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A note on some dynamic crack problems in linear viscoelasticity
C. ATKINSON (LONDON)

THe PROBLEM of a semi-infinite crack propagating at constant speed in a linear viscoelastic
medium under plane-strain conditions and with particular time-dependent loadings in consider-
ed. Explicit results for crack tip stresses and displacements are given for short and long
times. The analysis is to some extent heuristic, but is supported by an exact analysis of the
corresponding mode 3 problems (Appendix 1) and a formal factorisation (Appendix 2). Also
considered is the situation of a crack propagating steadily in a viscoelastic strip. Singular pertur-
bation methods are used in the limit when a dimensionless parameter &; = vt/L <€ 1. v is the
crack speed, Ta representative relaxation time of the medium and L a length associated with
‘the problem (half strip width).

Rozpatruje si¢ problem poinieskonczonego peknigecia rozchodzacego sie ze stala predkoédcia
w liniowym o$rodku lepkosprezystym w warunkach plaskich napreze i przy szczegblnego typu
zaleinych od czasu obcigzeniach. Podaje si¢ wyrazenia jawne na naprezenia i przesuniceia dla
korficowki pekniecia, dla czasdéw krétkich i diugich. Analiza jest do pewnego stopnia heurystyczna
lecz jest wspomagana przez Scisly analiz¢ odpowiednich probleméw typu 3 (Uzupetnienie 1)
oraz formalng faktoryzacj¢ (Uzupetnienie 2). Rozpatrzono tez przypadek jednostajnej propagacji
pekniecia w lepkosprezystym pasku. Wykorzystano metody rozwinie¢ osobliwych w granicy,
gdy parametr bezwymiarowy &, = v7/L < 1; v jest predkodcia pekchla T — reprezentatyw-
nym czasem relaksacji o$rodka a L jest dhlsoécm charakterystyczng zwiazana z problemem
(polowa szerokofci paska).

PaccmarpuBaerca npobiema mosryGecKOHeUHON TPellMHbI PACIPOCTPAHAIeHcA B JIAHEHEOM
BASKO-YIPYIOii cpefie B YCIOBHAX TUIOCKMX BANP/KEHWH ¥ NPH YACTHOIO THIA, 3aBHCAIIAX
OT BpeMeHH, Harpysxax. [IpuBe/ieHE] ABHLIC BRIPDKCHHA UIA HANPSDKEHUA H IMepeMelleHds
HA KOHIAX TPellMHBI, MUIA KOPOTKHX H JUIMHHBIX OTPE3KOB BPEMEHH. AHATH3 B HEKOTOPOH

Mepe EBPHCTHYECKHH, HO BCIIOMATAETCA TOYHBLIM AHA/IH3OM COOTBETCTBYIOUIHX mpobieMm THIA 3
(Homommenne 1) M dopmansmoil daxropusauueii (Momomenue 2). Paccmorper Toxe cirydwaii
OJTHOMEPHOTO PACTIPOCTPAHEHMA TPEUIMHLI B BASKO-YNpyroit nonoce. Mcnons3oBansl MeTomml
0000bIX pasnoenuit B npeaene, Korga GespasmMepHsni napamerp 8, = vt/L < 1;v aBnserca
CKOPOCTBIO TPELMHBI, T — XAPaKTEPHCTHYECKHM BPEMEHEM DeaKCalHn CPensl, a L aBnserca
XapaKTepACTHYECKOH UIHHOMN, cBAsammoll ¢ nmpobGnemoii (MOJIOBHHA LIMPHHB! MOJIOCHL).

Introduction

AS FAR as the stress analysis of moving crack problems in viscoelastic media is concerned
there has been to our knowledge only one attempt [1] which considered transient motion
and included the inertia terms in the analysis. The problem considered in {1] was that
of a semi-infinite crack which suddenly appeared and propagated rectilinearly with uniform
velocity under mode 3 conditions. The mode 3 [anti-plane or longitudinal shear] assumption
has been criticised by KNAUSS [2] on the grounds that a crack doesn’t grow rectilinearly
in a viscoelastic solid under the experimental conditions of longitudinal shear. Never-
theless, we expect the main features of the results of [1] to be indicative of what would
happen in the much more complicated plane-strain situation. In this note we give an approx-
imate solution of some mode 1 (plane-strain) problems, the solutions assumed valid
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for small and large times, and compare these solutions with exact solutions given in Ap-
pendix 1 for the mode 3 situation. Also, as a means of comparison we reconsider and
slightly generalise the steady-state problem of a crack growing in a viscoelastic strip [3].

