation and meanwhile providing
Fourier’s law and Navier-Stokes’ law as asymptotic limits.

Rozpatrzono fale uderzeniowe i fale przyspieszenia w materialach lepkich przewodzacych cieplo.
Wiasnoéci materialowe przedstawione sg przez funkcje reakcji zalezne od temperatury, gra-
dientu deformacji i zmiennych w2wnetrznych, a poprzez funkcje ewolucji rowniez od gradientéw
temperatury i predkosci (punkty 2, 3). Rozpatrywany warunek propagacji pokazuje, ze teoria
dopuszcza istnienie fal uderzeniowych (punkt 4), fal przyspieszenia i fal wyzszego rzedu (punkt 5).
Wreszcie (punkt 6) podano model przewodzacego cieplo plynu lepkiego. Model ten uwzgled-
nia propagacj¢ fal, a jednocze$nie zawiera prawo Fouriera i prawo Naviera-Stokesa jako asymp-
totyczne przypadki graniczne.

PaccmoTpeHBI yiapHBIE BOJHBI H BOJIHLI YCKOPEHHA B BASKAX TEIUIONPOBOAIIHX MaTePHAaNax.
Marepnansgsie CBONCTBA NMPEACTABACHB! QYHKUMAMK OTIUIMKA, 3aBHCAL[MMH OT TeMmmepa-
TYPBI, IPAdaenTa ZeopMaldil K HSABHLIX MEPEMEHHLIX, 2 depe3 QYHKUAI IBOTOUAN TAKKE
OT rpajAeHTOB TeMOeparyPsl X cKopocra (myHKTeI 2, 3). Paccmorpemas ycmoBusa pacapo-
CTPaHeHHs MOKA3ILIBAET, YT TEOPHA HOMYCKAeT CYU[:CTBO3aHAe YRAPHBIX BOTH (IyHKT 4),
BOJIH YCKOpeHuA ¥ BOJMH Bhiculero mopaaxa (myekr 5). Haxomen (myHxr 6) AaeTsAd Modens
TewIompoBoAALlei, BAKOA MHIKOCTH, OPHUEM 3Ta MOMCAb YYHTHIBACT PACIPOCTPAHEHHAE
BOJIH ¥ OJHOBPESMEHHO cofepykur saxor Pypse K saxon Haspe-Croxca KaK acCHMITTOTHA-
YecKHe NpefeNbHEIE CIIYYan.

1. Introduction

IT 1s WELL known that Fourier’s law of heat conduction and Navier-Stokes’ law of vis-
cosity rule out the possibility of wave propagation. This paradox has bzen given a great
deal of solutions in the literature concerning temperature and acceleration waves in heat-
-conducting materials. Of course, the properties of any solution are closely related to the
statement adopted for the second law of thermodynamics. In connection with theories
involving the second law in the form of the Clausius-Duhem inequality, I mention, for
example, the papers by GURTIN and PrekIN [1] and by myself [2] about materials with
fading memory. Accounts for temperature and acceleration waves are delivered in the
papers by KosiNski and PERZYNA [3] and by Kosniski [4] using the model of materials
with hidden — or- internal — variables [5, 6]. On the other hand, apart from the paper
by CoLEMAN, GREENBERG and GURTIN [7], little attention has been paid to wave propa-
gation in viscous materials.
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The aim of this paper is to exhibit a thermodynamic theory of thermo-viscous mate-
rials allowing for the existence of shocks and waves of any order. To this purpose the con-
tinuum at hand is regarded as a material with hidden variables (Sects. 2, 3). The present
procedure is not standard as the response function and the evolution function are defined
on different domains; namely the evolution function depends on the temperature gradient
and the velocity gradient while the response function does not. In spite of being unusual,
such a difference is not at all new since it is utilised in refs. [3, 4] and in the paper by
Suriciu [8] in connection with the temperature gradient.

The main features of the present theory may be summarised as follows. First, the
introduction of hidden variables does not change significantly the propagation condition
of shocks (Sect. 4) whereas it gives rise to new terms affecting the growth of the shock
amplitude as it is shown by a detailed investigation of shock propagation in thermo-
viscous fluids [9]. Roughly speaking, the material turns out to be elastic as to the propa-
gation condition and thermo-viscous as to the growth of the amplitude, Second, it is
shown that acceleration waves may exist; moreover, qualitatively new terms, due to visco-
sity and heat conduction, appear in the propagation condition (Sect. 5). Furthermore,
it is proved that the propagation condition for higher order waves is equal to that for
acceleration waves; this is the counterpart of analogous results found by ErickseN [10],
TRUESDELL [11], CoLEMAN and GURTIN [12], and COLEMAN, GREENBERG and GURTIN [7]
in connection with hyperelastic materials, elastic materials, simple materials with fading
memory, and Maxwellian materials, respectively.

