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The differential geometry of internal surfaces
M.J. MARCINKOWSKI (MARYLAND)

A GENERALIZED formulation of internal boundaries in crystals has been made using the methods
of differential geometry. In particular, a number of important tensor quantities such as distor-
tion, torsion, lattice connection, curvature, Burgers vector, dislocation density and Burgers
circuit have been derived with respect to an arbitrary internal boundary and related explicitly
to the dislocation content of such boundaries.

Otrzymano nosélmony opis granic wewnetrznych w krasztalach, korzystajac z metod geometrii
rozniczkowej. W szczeg6lnoéci, wyprowadzono szereg watnych wielkoéci tensorowych, takich
jak odksztalcenie, skrecenie, polqczema sieciowe, krzywizna, wektor Burgersa, gestos¢ dyslo-
kacji i obwod Burgersa, w odniesieniu do dowolnej granicy wewnetrznej; wielkoéci te zwigzano
w sposob jawny z zawartoécia dyslokacyjna takich granic.

Ionyueno oGoGUIEHHOE OMMCAHME BHYTPEHHWX TI'PaHHI[ B KPHCTA/UIAX, MCTIONB3YA METOMBI
mubdeperumambHOli reoMeTpEn. B UaCTHOCTH BhIBe[eH DA BHKHLIX TCHIOPHEIX BEJIHYHH,
TaKMX Kak JedopMales, KpyueHHe, COCWHEHMA B peIlleTKe, KPHBH3HA, Bekrop Broprepca,
TIUIOTHOCTE MAC/IOKALGHIE ¥ meprmeTp Bioprepca 1o OTHOIIEHMIO K MPOH3BOJIGHON BHYTPCHHEH
IPaHMIIC; ITH BEJIMYAHLI CBA3AHE! ABHLIM 00pas’oM ¢ JMCIOKAIHOHHLIM CONCPIHAHMEM TAKMX
FPaHHIIL.

1. Introduction

IT HAS BEEN previously shown [1] that the continuum theory of dislocations could be
applied to grain boundaries in order to obtain a deeper insight into the nature of the
dislocations contained therein. The still more general methods of differential geometry
were demonstrated [2] to provide an even more powerful means of dealing with the struc-
ture of grain boundaries. The goal of the present study is to extend the differential geometric
analysis of grain boundaries to more general two-phase interfaces since it has recently
been shown [3] that the coincidence site lattice theory of grain boundaries can be applied
with remarkable generality to two-phase interfaces.

2. Distortion tensors associated with internal surfaces

Consider the single phase orystal shown in Fig. 1a which is divided into two parts
by the dashed vertical line. The crystal can then be cut along the dashed line, after which
grains #1 and #2 may be rotated by +6/2 and —6/2 to produce the torn state shown
in Fig. 1b. Extra material may now be added to the torn state the generate the final state
illustrated in Fig. 1c which is in fact a symmetric tilt type grain boundary. We will denote
the initial state by upper case Latin letters, i.e. K. L, etc., the torn state by lower case
Latin letters, i.e. k, /, etc., and the final state by lower case Greek letters, i.e. %, 4, etc.
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Fic. 1. Steps illustrating the formation of a symmetric tilt type grain boundary. a) Initial reference state;
b) Torn state; c) Dislocated state; d) Torn dislocated state of c.

Note that the dislocated state (x) contains severe elastic distortions at the grain boundary.
These strains can, however, be completely removed by the tearing process shown in Fig.
1d. This will be referred to as the (x7) state. A set of local base vectors e, €, €, and e,r
can next be associated with each of the four states illustrated in Fig. 1 along with the com-
ponents dx¥, dx*, dx* and dx*". These may be related to one another by equations of the

type (4)
(2.1) dx* = Akdx®,

dxk = AFdx*
etc. where A% and Af are termed distortion tensors. Similarly, the base vectors are related
to one another as follows:
(2.2) e = Afex,

ex = Ake,

etc. The (K) and (k) states of Fig. 1 may be connected to one another by the following
distortion:

(23 Ak = {AxH(=x"} + {A  H(+x")};
1 K 2 K
where H( —Iaé‘) and H(+x?) are Heaviside functions defined by
K

0 if x'>0,
K

1 if xt<0,
K

(2.4), H(—x") =
K
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while
" 0 if x'<0,
24), HED =11 it x>0

The distortions A% and A%, on the other hand, are given by
1 2

Al 42 43 cosf/2 —sinf/2 0
(2.5), Af = (A} A3 A3 = |sin6/2 cos6/2 0
1 AL A3 A3 0 0 1
and
cosf/2 sinf/2 0
(2.5), Al = (—sinﬁlz cosf/2 0.
2 0 0 1

The curly bracket notation has been utilized in Eq. (2.3) to emphasize the fact that the two
grains may be treated separately.