1. Analysis

Before considering the dynamic crack problem we state briefly some well-known
results of the linear theory of viscoelasticity (see for example CHRISTENSEN [4]). The stress-
strain relations for isotropic viscoelasticity can be written

[}
(L) su=[ G- LD g
A dr
and
l’ (
_ - de(7)
(1.2) Oy = _£ Gz(! 'r)—'dr—* d'f,
where
1
(1.3) Sy =0y—— 0o, Su=0,
;
(1.4) €y = gu—‘T 81 18kks en=0.

The usual summation convention is employed above and the infinitesimal strain &; is
defined by

1
(15) &y =T(u..,+u1.1).
An alternative form to Eqs. (1.1) and (1.2) using differential operators would be
d d
(1.6) H, (E) sy =Py (‘g{) €y,
d d
1.7 H, (E)O'u =P, (E) €k
where H,, H,, P, and P, are functions of the operator%.
To the above constitutive equations must be added the equation of motion
30‘; s 33&
(1.8) B_xj =0 2

where g is the density and the x; are stationary Cartesian coordinates.
Problems in which the boundary (i.e. a semi-infinite crack) moves with velocity v
are to be considered, so put

(1.9 X, =x1—0l, X;=2Xx3, X3=2X3.
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We now apply the Laplace transform over time and the Fourier transform over x,
defined by

fixe,p) = [ e flxy, vyt
(1.10) e
fis.p) = [ &1fixy, prax,.

Then Eq. (1.8) becomes

(1.11)

while Egs. (1.6) and (1.7) become

(1.12) H,(p+ivs)5,; = Pi(p+ivs)e,, H(p+ivs)oy = Py(p+ivs)ey

and comparison with Egs. (1.1) and (1.2) gives

(1.13) PG,(P) = Pi(p)|H,(p); pG:(P) = P:(p)[H(p).

Equations (1.11) and (1.12) are identical with the transformed elastic equations so the

formulation of the elastic problem of BAKER [5], for example, can be used here with the
replacements

do .= i g .
dx: —isayy = o(p+ivs)uy, *i=1,2,3,

34+2u = (p+ivs) G, (p+ivs),

2u = (p+ivs) Gy (p+ivs),
where A and u are the Lamé constants. Also the elastic wave speeds ¢} = (A+2u)/¢ and
¢ = u/p are replaced by the corresponding functions of the transformed variables from
Egs. (1.14).
We consider situations where a semi-infinite crack propagates in an infinite viscoelastic
medium under mode 1 conditions (in Appendix 1 exact solutions to some mode 3 situa-
tions are given). Typical boundary conditions in the moving coordinate system are:

(1.14)

012=0s - < Xx; <00, x2=0! I}Or
(1.15) 02 = —a(xy, 1) x, <0, x,=0, t>0,
ﬂ2=0, Xy }0, x3=0, t>0.

The stress o(x,, t) on the crack faces is assumed to be known. Taking the Fourier and
Laplace transforms of these boundary conditions gives

(1.16) Ty = —g(s, p)+H . (s),
where

o0

Ho () = [ e™h(x,,p)dx,

0
and A(x,,p) = f e " h(xy, t)dt with h(x,, t) the unknown o,, stress ahead of the crack
o

tip. Also

o0

0
gls,p) = f &% idx, f a(xy, e Pdr.

Zewo 0
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If we define
u,=0, x;>0, on x,=0,
(1.17) .
=J(x1): X < 0: on X = 0’
then
0
(1.18) H=J_(5)= [e™j(x)dx, on x;=0.