Of course, any well-grounded constitutive theory of thermo-viscous materials, in
addition to being compatible with wave propagation, must deliver Fourier’s law and
Navier-Stokes’ law when stationary phenomena are considered. Section 6, which deals
with thermo-viscous fluids, shows that, in a sense, such is the case with respect to the pres-
ent theory while the general properties of shocks and waves described above hold again.

It is a quite unusual result provided by the theory that transverse acceleration waves
in thermo-viscous fluids are possible just as in ordinary elastic materials. This fact seems
to be unavoidable in the sense that the existence of acceleration waves in thermo-viscous
fluids leads naturally to the existence of transverse acceleration waves. So the theory
exhibits a peculiar property for testing experimentally the validity of the model.

2. Systems with hidden variables

Throughout R, R*, R*+ stand for the real numbers, the positive real numbers and the
strictly positive real numbers, respectively. A superposed dot denotes material time differ-
entiation. A dot between two vectors or tensors means the inner product. The symbols
Y, Z, A, Z denote finite-dimensional real normed vector spaces while L(Y, A) designates
the normed vector space of all linear maps from Y into A; ¥ stands for the ordinary three-
-dimensional vector space,

A system with hidden variables {yo, Zo, @, U, V,0,h} on YxXZxA consists of
a ground value (y,, Zo, @) of the independent variables (y, z,a) € Y xZ x A, a € A being
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the vector value of the hidden variables, together with an open connected neighbourhood
U xV of (Yo, 2o) and the maps
(2.1) 6 C?(UxA,Z), heC*(UxVxA,A)
while dimA < dimY +dimZ". The growth of the hidden variables is determined by
the triple (y, z, @) via the evolution function h whereas the response of the system depends
only on the pair (y, &) via the response function o.

The first step is now to precise the zero rate condition for the hidden variables; to
this end it is convenient to introduce a map E:Y xZ — A subject to the following re-

striction.
1. Corresponding to each pair (y, z) € U xV there is just one value of the hidden variables

E(y,z) € A such that
| h(y,z E(y,2)) = 0
while
E(Yo, Zo) = &o.
The set of hidden variables
B = {E(y,2): (y,2)eUxV}, EeC?’(UxV,B),
is open in A , and there is a subset W < U XV such that (Yo, Zo) € W and the restriction

E = Elw of E to W is a bijection from W onto B whose inverse E-le C%(B, W).
The response function o* € C2(U xB, Z) is defined by

(22) o*(y,a) =o(y, E(y,2), (y,2)eUxV.
The subsequent developments are greatly simplified if the response function ¢ and the

evolution function h satisfy the following requirements.
IL. There is a positive constant y such that

(2.3) lo(y,a+B)—o(y,®)| < xIBl, yeU, a,a+BeA.
III. There is a map A € L(A, A) and a positive constant 8 such that
(24) |h(y,z,a+B)—h(y,z,0)-AB| < JIBl, (y,2eUxV, a,a+BeA,

while A+ 681, is negative definite.
So, in view of II, III, we have the uniform Lipschitz conditions

o(y,")eLipy, h(y(,z,-)eLip(|A|+d), yeU, zeV.

A path is a bounded and piecewise continuously differentiable map = from R into U X V.
If m is a path and 7 € R, then n(f) e UxV is termed the value of w at time #. A history
is a function defined on R with values in UX V. Given a path  and a time f € R, the
history of 7t up to time #, 7 (- ), is defined by = ({) = n(t—{), { € R*. A path m is closed
if there exist two times t,, ¢, (f; < £,) such that

ﬂ(t) = ﬂ(tl),

t 'rl 3
ﬂ(!) ™= ﬂ(‘z), t

<
2 t!)

() In ref. [13] such a requirement is shown to be strictly related to the existence of a unique entropy
function.

10*
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and, moreover, n(f;) = n(t;). A process is a pair (x, &), where = is a path and e € A;
it is said to be closed if = is closed.
A path m = (y, z) determines the growth of the hidden variables through the evo-

lution equation

(2.5) a(t) = h(n(r), a(t)), a(to) = «°.

For any given continuously differentiable path = the solution of Eq. (2.5) exists and is
unique. Moreover, the hidden variables a(¢) are independent of the present value of the
path 7t(¢) just as it happens in standard theories. Such a topic is considered by LUBLINER
[14], and by KosmNski and WoiNo [15] within a comparison between hidden variables
and fading memory approaches.