We will now note that whereas the (X) state has associated with it one unique coordi-
nate system, while states (k) and (»") have two, the (x) state in Fig. 1c has at least three.
In this latter case, one set of coordinates is associated with each of the grains, and one
with the grain boundary itself. There are other local coordinates in the vicinity of the
grain boundary associated with the elastic distortions. It is apparent that the coordinates
within the grain boundary are one-dimensional. They in turn may be associated with a
grain boundary state (K®). The grain boundary coordinate may be related to those within
the grain interiors, i.e. (x) state as follows:

(26) exs = Agse,,
where in the specific case of Fig. 1c, Eq. (2.6) gives
2.7), e= Ale+ Ale
KBZ ?‘1 xz
or
e, i = sin6/2 é i cos6/2 -
K5 cosf/2 Kt ©089/2 .2
The distortion A% can also be written as
(2.8) % = AXs A%,
where
1 -
1.5 0
cosf/2
(2.9) AL = 1 ,
v =ap °

0 0 1
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while

(2.10), Ay = Ak
11

and

(2.10), A% = A%,
3 2

More generally, we can write, similar to Eq. (2.3),
(2.11) Ags = (A5 H(—x")} + {5 H(+x")},.
1 K® 2 K®

The above distortions are not strictly true at all points in the vicinity of the grain boundary
because of elastic strains. However, as we shall see later this problem can be avoided.

a
e &2
e 6 1 2 ]
b
§ q_ 3
*1 '_?.__ 3’ *2
L— —-—
7' 2
ez (7]
e 6 1 2 &
(k') state
C
5, . 4 3
*7 3 #2
|
&; e =
3 &
& 6 000 1 2 &
(x') state
FiG. 2. a) Imperfectly torn; b) Perfectly torn; c) Dislocated states as¢ociated with a simple two-phase
interface.

Let us now consider the simple two-phase interface shown in Fig. 2. As in the case
of Fig. 1, we may denote three states by (K*), (k') and (x') where the superscript 1 has
been used to differentiate these states from those in Fig. 1. In addition, state (K") is identical
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to state (K), and is thus not shown. The (k') state can be generated from the (K*) state
by means of the following distortion:

(2.12) Al = {AF H(—x")}, +{AK H(+x")},
1 Kt 2 Kt
where
(2.13), AR = oF,
1
while
100

(2.13), Afr =0V 0],

2 001
where the distortion given by Eq. (2.12) connects the following base vectors:
(2 14) € = ‘Ak‘:eg: i

The above equations show that only grain #2 undergoes a volume distortion in accordance
with the construction in Fig. 2b. In particular, ¥ was chosen as 4/5 in this figure. The
(k') state may be referred to as a perfectly torn state, as compared to that in Fig. 2a,
which may be termed an imperfectly torn state. In particular, the tearing occurs only along
the horizontal coordinates, while in Fig. 2b it occurs along both the horizontal and vertical
coordinates. It also follows that the discontinuous function given by Eq. (2.12) no longer
holds for Fig. 2a. It is important to note that the tearing operations associated with the
transformations (K) — (k) and (K') — (k') correspond to the following telations:

(2.15), dxk £ 5% dxX
and
(2.15), dx*' £ 5%, dxX',

In other words, all of the components are dragged along by the distortions (5). This is also
equivalent to associating the following point transformations with the coordinate transfor-
mations

(2.16), P 2 AFO
and
(2.16), PE, & 4Kt gk,

If new material is added to grain #2 to fill up the space left by the distortion in Fig.
2b, we obtain the (»!) state configuration shown in Fig. 2c. We can describe this state with
respect to a grain boundary state (K'Z) as follows:

(217 A’:u = {A’;lllH( —x)h+ {A’,‘;llsH(+xl)}2:
1 Kla' 2 KIB

where
(2.18), l'f:u = 6’:13,
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while
100
w1
(2.18), g;u ={o5 o]
001

It is clear that Eqgs. (2.18) satisfy an equation of the type given by Eq. (2.6), i.e.