We assume that the behaviour of the stresses and displacements as x; — + oo are such
that H,(s) and J_(s) are functions' regular in overlapping half-planes of the complex s
plane. Then, solving the equations of motion (1.11) in terms of potentials and following
the algebra of 5] leads to the Wiener-Hopf equation

(1.19) —g(s,p)+ H,(s) = K(s, p)J_(s),
where
(Cire) I Bz 1072710)

1.20 K(s,p) ={ L TV _ 2 :
( ) (s P) { 4}'1 2 5! ﬂz(s_i)z
with

v} = s+ (p+ivs)fc}, j=1,2,
and

3oct = (p+s)[Ga(p+ivs)+2G, (p+ivs)],

202 = (p+ivs)G,(p+ivs), 2u = (p+ivs) G, (p+ivs).
The fact that ¢} and ¢} are now complicated functions of s makes the factorisation, K =
= K, K_, of K into the product of functions regular and non-zero in respective half-

planes difficult in general. Nevertheless, if we assume that this essential step in the solution
of the functional equation (1.19) has been made, then Eq. (1.19) can be rearranged as

—y e H,(s) _
(.21) L) = K-(5, - +C-() = 55— C+ ),
where
g(s,p) _
(1 22) m = C+ (S)"]‘ C. (S).

In each of the above expressions the plus subscript denotes regularity in some upper region
of the complex s plane and the minus subscript regularity in some lower region. The two
regions are assumed to have a common strip of regularity. The sum split (1.22) can be
effected by Cauchy’s theorem when g/K, is regular in some strip of the complex s plane
(see e.g. NoBLE [6] for more details).

Our intention here is to give an approximate solution of the dynamic crack problem
in a viscoelastic medium (i.e. an approximate solution of Eq. (1.19)) for mode 1 condi-
tions and guide the solution by comparison with the exact mode 3 solution given in Appen-
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dix 1. To do this we note that BAKER [5] has given the factorisation K = K, K_ in the
elastic case, we amend this a little and write it as

K. (s,p) = [(1—v[c2)s+ip[c,]'2F . (s) (1 —v[c;) "2,

(1.23) Y
_ 4 RTUE) = \1/2
K5, ) = 2t [(1+0/6;)s—p[E] F_(5) (1 ~o[c)
1
with
(1.24)
ip e (1 +ow)? P
s+ —=- (e2Fv) [wl_ -
CrFV 1 2¢c2 dw
Fi) = Rf Pl= tan” (l+ﬂw):.”2 z(1+t.rw}2 A is
s+ i (€1 Fv)! w? [wz— — J — -w’] wF—
Ca+¥ €3 3 p
and
PO B 11 o

(-2l (10 [c)) P - (1 -v?[2c3)?
where in Eqgs. (1.23) and (1.24) ¢,, ¢, and u are elastic constants and so independent
of 5 or p. Our expression (1.23) has the same properties as the factorisation of Baker
who considered the elastic case, we have merely multiplied by the factor (1—v/¢,;)~!/?
for K, (s) and divided by it for K_(s).

In our subsequent analysis of the viscoelastic problem we will need the lim |s| - oo
of K, (s, p) and K_(s, p) in their respective half planes of regularity. We note that if the
material behaves like a solid for short times, then ¢2, ¢2 and u defined in Eq. (1.20) each
tend to constants as |s| = co (to see this use the definitions (2.12), (2.13)) and we denote
these constants by ¢7,, c3, and po. They are those wave speeds and moduli associated with
the small time elastic moduli of the body. From Egs. (1.23) and (1.24) with v > 0 we
deduce the result

lim K, (s, p) = s3/2,

|8]~+00

(1-25) “40%0,“0(1 _vz"!c%o)l,'zslﬁ
lim K_(s,p) > —,
i:[l-om (s P) ﬂleo

where R,, is the expression R, with ¢; and ¢, replaced by ¢,, and ¢,, and

30c3, = im[¢G,(2)+2¢G, (D),
(1.26) s -
20c30 = limlG, (@), 2po = :imCQJ ©.

The behaviour (1.25) can be compared with the results (A.5) (Appendix 1) of the cor-
responding mode 3 problem which has the factor (1—2?/c?)"/? [c being the short time shear
wave speed c¢,,] in place of the velocity factors above which include the Rayleigh factor
in the denominator of R,,. To proceed further with the analysis we consider particular
loadings chosen so that the sum-split (1.22) is easily made. It is expected that these loadings
will illustrate the influence of the viscoelastic properties of the body on the propagating
crack. o
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1.1.