The solution a of Eq. (2.5) is endowed with the property of asymptotic stability.
For, consider the hidden variables &, &+ € A corresponding to the paths w, ®+v, that
is to say

@ = h(m, ),

&+P = h(m+v,a+).
Subtraction allows us to write the evolution equation for the difference p as
B = {h(r,a+B)—h(rx, a)+AB}+y—AR,

where ¥ = h(x+v, a+p)—h(rx, «+). Letting —m < 0 denote the largest real part of
the eigenvalues of A, account of III and application of Gronwall’s inequality yield the
estimate

(2.6)

@7) 1B < IB(to)lexp(—(t—to)m)+ [ exp(—(t—s)m)|B(s)lds

+ [ exp(—(t—s)m)lx(s)lds.

Hence a routine procedure establishes that

(2.8) 1B < IB(to) lexp(—(m—0) (t—1o))

+ —1—6 max |y(s)| {l —exp (—(m —0)(t—1,))}.
m—=—0 f,gs<t
Notice that m—d > 0 because of the negative definiteness of A+ dl,.
The inequality (2.8) gives an estimate of the difference @ at time 7 in terms of its initial
value B(1,) and of the difference path v via the quantity y. In the instance of equal paths,
that is v = 0 and then y = 0, it follows that

IB(®)] < IB(to) lexp (—(m—8) (1—10)),

whereby the difference between the hidden variables, arising from different initialﬂvalues,
decreases in time at least as exp (— (m—8) (t—1,)). Accordingly, letting (%) = E~*(a’),
o’ €B, and assuming that the constant path w = 7(f,) may occur, the solution of the
evolution equation

& = h(n(ty), &), a(ty) # o,
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must satisfy the condition of asymptotic stability

limea(t) = a'.

=0
This result lends operative meaning to the assignment of the initial condition for the
hidden variables; we can get the initial value &’ at time ¢ simply by holding the path =
equal to E-*(a’) up to time f. Incidentally, it is this fact which suggests the definition
of closed process.

3. Thermo-viscous materials with hidden variables

One way of describing the evolution of a body 4 is to suppose it consists of particles
labelled by the positions they occupy in a reference configuration #; x(X, f) denotes
the position vector of the particle X at time ¢ while n(X, -) is the path of the particle X.
Accordingly 7w and & map # xR into U x V and A, respectively. To save writing, however,
the dependence of 7 and « on X is often understood and not written.

A particle of a thermo-viscous body is characterised by identifying y € U with the
pair (0, F) and z € V with the pair (G, F); here 6 € R** stands for the temperature, G
the material temperature gradient, and F the deformation gradient. Meanwhile, the res-
ponse ¢ is identified with the set of quantities

c=(S,Q,7),

where e is the internal energy density, S is the Piola-Kirchhoff stress tensor, Q is the ma-
terial heat flux vector and # is the entropy density(?). These quantities enter the balance
equations in the following way. Denote by £ an arbitrary domain in & and by N the
unit outward normal to the bounding surface 4% of #. Without any loss in generality
the mass density in the reference configuration g, is assumed to be uniform. Then,
letting v(X, ¢), f(X, ¢), and (X, t) stand for the velocity, the body force density, and the
energy source density, respectively, in absence of discontinuity surfaces the balance of
momentum and energy is expressed by

Tji" vdV = fSNdA+ fde,
@ i &

(3.1)
d 1 )
— | le+—=2?|aV = | "S=Q) - NdA+ | (f-v+r)dV,
# J‘( 2 a'!" J

where the mass density g, has been dropped out. Under suitable smoothness assump-
tions the differential forms of the balance laws (3.1) are

vV=V-'S+{1,
&=8S-F-V-Q+r,
V being the material gradient operator.

(3.2)

(%) Precisely, S = T(F-1)TJp, p being the mass density and T the Cauchy stress tensor, while Q =
= F-1 q/p, q being the spatial heat flux vector.
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The response function o must be compatible with the second law of thermodynamics.
Unfortunately, this assertion has not a unique mathematical counterpart snce the current
literature exhibits several statements of the second law. Among such statenents the Clau-
sius-Duhem inequality appears to be the most restrictive one. Accordingly, this paper
aims to provide a theory of wave propagation compatible with the Causius-Duhem
inequality whereby

d 1 J‘r
(3.3 2 [navs - [ 5Q-Naa+ [ Lav
2 -k 2

is assumed to hold for any domain 2 = % and for any C! path on % xR. The differential
counterpart is

(3.4) 7> -V (§)+ L

On introducing the free energy y = e—0x and substituting Eq. (3.2), it folows that
5 O |
3.5) ~(+70)+S F-7Q:6>0

must hold at any particle X € # for any C! path on R. Suppose now tha the path x =