(2.19) e = A¥\Be,.
K.IB
We are now in a position to turn our attention to the more general boundary shown
in Fig. 3 which consists of both rotations as well as volume changes. For this case we may
write

(2.20) Agas = {45 H(=xW L + {45 H(+xY) ],
1 f 2 K*®
where
(2.21), Ay = A%s,
1 1
while

1 cosf/2 _1 sin6/2
V cosB/2 V cosB)2

(2.21), A%, =| _1sin0/2 1 cosf/2
2 V cos0/2 ¥ cos6)2
0 0 1

As was the case of Eq. (2.11), the above relations are not strictly applicable in the vicinty
of the grain boundary due to the presence of elastic strains; however, this presents no
problem. In order to derive the (k?) state of Fig. 3a, we may write

(2.22) AR = {ARH(—xY)} +{AK H(+xY)},
1 K? 2 K?
where
(2.23), Al = AF
1
and

1 oso2 —Lsinop o

vV V
(2.23), AR =11 . 1 .
5 l—,smﬂ;‘? ?cosﬂﬂ 0

0 0 1
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(x2) state
Fic. 3. a) Torn; b) Dislocated states associated with a more generalized boundary.

3. Burgers vector and dislocation density associated with internal surfaces

Consider the reference or Burgers circuit 1-2-3-4-5-6-1 associated with the (K®) state
of Fig. l1a. Note that the (KP®) state in this figure differs from the (K) state only by a scale
factor given by Eq. (2.9). The corresponding circuit in the dislocated state (x) is shown
in Fig. 1c where the closure failures 4'-7 and 7-4 are denoted by dotted arrows. We may
express these closure failures by the following line integral [4, 6]:

@3.1) b = —f Agedx®",

where the distortion tensor is given by Eq. (2.11). When Eq. (3.1) is applied to Fig. 2¢
we- obtain

(3.2), B! = —A'Ax' —A' Ax* — A" Ax* —A' Ax? — A* Ax? — A' A,

x 2'1-2 222-3 2'3-4 1"4-5 125-6 1'6—1
where Ax' etc. are the distances from point 1 to 2 etc. in Fig. 1a. With the aid of Eq.

1-2
(2.11), Eq. (3.2) reduces to
(3.2); b' = {—A'Ax?},+{—A'Ax?},
% 222-3 125-6

or
(3.2), b' = {4tan0/2},+ {4tanb/2},.

b4
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In terms of Fig: 1c, Eq. (3.2) becomes

(3.2)s b = {Ax' },+ {Ax' },.
~ x -4 &7

Let us now consider the (x7) state of Fig. 1d which is the torn counterpart of the (x)
state. Here again we can write
(3.3) B = — f Afadxx®

and since 4A%» = A%s, Eq. (3.3) gives a closure failure identical to that of Eq. (3.2), as is
evident from Fig. 1d. We also obtain additional free surfaces resulting from the tearing
operation which are given by

(34) B = f Aadx®®
which, except for the absence of the negative sign, is identical to Eq. (3.3). We thus have
in terms of Fig. 1d

(3.5 b = {Ax* + Ax' }+{ Ax' + Ax* },
xT  8-—-8 I'—1 g—8" 1-1"

as well as
(3:6), b? = {42 Ax? },+{A%Ax* },
2T 222-3 125—-6
or
(3.6), B = {Ax* + Ax? },+{Ax* + Ax? },.

*T  8-7 1-8 7-8 8"'—1
For the torn (k) state of Fig. 1b we may write

(3.7 B = § Akdx¥,

In view of Eq. (2.15);, Eq. (2.3) can be rewritten as

(38) Ag = {SkH(—x")} +{ok H(+x")},
1 K 2 K

which, when substituted into Eq. (3.7) yields

(3.9), b* = {Ax3}, +{Ax?},.
k 2-3 5-6

or

(3.9). 22 = {4}, +{—4}1,

while in terms of Fig. 1b
(3.9); b* = {Ax? },+{Ax* },.
1-4 4—1

This result is thus identical to that given by Egs. (3.6). At this point we can attribute the
closure failure given by Egs. (3.1) and (3.3) to extra planes within the crystal, i.e. dislo-
cations, while those given by Eqgs. (3.4) and (3.7) are due to the creation of free surfaces.
This will become more clear as we procede further with this analysis. Another intriguing
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aspect of this problem manifests itself in that b* given by Eq. (3.9), is equivalent to b*
k %

given by Eq. (3.2),. This is indicated in Fig. 1b by the fact that the vector sums 4'-1-4
and 4'-7-4 are equivalept. This implies that we can write

(3.10), B = § Akndx™,
where
(3.10), Aks = —A%s.