(.27 (i Wi 5= for £30 oihat ol e B‘%

The pole at s = 0 lies in the plus region since we need Ims < 0 for the half transform

g(s, p) to exist.
The factorisation (1.22) can now be made by inspection giving

T 1 1
Ci(9) = —[ - ]’
(1.28) &P :+(s.p) K,(0,p)
0= Hron

To complete the solution of Eq. (1.21) a generalised form of Liouville’s theorem is applied
to that equation so as to show that L = 0 with the results

(1.29) L0 = g He) = CLOKL P
see [7] for a brief account of how the argument goes for crack problems and [6] for the
method in general.

Our main interest is the behaviour of stress and displacement at the crack tip and this
can be obtained via Tauberian theorems by taking the limit as |s| = co in the respective
half-planes of regularity of the expressions in Eq. (1.29). The results are

(1.30) e O i
» m 5=
|8} -0 ¥ ‘PK+(0’p)

and

. T(1 —v2/c3)~ 202 R o532
!‘III?MJ_(S) ” 4uoc30ipK, (0, p)
From the expressions (1.30) and appropriate Tauberian theorems (cf. [7] Egs. (4.10)
and (4.11)) the time transforms of the stress and displacement at the crack tip can be
found as
T ginléx=1/2
PK.(0,p) Al

(1.31) h(xy,p) =

and

_ T(1 —v?/c30)~'*0*Ryo( —X,)"/2e™/*
1.32 U\Xy,pP) =
(1.32) 2(x1,P) 2 2e2o popK (0, p)

To proceed further with the solution, the full factorisation of K(s,p) (defined in Egs.
(1.20)) is needed since in order to invert the transforms (1.31) and (1.32), we require
K. (0, p) for all p. To do this for all p would be, we think, a complicated task. However,
by analogy with the results in Appendix 1, we assert that when the long and short time
behaviour of the medium is such that the moduli and wave speeds are finite and non-zero

(instantaneous and long-time elastic behaviour), then the factorisations lim K (s, p)
p—=0
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and lim K, (s, p) follow from the factorisation (1.23), (1.24) with ¢,, ¢, and u replaced

P
by the corresponding long time values when p — 0 and short time values when p — .
A formal justification of this result is outlined in Appendix 2. It then follows that

limK, 0,7) > D™ Fou ) (1=vjes) ™,
(1.33) = o
limK, (0,) z 7 Fie O (L=v/e2)™2,
p—.
where
2
- (c2—v)"1 [w’ (l-;vw)’l dw
R A -1)_ St
=gy | W A+ow? [ [(+om? 12| w |’
(c-v)-t w? w2 — = = —w?
1 2

cp is the Rayleigh velocity associated with the zero of the denominator of R; (defined
in Eq. (1.24)). In Eq. (1.33) the subscripts zero and one on F, and on ¢, mean that the
expressions C,, ¢, and cr should be replaced by c,0, €10, Cro; €215 €115 Cry €tC. Where
subscript zero denotes short-time wave-speeds (i.e. p = o0), (see the definition (1.26))
and subscript one denotes long-time wavespeeds (p = 0), i.e.
3gct; = lim[{G,(0)+20G, (D),
(1.34) s B

20c3, = lci_lf;CGl(C}; 2u, = lcif:]CGL(C)'

Using the relations (1.33) in Eqgs. (1.31) and (1.32) and inverting gives on x, = 0
25’:0 (l —v/cz0)'/?
'-"‘Fo+ (0) ’
T(=x)?v?R,, 12
ot
uz(.n ) 312F0F0+(0)

035 ~ Tx; sz]"rz
(1.35)
(l +v/ez0) 2

for small ¢, and

2T x7M212el2(1 —vfe,y )Y ?
(_fzz Y S

(1.36) i Fi4(0) ’
| oy, ) ~e TR PO EAR( ~0/c3) 2Rso
R 730 po(1 —02[c36) /2 F 1 (0)

for large 1. It is of interest to evaluate the flow of energy into the crack tip, this we do by
calculating the work done at the crack tip from the above limiting stress and displacement
distributions. The results are:

for small time
tT? le“) (l —TJICzu)”z .