= (6, F, G, F) and the time ¢ are given. Letting g R, F e L(¥",¥),and ¥ € ¥ set

v=(p,#,9, %) It is always possible to find C? histories ¢'(-), #*(+) and ¥'(-)in

such a way that they vanish identically up to time t—e¢, & > 0, and |p+|#]| is small

enough at any time while ¢(¢), and# (t) are arbitrary. Then the choice of 1 small enough
1

¢ makes | |y(s)|ds as small as we please. Correspondingly, Eq. (2.8) tels us that the
t—e

change of the hidden variables B is bounded at any time and hence the estimate (2.7)

allows us to say that at time ¢ it is as small as we wish. So, in connection vith the history

(m+v)'(+) the Clausius-Duhem inequality (3.5) can be written in the form
. g s 1
G5 —(potn+m)@+9)—(pr-5+8)-F-F) - (pa'h+ 5Q-G+) > 0.

Since n, ||, and w may be made as small as we please, the arbitrariness of ¢(#) and F ®
allows us to conclude that the inequality (3.5) holds only if

(3.6) ?} == —'Pﬂ’ S = Vlh
3.7 v 'h+ %Q-G <0

Obviously, the conditions (3.6) and (3.7) are also sufficient for the Clausiis-Duhem ine-
quality (3.5) to hold.

The second law has been examined by DAy [13] through the assunption that the
Clausius integral is non-positive for any closed process starting from an equilibrium state.
An analogous procedure cannot be applied here because z contains the rab type quant.lty
F and then the properties 1.4, 1.5 of [13] are no longer true.
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4. Shock waves

Denote by &(t) a surface which divides & into the regions #*(¢), £ (¢) and forms
a common boundary between them. Define the unit normal N to & to be directed from
AR~ to R*. Letting £(-, -) be any function defined on (# xR)\&, the field &(-, )\ is
assumed to be continuous within #* and #~; the symbols £*(¢) and £-(¢) stand for
the definite limits of &(X, #) as X approaches a point on & along paths lying entirely
in #* and -, respectively. The surface & (¢) is said to be singular with respect to the
field &(-,t) at time ¢ if

[E1() := &~ () —&* (1) # 0.

The singular surface &(¢) is a wave front if its speed of propagation Uy is different from
Zero.

For later use it is worth writing down some general relations connected with waves.
First, Maxwell’s theorem asserts that if [£] = 0, then

4.1) [V€].= ([V&]- N)N.
Second, the growth of the jump [£] is determined by
é §
“2) 2 _ @+ N v,
where -:7 stands for the displacement derivative. In particular, if [£] = 0, the compatibility
relation
4.2y [€]+ UyN- [V€] = 0
must hold.

Now suppose that the wave front &(¢) is singular with respect to F and 0 (shock wave).
In such a case the evolution equation is not defined at &(t); in other words, if X € #(r)
and #, <, we may write

a(f) = h(n(0), a(l)), a(to) =,
provided { € [#,, t). However, the property whereby a(() does not depend on 7({) sug-
gests to define a(f) by continuity. This observation warrants the following:

DEFINITION. A wave &(t) is said to be a shock wave if:

S1. the functions x(-, *),a(", *) are continuous on & xR,

S2. the functions x(*, *),F(, *),0(", *),a(+, *),Va(*, *) and the derivatives of
higher order suffer jump discontinuities across & (t) but are continuous functions on (& x
xR)\Z(1).

The aim of this section is to investigate whether, and how, the present theory accounts
for the existence of shocks. To this end note first that in view of the balance equations
(3.1) and of the boundedness of f and r, Kotchine’s theorem yields the usual jump re-
lations

(4.3) Uyl¥] = —[SIN,

(4.4) Uy [e+ "117”2] = —[vS—-QJ‘N.



152 A. Morro

Moreover, the Clausius-Duhem inequality (3.3) leads to

@5 Urll > N- [%]

Denoting by a bar the mean value of a field variable on the two sides of the front, that
is to say

N TR
&= -E-(E +&7),

by virtue of Eq. (4.3) it follows that

4.6) | Uylo?] = =¥+ ([SIN).

On the other hand, Maxwell’s theorem enables us to introduce the shock amplitude s
related to & = [F] by

T =s®N,
where ® denotes the tensor product. So, Eq. (4.4) and the compatibility condition
[v] = —Uy¥N = —Uys
imply that the Hugoniot relation
4.7 Un([e]-S- & ~-N-[Q] =0
must hold at the shock.

With a view to determining the shock propagation condition it is convenient to write

the jump [S] in the form
[S] = S, +53 T,
where @ denotes the jump [6]. For any component SV of S the derivatives Sy, Sy are eva-
luated at a suitable point (6 +19, F* +I{, «), where /€ [0, 1] depends on the compo-
nent under consideration. Analogously we write
[Q] = Qs +QsF, [e] = esd+e5F.
Then, if Te L(¥", ¥’) is the identity tensor, Eqs. (4.3), and (4.4) yield
“[(—URI+NSzN)s+S;Né = Q,
(Un(egN—SN) ~NQsN) - 5+ (Uyes—N- Q)8 = 0.