Continuing on to the (x!) state of Fig. 2c, we may write
G.11), b = — f Agwdx®,
which with the help of Eq. (2.17) gives
(3.11), b2 = {—A2Ax? },+{—A2Ax? },

2l 229 _ 25 _
or
1
(3.11), b? = {—— (4)} + {4},
sl vV 2

or in terms of Fig. 2¢

(3.11), b2 ={—1}, = { 4x* },.
x! 32

A little care must now be exercised in obtaining b*'. In particular, if we write, similar
to Eq. (3.7)

(3.12) bt — f Ak dx®
and then employ Eq. (2.15),, we obtain
@13 8 = 4+ {~4h.

However, the surface closure failure occurs at the boundary between the two phases so
that we must write instead of Eq. (3.12)

(3.14) bx*® — q;Afl"dx*‘,
where
(3.15) AR" = AR°,

which can be obtained from Eq. (2.17). Equation (3.14) can therefore be expanded as

(3'16) b? = {V(4)}z+{_4}1 = l_%} = {AIZ }w-
KIB 1B 7_?,
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There are other components b! associated with Fig. 2b given by the dotted lines 3’-7 and
kl

7'-2'; however, they may be considered as cancelling with one another. Also, since the vec-

tor sum 3'-7-7'-2' is equivalent to 3’-2’ in Fig. 2b, we may write, similar to Egs. (3.10),,

G.17), B = f A¥adx",
where
(3.17), Axis = —AKos.

‘We next turn our attention to the (»2) state of Fig. 3b where we can write

(3.18) B = — f Afundx®.

From Eq. (2.20) we can use Eq. (3.18) to find

(3.19), b' = {4tanf/2}, +{(3) 4tan6;‘2} 5
x? 4 z

which in terms of Fig. 3b gives

(3.19), bt = { Ax' },+{4dx'},,
»  4-T 1-4

while the second component is found to be
(3.20) b = {4}, +{—4(§~)} = —{1}, = {4x* },.
»? 2 e

It is a relatively straightforward matter to obtain the surface closure failures associated
with the (k2) state of Fig. 3a utilizing the methods described earlier with respect to states
(k) and (k).

With the aid of Stoke’s theorem, the line integral given by Eq. (3.1) may be converted
into a surface integral [5, 7] as follows:

(3.21), b= — f Agedx®® = — [ dopnAin,dFH"x*
or in expanded form as

(3.21), b= - j Afsdx®® = —% f [0 ppA%ks — O ks A'iye] dFMPE",

Thus the surface integral provides an alternate method of obtaining b”. In particular, when
applied to the grain boundary shown in Fig. 1c, Eq. (3.21) gives

(22), bt = —-%f[alAidF“—alA;dF“]
i s
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which, with the aid of Eq. (2.11), becomes

(322, b= { = % f (8, H(—x")tan6/2 dF'? —3, H(~x")tan6/2 an]}
% = KB KB 1

+ = - lf [— 8, H(+x")tan6/2 dF'?+ 0, H(+x")tan 6/2 dF?*']
2 . K® KB

2

Since dF'? = —dF?', and from the following relations (2.8)

(3.23), 0 H(—x") = —é(x")
Kn KB

and

(3.23), 9, H(+x') = +4(x1),
KB KB

where §(x') is the Dirac delta function defined such that d(x') = 0 for x! # 0, we can
KB
write Eq. (3.22), as

(3.24) bt ={ [ 8(:)tanb2drdx?), 4| [ 8(x)tanb/2 axtax?),.
® s KB s KB

Note that in the (K®) - (%) transformation, the component dx? is dragged, so that in

accordance with Egs. (2.15) we can write dx? = dx?. Also, since the delta function satis-

KB *x
fies the following relation:
400
(3.25) [ dGxhyaxt =1,
and since [ dx? = 4, Eq. (3.24) reduces to
(3.26) b* = {4tan0/2}, + {4tanb/2},
*

which is identical to Eq. (3.2); obtained by the line integral method.