(1.37) = Apo [Fos(OFPczo (140/c20) 2’

for large time
_tT? ¢;; v?R,, (1 —0[cyy)"?

1.38 _ T cu .
) e o TFrsOF (1=02/c3o)"
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Both these expressions are linear in ¢ as we might expect, Eq. (1.37) simply being the elastic
solution for all time with the short time elastic constants. The presence of [Fy, (0)]? in the
denominator gives rise to the Rayleigh factor v—cgo in the numerator so that G — 0 as
© = cgo- In Eq. (1.38) on the other hand we find that G has a velocity factor involving
(v—cgy)?
(2 —¢cro)
by virtue of the fact that the long time moduli are less than the short time ones, G in
Eq. (1.38) will tend to zero as v — cg, . For intermediate times we have a transition between
these two extreme behaviours. To get an approximate curve for the stress intensity factor
versus time for all time, it might be possible to replace ¢ in the long time result by (£+7,)
where ¢, is some threshold time estimated from the exact mode 3 results given in Appendix

1 (cf. [1]).

(the term (v— cgo) being a factor of the denominator of Ry0). Since cg; < cro

1.2

(i1) o(x,, 1) = 6(x,+vt)H(t) = 6(x,")H(t), where H is the Heaviside step function,
é the delta function. In this case g(s, p) = 1/(is+ P/v) for Ims < P/v.
The factorisation (1.22) gives

1 | 1 i,
C 5) = - _
+(5) (s+P) | K. G, p) ™
Ki\>p
1 § -
C_(s) = - o .
® (is+ Plv) i
K, =
The result (1.29) still holds and in place of Eq. (1.30) we have
g-12
lim H,(s) = Sl
|s]=o0 ) i
(2.5
;22 \—1)2.,,2 —32
lim J_(s) - 1=0/ch0) 0" Ryo57
|8]—rm

. d i]

4c3opoikK, (‘%, P)
As in Example 1 the time transform of the stress and displacement of the crack tip can be
determined and written
_ _ x5 1/241/2
"D = SR ol ) -
and
(1-2?/c3o)/?v?Ry i3 (—x,)'/?

7?2¢3 010 K4 (ipfv, p)
For the solution for all time we again need the full factorisation of X(s, p). To determine
the solution for short and long times we calculate K, (ip/v, p) by analogy with the exact
solution of Appendix 1 by first evaluating K, (s, p) from the elastic factorisation (1.23)

ﬁz(xb P) =
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in the limits p — 0 and p — oo, then replacing s by ip/v and again taking the appropriate
limit.
This procedure or an application of the results of Appendix 2 gives

- 3 l“';
limK, (%! p) = L Go(l —v/ez0)~113,

e o2

and

. i (ip)? _
limK, (‘{" P) — “TEZ—;T Gy (1 =v[cz)~ 2

p—=0

The subscript zero refers to short times and subscript one to long times as described
following Eq. (1.33). Also

(cay—v)-*
; ip cry(c2;—9) 1 tan~*f(w)dw
1.39 G, = lim F, (——)=-—’————-—BX = e—————— | Iy
(1.39) L g T ¢25(Crs—v) Plz P (w+1/o)

where j takes the value 0 or 1 and
Lo (L+ow) 3
2c3,

PR YT 2 7
wz[wz_ (1+:ﬂ‘-') ] [(14:»*) _w,]
E 2j

clJ

(1.40) fw) =

Inverting the transforms one gets for the stress and displacement at the crack tip

1]

= 1/2

T3z ~ LS (x,)~V2pt/a-112 g_ﬂécz—“)
(1.41) e 0

©2R,o N e ST 12

Inpigle (1+9/c20)~ "2 —x)"?t o

on x, = 0 for a small time.
For large time one gets

Uy ~

1 1—v/cy,)?
(1.42) a2~ — (x,)~ 20N /2= 112 ( (!;1121)

and
- 1/2
- ﬂang (1 ff’zf-'v‘z;)':zz (—x,)M2=112 Y.
2mpoc3o (1—07/c30)" Gy
From these results one obtains the energy flow into the crack tip as
.~ 1 USRIQ f-l (l —-v,’cm)”z
"~ 4m pocie G§ (1+9/cyo)'?