In principle, the possible values of the shock speed Uy and the relation between s and
# are now a direct consequence of the system (4.8). Unfortunately, the derivatives S,,
Sy, Qs, Qy, €5, ey depend on sand & thus making the system (4.8) nonlinear. For the sake

of simplicity attention is confined to the linear approximation — infinitesimal shocks —
whereby the derivatives are evaluated at (0*, F*, «) and S is replaced by S*.

(4.8)

Infinitesimal shocks
A non-trivial solution of the system (4.8) exists only if

NSzN-UZ1 SN )
4.9 _ =0.
e det((eaN—SN) Uy —NQ;N | 20T -NQy )~ °
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A significant particular case of the propagation condition (4.9) is provided by non-heat
conductors. Indeed, on substituting Q = 0 and assuming Uy # O the condition (4.9)
becomes
(4.10) det(B—UZI) = 0,
where B = NSzgN+(S;N)®b and b = (SN—ezN)/e;. Meanwhile s is an eigenvector of
B—UZI and & = b-s. Therefore, the existence of shock waves is ensured by the sym-
metry and the positive definiteness of B € L(¥", ¥7). On appealing to Eq. (3.6); it follows
that

NSz N = NyaN
and hence NSgN is clearly symmetric. Also, a straightforward calculation gives

(SsN)®@b = BypN@p,rN.
The symmetry of B is now proved. As to the positive definiteness of B observe that

s Bs = s (NygpN)s+0 ((yeN) - 5)2.
The last term is evidently non-negative. Accordingly, the positive definiteness of the acoustic
tensor NypeN implies the positive definiteness of B.

The claim that the acoustic tensor is positive definite is to be distinguished from the
corresponding claim in the theory of elasticity. Indeed, the derivatives ygr, as well as all
coefficients in Eq. (4.9), depend also on the hidden variables and then on the history
of 6, F, G, and F.

5. Acceleration waves

The independence of a(r) of n(t) suggests the following to be introduced:

DEFINITION. A wave &(t) issaid to be an acceleration wave if:

Al. the functions x(-, *),F(*, -),0(-, -),a(-, *) are continuous on & xR,

A2. the functions %(-, -),¥(", *),0(+, *), G(-, *), (-, *), Va(-, +) and the deriv-
atives of higher order suffer jump discontinuities across &(t) but are continuous functions
on (R xR)[L(1).

Since [X] = 0 at (1), the jump relations (4.3), and (4.4) reduce to
(5.1) [SIN =0,

(5.2) Uylel = N- [Q].

Uy being now the speed of propagation of the acceleration wave. The continuity of
0, F, and & makes S, e, and Q continuous across the wave front and then both Poisson’s
condition (5.1) and Eq. (5.2) hold identically. As to the entropy balance, the inequality
(4.5) also holds identically because of the continuity of 6, Q, and #.

Look now at the balance equations (3.2). On assuming that f and r are continuous
across the wave front, the standard procedure yields

1 .
- -~ B,

[¢] = ——i};(sm-a+7};[<'z]-N,

11 Arch. Mech. Stos. nr 1/80
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where a := [X]. To go further we need to introduce explicit expressions for [¢], [Q], and
[ﬁ] in terms of 6, F, & and [G], [6], [F] For example we have

[€] = eo[0]+ex - [F]+e, - [h.

The continuity of 6, F, @ makes e, e, ¢, continuous across the wave front and allows
the jump [h] to be written as

4 (h] = by [G]+ by [¥]

where, for any component /” of h, the derivatives hia1 hm are evaluated at a suitable point
(0, F, G+ +k[G], F* +k[F], &), k € [0, 1]. For the sake of simplicity assume now that
the function h depends linearly on G and F otherwise the same conclusions could be
attained in the case of infinitesimal waves. Moreover, to save writing, replace the symbols
bG), by by bg and hg, respectively. Denoting by © the jump [6] and making use of the
compatibility conditions yield

. 1 1
[e] = 899 - Tnep v {8®N) - —{—j.;fu s {thNe-l- hﬁ’l@N} ,

Analogous relations hold for [Q] and [S]. On substituting into Eq. (5.3) and rearranging
the terms it follows that
(5.5 R-UiDa+36 =0,
X-a+40 =0,

where

2 = N(Sp+S.hi)N,

.3 = —UySyN+ NS, hgN,

X = Uy(SN—epN —e,bgN) + NQsN+NQ, hzN,

g = egUy—(ea hgN+N* Qp) Uy+N- Q. hgN.
Consequently the speed of propagation Uy must be the solution of the determinantal

equation

3)
5. =1 =0.
(5.6) 7 0

To sum up the results obtained so far we can write the following:

THEOREM. The speed of propagation Uy of an infinitesimal acceleration wave traveling
in the direction N through thermo-viscous materials with hidden variables must satisfy Eq.
(5. 6). The relation between the amplitudes a and © is given by Eq. (5.5).