Rather than discuss the Burgers circuit in terms of integrals with respect to a reference
(K®) state, as has been done thus far, it now becomes instructive to consider the correspond-
ing Burgers circuit with respect to the final state (x). This can be done by writing Eq.
(3.21), as

(3.27), b= - f % AL AM® [0, 8 A%ys — Dyyn A ) dF M

or alternately as
(3.27), b= — [ Syrdre,

where the quantity Si;* is termed the torsion tensor and is given by [5, 7]:

(3.28) S = - AP A (0,0 Afin —Op o]
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In terms of Fig. 1c the above equation becomes

(329), Sist = o (A1 43— A3 4300, 43.
X

We must now be careful in defining the inverses 45 . Specifically, they represent the
dragging of the components dx* and dx? to dx! and dx? respectively, so that AX" = %",
*® P K® K®
This makes the bracketed term in Eq. (3.29) equal to unity, so that in view of Eq. (2.11)
it finally becomes
1

(3.29), Si3! = {——=tan0/2 J(x‘)} -+ {— -l+ tan6/2 6():‘)} 3
*® B x 1 2 x 12

When the above expression is substituted into Eq. (3.27),, we again obtain the same
result as that given by Eq. (3.26). Also inportant to note is the fact that the presence of
a non-vanishing S;* is synonymous with the presence of dislocations, as was first pointed
out by Konpo [9].

Turning our attention again to the (»') state of Fig. 2c, we can utilize Eq. (3.21),
to obtain

(3.30), ¥ —_;- f [0, AZdF'? — 3, A2dF™!]
% s

which, with the help of Eq. (2.17), yields
(3.30), b? =1 [ 8(x )dxldx,} +{--r;7 8(x* )dx‘dx’}

xl - KIB 1 - KIB 2
or

1
(3-30)3 bz = {4}1+{— 7 (4)} .
1 2

x

This is the same result given by Eq. (3.11);. The torsion tensor associated with the (x')
state can be found to be

(331), Sis? = - (L 43— A3 4310, 43
x

which, together with Eq. (2.17), gives
(3.31), Si3? = !—J—J(x‘)} +{i6(x‘)} ;
xl 2 xl 1 2 =,‘l 2
When the above relation is substituted into the following equation:

(3.32) b = — [ SpprdPis,



THE DIFFERENTIAL GEOMETRY OF INTERNAL SURFACES 775

we obtain the same result given by Eq. (3.30);. A surface integral of the type given by Eq.
(3.32) can also be written for the (x*) state of Fig. 3b. In this case there are two components
of the torsion tensor given by

(3.33), S5t = {— i tan 9,’26(x‘)} B { - —l— tan ﬂ;‘26(x‘)}
x2 2 xz 1 2 xz 2
and
. _l_ 1 } {“1_ 1 }
(3.33), ’;9212 l 3 6(’3:2) 1+ 3 6(;) L

The surface integrals discussed thus far have all been associated with closure failures
due to dislocations. The same reasoning can be applied to the torn states to obtain closure
failures due to the creation of free surfaces. In particular, analogous to Egs. (3.21), we may
write

(3.34) bk = f Akdx = % f [0 A% — 0 A%, ]dFMX.
For the (k) state of Fig. 1b, the above relation gives
(3.35), b* = [ 0, A3dF'?
k s
which in turn, using Eq. (2.15),, yields
(3.35), b2 = {— [o(Maxax?), +{f o(xdx'dx?),
k sk sk

and is identical to the line integral result of Egs. (3.9),. Equation (3.34) can also be written
in terms of (k) state coordinates as

(3.36) b = [ QikdFm
where Q;,;." is termed the anholonomic object and defined as [5, 10]
(337 it = o AL A0, AL~ D AL,

Equations (3.36) and (3.37) are thus of the same forms as Egs. (3.27), and (3.28) respec-
tively, but have physically different meanings. In the case of the (k) state, Eq. (3.37)
yields

o . 1 _1_ 1
(338) o; -{ 3o )]1+{2a(; )L

which, when substituted into Eq. (3.36), again gives the same result as that of Eq. (3.9).
In the case of the (k') state of Fig. 2b, the anholonomic object becomes

— .S py 1
(3.39) s -{ 25(;1,)}14-{2%(;“)}2,
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where use has been made of Eq. (3.15). Strictly speaking, there is also a component 2;;!
associated with the horizontal torn surfaces in Fig. 2b and can in principle be found, but
will not be considered further. In a similar manner, an anholonomic object associated
with the torn surfaces of the (k2) state can also be found.