Uy

(1.43)

for small ¢, and

1 ©°Ri t™' (1-9/cay)

(1.44) O = 2 toczy GI U —v%]c2)"

for t large.
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1.3.

(iii) a(xy, T) =(f‘:’ol) for t>0 then g(s,p)= "p_(i}T_-l»-f)"

where the pole at s = iA (4 > 0) lies in the plus region. The steps of the solution are almost
identical with those of examples (i) and (ii); merely replace pK, (0, p) in example (i) by
pK, (i%, p). Assuming as before that the factorisation for long and short times is essentially
the factorisation (1.23) with the wave speeds replaced by their corresponding long and
short time values, or alternatively using the results of Appendix 2, gives

. \1)2
lim K, (i4, p) - (—"’—) Fo, (0)(1=0/cy0) 112
p-+0 Czo
and

lim K, (iA, p) — [iA]"/2.

p—0
The short time behaviour is thus just like that of example (i) as we might expect. Of more
interest here is the long time behaviour which from Egs. (1.31) and (1.32) can be seen
to be

Txyliz

922 = Zgir

1.45
(1.45) T(1 02 [cdo) 20 Ry o~ x,)' 2

2 20127 2copo
at the crack tip on x, = 0. Further in this connection it is worth noting that the factor-
isation K(s,0) = K, (s, 0)K_(s,0) can be made directly from Eq. (1.20) with p = 0.
Writing

K, (s,0) = 5172,
—48ist (1 —v? )1
ﬂzﬁ 1
where R, is the same as R, of Eq. (1.24) with &,, ¢,,  replaced by &,, &, i and which
are the same as the wave speeds and moduli defined following Eq. (1.20) but with p replaced
by zero. In particular for use in the next section we remind the reader that

_ (1=0%ed)"2(1 —v*/ci)'?
N =07 G) (1 - v e} )P - (102 2c})*

where i = 0 or 1 and ¢,, yo etc. are the effective “short time” wave speeds and moduli
and ¢, y, etc. the “long time” wave speeds and moduli.

If we define cx to be that root of the denominator of R, which is least for all s (i.e.
the root when s = 0, if the long time elastic constants and wave speeds are least), then
for © < ¢z, K_(s, 0) will be analytic in Im s < 0; s2/* has a branch cut from i0 to ico
and s}/ a cut from —i0 to —ioo. A special case of the factorisation (1.46) has been used
in [3] where an asymptotic analysis of a variety of steady, state problems has been made.
A slight generalisation of one of these probiems is considered in the next section. Note

(1.46)

K_(s,0) =

(1.47) R
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(- -]
also that from the definition G(ivs) = [ e~ "*G(¢)dt, the transforms G(ivs) are analytic
0

functions in Ims < 0 and hence c}, ¢} etc. are from Eq. (1.20), so we don’t anticipate any
difficulty with the above argument provided v < cg and ¢y is in turn less than any of the
instantaneous wave speeds.

1.4. A crack propagating steadily in a viscoelastic strip

Here we consider the problem where fixed displacements are applied to the sides of
the strip x, = +1 and a crack propagates on the x; axis with uniform velocity v. As in the
previous examples we use coordinates moving with the crack tip and define x, = x;—vr.
On account of the steady-state assumption the stress and displacement field depend only
on x, and x,. The boundary conditions of the problem can thus be written as

on xp;=%1, wu;=tuy, u =0 foral x,
(148) on x,=0, a¢,,=0=a,, for x, <O (stress-free crack),
andon x,=0, w,=0 for x;>0 (from symmetry),

u,, is a constant and the viscoelastic properties of the medium depend on a small parameter
€ through the relaxation functions G, and G, of the form defined in Eq. (1.48) below.