Setting aside a detailed analysis of Eq. (5. 6) observe how the problem at hand simpli-
fies in some special cases. First, if the stress S is independent of the temperature 6 and
of the hidden variables &, and hence 3 = 0, Egs. (5.5) exhibit a thermal wave solu-

tion a =0, & # 0, Letting j and K stand for the quantities% (eshg + Qp) and Q,hg, res-

_Tr2
det (&3&1

pectively, the existence of thermal waves implies that Uy satisfies the equation g = 0,
that is .
(5.7 eoUf —2j- NUy+N- KN = 0.
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The derivative e, represents the heat capacity of the body per unit mass and it is natural
to assume that it is a strictly positive quantity. Then a sufficient condition for thermal
waves to exist is the negative definiteness of the tensor K.

Apart from the different meaning of the terms involved, a result like Eq. (5.7) has
already been obtained by GURTIN and PipkIN [1] and by myself [2] with recourse to mem-
ory functionals in order to account for the response of the material. Moreover, as to
materials with hidden variables, the same result has been obtained by Kosmiski and PE-
RZYNA [3].

Second, consider the non-heat conductors Q = 0, and suppose that the free energy
function is expressed as

vy =9 0)+y"'(F,a),

while h is independent of F, that is hg = 0. In such a case the vector X vanishes and
then Eq. (5.5) bears evidence of the solution a # 0, ® = 0 provided that

(5.8) det {N(Sp+S,hz)N—UZI} = 0.

This in turn means that purely mechanical acceleration waves —a 3 0,0 = 0 — may
exist provided the tensor N(Sg+ S.hi)N has at least one real positive eigenvalue. Since
NSpN is the acoustic tensor, the present theory exhibits the additional contribution
NS.biN accounting for viscosity through hidden variables. In principle, this term allows
the existence of acceleration waves even in purely viscous materials, that is when Sg = 0.
However, in general, the tensor NS,h4N may be not even symmetric. Such is not the
case of the model of thermo-viscous fluid described in Sect. 6 where this tensor accounts
for the existence of longitudinal and transverse acceleration waves.

Waves of higher order

Let n > 2 be an integer.

DEFINITION. A singular surface ¥ (t) of the time dependent fields x( -, t), 0(-, t), and
a(-,t) is called a wave of order n+ 1 if the following conditions hold:

nl. the functions x(+, ), ¥(+, *),0(-, *),a(+, +) and their first n—1 derivatives are
continuous on # xR,

n2. the n™ derivatives of X, F, 0, a and the derivatives of higher order syffer jump dis-
continuities across ¥(t) but are continuous functions on (R xR)\Z(1).

The analysis of a wave of order n+ 1 needs the requirements

ceC"*(UxA,Z), heC'(UxVxA,A).

Also, for the sake of simplicity assume that f, r and their first n—1 derivatives are con-
tinuous functions on 4% xR.

Consider the balance equations (3.2) and differentiate them with respect to X n—1
times; since [V*~'f] = 0 and [V"~!r] = 0, it follows that

(5.9) [V*=4] = [V*-}(V - S)],
(5.10) v*-1¢] = [V*-1(S - B)] - [V*- (V- Q)].

11*
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Property nl implies that [V*~!S] = 0 and hence
V=4S )] = [V"-'FIS.
Accordingly, Eq. (5.10) becomes
(5.10) [V*-1] = [V*~*FIS—[V*-'V - Q.
Observe that, given a function £ defined on £ xR and subject to [V*~!£] = 0, the itera-
tive application of Eq. (4.2) yields
(5.11) V™8] = (~Up "{EIN®...®N,

() (n)
where & is the m™ time derivative of & On the other hand the jump [S] can be written
as

(n) (n) (n) (n—1) (n)
(5.12) [S] = Sy[0]+Sg[F]+S.(he[ G 1+ he[F]).

m (m
while analogous relations hold for the functions e, Q(?). Then, in view of Egs. (5.11)
and (5.12) we can write Eq. (5.9) as

(m) 1 (m) (m . (n—1) (n)
v] = -FN{Se[ﬁl+Sp[FJ+S.(hc{G}+hr[F])}-

Upon substitution of the compatibility relations

(1) 1 N (n(—;l} 1 (6)N
[F]=——U;["]® . ]=—ﬁ;[] ,

it is easily seen that

(n) (n)

(5.13) (R-UDV]+3[0] = 0.
A similar procedure applies to the jump relation (5.10). In fact, use of Eq. (5.11) pro-
vides

(m) L) 1 (n)

[e} = 8§ [F]'i"ﬁ"N [Ql,

N
whence
(m) (m)

(5.14) X- [v]+4[6] = 0.