Having determined the torsion tensor, we are now in a position to find the dislocation
density tensor utilizing the following relation [11]:

(3.40) o™= — g,
where & is the permutation tensor defined as
(3.41) et =) g

and where " is the permutation symbol, while g is the determinant of the metric tensor.
The index » refers to the normal to the 1-2 plane, while » corresponds to the Burgers
vector component. Thus, for the (x) state Eq. (3.40) gives

(3.42), o’ = —2§;;!

K1
which, in view of Eq. (3.29), gives, after integrating as per Eq. (3.25)

(3.42), a® = {tan6/2}, +{tan6/2},
4

which, in terms of Fig. Ic is simply

(3.42); ‘ sz’ I szi
1-4 2

In the case of the (x') state.

(3.43), a*? = 28321V g
»

or in view of Eq. (3.42),

1 V-1
32 _. g A S L g
(3.43), @ = 1 }1+{ V}, =3
In terms of Fig. 2¢
(3.43), 022 = —1/4
xl

which simply represents the number of extra half planes for every four planes of the
deformed crystal. Finally, for the (x2) state we can use Egs. (3.33) to obtain

(3.44), @ = {tan6/2}; + {l tanﬂ;‘Z}
while
(3.44), 032 = {l};+{l }

%2 V).
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The numerical value of the second term in Eq. (3.44), is 2.5/4 which designates the number
of extra half planes in grain #2 along the x' direction divided by the number of planes
in the original reference crystal along the x? direction.

A density can also be associated with the newly created surfaces formed by the tearing
process. Similar to Eq. (3.40), we can write [10]

(3.45) ok = gk

Utilizing Eq. (3.38), the above becomes

(3.46), ;az = {-1h+{1}..

In terms of Fig. 1b, the above equation is simply
Ax? Ax?
4 —1 1-4

33
(3.46), z S + Ax2

1—-4 I 1—-4)2
In a similar manner we can write for the (»') state, using Eq. (3.39),
(3.47) «®? = {1} + {V[V}a.
ki

Thus we have the interesting result that in a torn crystal which contains no dislocations,
o™ is always unity and is a simple consequence of the fact that no extra half planes are
involved in such torn states. Such however, is not the case for the (»7) state shown in Fig,
1d. Here we can write

(3.48) BT = — [ [Sird — Qe 1dFTT
where
(3.49) Sird” = Q.

This means that the closure failure due to the creation of free surfaces just balances those
due to dislocations. This applies only to the components S;;! and Qij ;! as is obvious from

»xT %
inspection of Fig. 1d. It also follows from Egs. (3.40) and (3.45) that
(3.50) o™ = — T,

R 2

Thus we see that under certain conditions we are able to use the anholonomic object
in place of the torsion. This is the basis upon which Z6rRawski [10] is able to develop
a theory of defects which depends exclusively on the quantity £2;;* rather than Sj*. In
general, however, it must be remembered that they are fundamentally different quantities

4. Lattice connection and curvature associated with internal surfaces

It is of interest now to look into some further aspects of the tensor quantities treated
in the previous section. In particular, when a vector ¢* is displaced parallel to a distance
dx*, it undergoes a change dc* given by [5]

(4.1) det = —I'dx¥,

2 Arch. Mech. Stos. or 6/7%9
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where I';; is termed the lattice connection. In general, I7; can be written as
42) I = {:1}+(S,:a"-!2;;)—(8;’.‘;.--05’.‘,.)+(S':,a ~ 250,

where {x} are Christoffel symbols of the second kind given by

3 () = 5 8" Cusi+ D8 —208).
A

Now g,; can, at the most, be only a function of x! so that only terms of the type g%¢,8.

need be considered in Eq. (4.3), The non-vanishing components of { } thus become {1 }
11

and {2}. In the latter case we may write
12

4.4) {2} = {-80CH}h+ {+6(x")}, =0.
12 % *

Thus the above component vanishes both within the grains as well as in the grain boundary
itself. The component {1}, however, need not vanish within the grains because of the
11

elastic distortion near the grain boundary as discussed previously. In any event the quantity
{%} is symmetric with respect to the two lower indices as is apparent from Eq. (4.3).