Looking at the system of equations (5.13) and (5.14) in the unknowns [{\’:)], [(3)] it follows
that a non-trivial solution is possible only if the determinantal equation (5.6) does hold.
So we have proved that waves of higher order and acceleration waves have the same prop-
agation condition thus establishing the counterpart of analogous theorems by ERICKSEN
[10], TruespELL [11], CoLEMAN and GURTIN [12], COLEMAN, GREENBERG and GURTIN [7].
In other words, all waves of the order n > 1 have the same speed of propagation. How-
ever, a remark is in order. In fact, the propagation condition (5.6) holds exactly for

n—1 n—1
(®) Since [6] = 0, [F] = 0 the dependence of h on 6, F does not give rise to corresponding terms
in the jump relations.
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waves of higher order and also for acceleration waves provided the amplitudes a, @ are
small enough to replace the actual values of the derivatives hg, hi by their values at (6, F,
G+, F+, a). In conclusion we can write the following:

THEOREM. The speed of propagation Uy and the relation between the amplitudes asso-
ciated with waves of higher order propagating through thermo-viscous materials with hidden
variables are the same as in the corresponding case of infinitesimal acceleration waves.

6. An example: thermo-viscous fluids

This section delivers a model of fluid with hidden variables which is compatible with
the existence of shocks and acceleration waves. Meanwhile Fourier’s law of heat con-
duction and Navier-Stokes’ law of viscosity are obtained as asymptotic limits in stationary
conditions. Although such a model is to be viewed as an example of the theory performed
in the previous sections, the spatial description appears to be more convenient and then
some results will be restated briefly in their dual form.

A material is said to be a fluid if its symmetry group is the unimodular group [5].
Accordingly, the response function o and the evolution function h may depend on F
only through the determinant det F, that is through the actual density p = po/detF.
Then, describing heat conduction and viscosity via the spatial temperature gradient g
and the rate of strain D, for a temperature rate independent fluid we can write

c=0(0,0,a),

a=h(@,p,g,D,qa),
where o stands for the set of quantities (e, T, q, 7). To account in a simple way for heat
conduction and viscosity it is convenient to suppose that the hidden variables & consist

of a vector «, and a symmetric tensor «,, i.e. @ = (&, &,). Assuming the independence
of h of @ and p, consider the pair of linear evolution equations

: |
a = -y (g—ay), a,(t) = af,
(6.1) ™
: 1
g (D—a;), ay(to) = a3,
2
where af, al € C'(#)(*). Property III requires that the relaxation times 7,, 7, belong

to R**. The map E is expressed by @, = g,a, = D. The obvious solutions of Egs.
(6.1) are

a,(f) = g(t; ) +afexp(—(t—t5)/7;), t—toeRY,
o, (t) = D(t; 7)) +adexp(—(t—to)/72), t—toeRY,
the symbol &(z; 7) being defined as

(6.2)

t

4 =%fexp(—(t—6)fr)§(0d¢.

To
Ty

(*) According to Egs. (6.1) we have dimA = dimZ.
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The second law of thermodynamics is supposed to be expressed by the Clausius-Du-
hem inequality

(6.3) —o(@+n0)+T- D— g8 =0.
So the response functions are compatible with thermodynamics provided that
1 1
—e(yo+m)0 + (e vl +T— —v ) ( Bq+—%,) g+e(;:v,1 Uyt Ve, -az) =0
holds for every time ¢ and for every path = = (0, o, g, D). By using the kind of argument

used already in proving Egs. (3.6) and, (3.7), we conclude that this inequality holds if and
only if

6.4) §= =y L= —e’vJ+—1vf oy 4= _i_e%”
2 1
(6 5) i Y +i o, = 0
’ Ty ViS4 12‘0“ 2

Then a function (0, o, &) satisfying the inequality (6.5) makes the response functions
(6.4) identically compatible with the second law of thermodynamics.

To specialise the example under consideration, look now at a free energy function y
dependent on 0, ¢ and on the quadratic invariants e, * a,, &, &;, and (I-@;)* in the
form

69 90,00 = P00+ [ e, 0 tumre- o i

where #, u, A are non-vanishing constants. It is a simple matter to show that the function
(6.6) satisfies the inequality (6.5) if and only if

(6.7) g>0, 3A+2u3>0; x>0
Substitution of Eq. (6.6) into Eq. (6.4) delivers

(6.8) n= Vit ia

2981 a.l,

6% T = —pl+ 20, + AL @), q = —way,

being p = g%y,. If g(f) = g, D(t) = D', t—1, € R*, it follows that
lim(ay (1), @(1)) = (D)-

This allows us to say that, except for the dependence of p on a and hence on g and D,
when g and D are constant in time Egs. (6.9) asymptotically become the Navier-Stokes
and Fourier constitutive equations. So, the results (6.7) may be regarded as the Stokes-
-Duhem and Fourier inequalities.

Look at the behaviour of the thermo-viscous ﬂmd described by Egs. (6.6)-(6.9) as
to the propagation condition for shock waves and acceleration waves.
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Shock waves

Application of Kotchine’s theorem to the balance equations of mass, momentum, and
energy enables us to write the jump relations

[eU] =0,
[oUv]+[TIn =0
[eUe]+[¥]* Tn—[q]'n = 0

where U is the local speed of propagation and n is the normal to the shock front in the
actual configuration. Since [a;] = 0, and [&,;] = 0, in view of Eq. (6.9) it follows that

(M= -[plt, [4l=

Again the shock turns out to be longitudinal and, in the case of infinitesimal shocks,
we find the propagation condition

T
eo(p,—U?) Pﬂ(ee Ilg Il)=0

where the quantities

X7 1
Pp= ane_{ﬁﬂl Tyt UT ¢1+‘§" A,y (L az)z}s

P = 9297&0_[_ 26 Ty, (Q elos
= —0W;— 983 o« = (¥ -6¥),— {-’E;—‘al oy +ur e, a2+-—).-r;(l-az)‘}

are to be evaluated in the region ahead of the shock.

Acceleration waves

The balance equations provide the jump relations
[0]+e[divv] =0
o[¥]—[divT] = 0,
e[e]-T- [D]+[divg] = 0
while [v] = 0 and [6] = 0. For the problem in study a convenient form of the compa-
tibility condition is

d[é] [{-] + Un-[grad £].

Consequently [T] = 0 and [g] = 0 imply that

[ivT] = —7 [k, [dival = 50l n.
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Accordingly, since [&,] = [g]/z,, [&,] = [D]/7,, account of the response functions (6.6)-
(6.9) allows us to write

(6.10)

|

(gU’—-rﬂ)a—l(gp‘,+%ﬁ+2(l : ¢2)+2p./V)a ‘n+2usfa -tln-(Up,+gul -n)@n =0
2 2

Ulo*,—p)a-n+ (gesb"2 —%a, -nU—;)@ =0,
1

where /" =n-a,n and f = [nAa,n| are the components of a,n, that is
an = An+St, t-n=0.
- The determinantal equation associated with Eqs. (6.10) follows straightaway.
Consider now some particular solutions of Egs. (6.10). If # = 0, Egs. (6.10) bear evi-

dence of the existence of purely mechanical transverse waves—a-n =0, 6 = 0. The
corresponding local speed of propagation U is

1
U= (L)
0T,

On the other hand longitudinal waves —a = (a'n)n, @ # 0 — are possible. In such
a case the propagation condition is

(6.11) U+ U+, U+, Uty = 0,
where
i 2xp
Cqy = 0°€g, C3 = -"_e"'al n,
% 2u+A
Cy = — .E. + 06, qu+——+2,uﬁ’+l(l o) +po(p—e en)
2u+i
= _;‘{9239 _P+2(9Pe+_?—+2ﬂm+‘l(l' al))}al A,
2
2u+i
co = Ti{gp,+—'ui_— +2uAN + A1 "-2)}
1

If the temperature gradient is zero until the arrival of the wave front, we have a; =0
and then ¢; = 0, ¢; = 0. The corresponding acceleration waves are symmetric [8].

In respect of the response functions, the presence of hidden variables involves mem-
ory effects. In particular, the example described above accounts for memory effects
associated with heat conduction and viscosity. A possible connection with Fourier’s and
Navier-Stokes’ theories may be accomplished by examining the behaviour of the speed
U when the memory becomes extremely short, that is to say when 7, 7, = 0. For the
sake of simplicity let 7 := 7, and suppose 7, = O(7). Observe first that

a, =g+0(r), a,=D+0(7)
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as v — 0. Hence,as T — 0, ¢;, ¢; = O(1) while ¢,, ¢; = O(r~!) and ¢, = O(7r~2). Mean-
while, in view of Eq. (6.11), the speed of propagation must satisfy the condition U =

1
= 0(1_2—). The sought connection is then established. Indeed, Fourier’s and Navier-
-Stokes’ theories, ruling out the possibility of wave propagation, may be obtained from
the present example in the limiting case 7 — 0.
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