Also, since the torsion tensor is antisymmetric with respect to the lower indices [5], it fol-
lows that

(4.5) p Ludy = S;‘ix.
This can easily be proved by utilizing the relations
(4.6), Site = 8ue8Sip’
and

(4.6), i = 8185,

in Eq. (4.2), and taking £2,;* = 0, which is certainly the case for the (x) state of Fig. Ic.
Now, along certain regions near the grain boundary, in particular along the Burgers
circuit of Fig. 1c, Eq. (4.3) holds since {%} = 0. We can therefore write Eq. (4.1) as

pa

@7 de* = —Spchdx*.
The above equation has a simple physical meaning in terms of Fig. 1c. Specifically, we may
rewrite it as

@.8) det = —S;3tcddxt.
4 .4

Thus, utilizing Eq. (3.29),, when a test vector ¢ of magnitude 4x? is moved along x'
1-4'

and encounters the grain boundary, it changes by 4Ax! in grain #1 and 4x* in grain #2,
4-17 7-4

i.e. by just the closure failure associated with the dislocations. We thus have yet another
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and still more fundamental means of interpreting the torsion tensor. In the case of the
(x') state, Eq. (4.7) gives

4.9) dc® = —S;i32c%dxt.
»! #!

Physically this means that if a vector ¢ = Ax? is transported along x* from grain 41
6-—5
to grain #2, it undergoes a change

(410) dc? - {4};_"’ {—5}3 = —'1,
3"'

where Eq. (3.31), has been utilized. Thus dc? is just the closure failure 4x* in Fig. 2c.
x' 3-3
An expression similar to Eq. (4.7) can also be written for dc** and the results are straight-
forward.
If now the space under consideration contains only £, then Egs. (4.1) and (4.2)
give

“.11) dc* = Quikddx™.
In terms of the torn state of Fig. 1b the above equation together with Eq. (3.38) 60 yields
4.12), dc? = Q;;%c*dx*

k &k

so that if we take ¢? = Ax? in Fig. 1b, Eq. (4.12), gives

(4.12), df = {—4},+ {+4},,

which means that this test vector is reduced from 4 to 0 in grain #1 and then increased
. from O to 4 in grain #2. In the case of the (k') state we have

(4.13), dc? = Q;;*ctdx’
o
which, with the help of Eq. (3.39) yields
(4.13), ¢;':f = {4} + {V4}, = {-4/5}.

This is the same result given by Eq. (3.16) and simply represents the change in length
of the test vector ¢2 = 4 as it moves across the grain boundary along x*.
Finally, we have for the (x") state of Fig. 1d, from Egs. (4.1) and (4.2)

(4.14) do™ = (8,33~ Qi) e,

Since the component (Sj;'—2;3') = 0, a test vector ¢? = Ax? in Fig. 1d will remain
55
unchanged, i.e. ¢ = Ax?, right up to the surface of the crystal. It will then shrink to zero

upon further transport along x' due to the presence of ;3%

2=
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In concluding this section it is important to note that Eq. (3.27), for the closure failure
associated with a given Burgers circuit is not the most general expression. In particular,
we may write [5,7,9, 11]

@.15) b= - f ls;;:+ 5 R;;;{‘d] dF,

where R;;;* is the Riemann-Christoffel curvature tensor given by [5]
4.16) Ry =0, -0, + I, I'0, I, T,

It has already been shown that this tensor vanishes for the grain boundaries [2] and two-
phase interfaces [12], so the earlier expression for the closure failure given by Eq. (3.27),,
is sufficient. This is also in agreement with the constructions in Fig. 1, 2 and 3.

5. Summary and conclusions

A differential geometric formulation has been carried out with respect to generalized
two-phase interfaces. In particular, such characteristic tensor quantities as distortion,
torsion, anholonomic object, lattice connection, curvature, Burgers vector, dislocation
density and Burgers circuit have all been defined with respect to such internal surfaces.
It is shown that such procedures give a concise and complete description of any type of
internal boundary.
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