In [3] an asymptotic method was outlined and applied to certain steady moving boundary
problems. Results were given explicitly for the standard linear solid. The key ingredient
in the analysis was a dimensionless parameter £; = vt/L (&; € 1) where v was the crack
speed, 7 the relaxation time of the medium and L a length associated with the problem
(half the strip width say). Here we will present the asymptotic method in a slightly differ-
ent way and apply it to media where the moduli have small relaxation times. Thus a typical
relaxation function G(z) might be written as

N
(1.49) G(t) = Go+ Z Gexp(—t/ety),
J=3

where G;and ¢; are constants and £ asmall parameter. Note that the sum j =3 to N (N > 3)
is chosen so as not to clash with the previous use of the relaxation functions G, and G,.
In [3] an argument was given suggesting that for steady state situations (such as that of

é//////////////////////
//////[V///////////////

CLAMPED BOUNDARIES
Fia. 1.
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a crack propagating steadily in a displacement loaded strip, Fig. 1) the stress analysis
problem can be viewed as a singular perturbation problem.

If we put £ = 0 in the viscoelastic relaxation functions as a first approximation to the
problem, G(1) = G,, we get an elastic strip problem whose solution is well known. How-
ever, if a formal perturbation expansion is attempted it is soon seen that the expansion
is a singular one. This suggests that the elastic solution formed by putting ¢ = 0 is valid at
distances 4 > ¢ from the crack tip. The influence of this “outer” solution is transmitted
to the “inner” solution through matching conditions near the crack tip where ¢ € 6 < 1,
and since both inner and outer approximations are valid in these regions they must be
asymptotically equivalent there. Thus the inner limit of the “outer solution” must match
with the outer limit of the “inner” solution. (cf. VAN DYKE [8] for details of the method
of matched asymptotic expansions). One key feature of the present problem is that the zero-
order outer solution is just the solution for the elastic strip and the inner limit of this solu-
tion (i.e. the solution near the crack tip) has the form

P~ Alx_l." §
Uy ~ Ay(—x;)!02,

The constants 4; and A, are known from the solutions [9, 7). We give here the slightly
more general result for a strip which has elastic moduli varying in the direction perpendic-
ular to the crack direction; we quote from [7] correcting an obvious misprint there.

(1.50)

| —p? ia ~1/2
(15D Ay = @u) U 2 v{;;> U (z+zm,}

and
Al. ‘Rl 1 ©?
A=t M .
2 (1-9%[c3)'? iy
Notethat the subscripts one on the c,, 4 etc. refer to the “long” time wave speeds and moduli
defined in Eq. (1.34). R,, is the corresponding value of R,, Eq. (1.24).
To obtain the zero-order inner solution, we define the inner coordinates (X, X,) by

(1.52) x, =¢&X;, x;=¢.X;
and write _
(1.53) 033 = g1z Tzz, u, = s‘izUz.

Recall that if the crack is stress free, then applying a Fourier transform over x, as in Eq.
(1.19) leads to the functional equation

(1.54) H,(s) = K(s, 0)J_(s),
where H, and J_ are defined in Eqs. (1.16) and (1.18). If in these expressions we refer
to the inner coordinate X; and replace s by s,/e, we set

-+
(1.55) _ Ho(9) = &2 [ donT,y(X,, 0)dX, = 2T (s,)
0
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similarly

J_(s)= s""’f XU (X, 0)dX, = 2U_.
0
Also for the relaxation functions we get
(1.56) Givs) = Glivs,[¢) = & [ e~'**"1G(et))dt,
0

and from the definition (1.49), G(et,) is independent of & so ivs G(ivs) is a function only
of 5, when written in terms of 5, and does not depend on . Hence the moduli and wave
speeds defined from Eq. (1.14) depend only on s, for solids modelled by the definition
(1.49). Using these results in Eq. (1.54) gives the functional equation

(1.57) T, = K(s)U_,

where

K.(s) = w——K(S;‘Is) :

Now by analogy with the factorisation (1.46) we can deduce tha
Ki(s1) = K4 (51) K (1),
with

Ky, (sy) = si,

12
4 PR 51108 ()
Uz-ﬁl(sx [€)

We repeat that there is no explicit dependence on ¢ in the expressions R, (s,/e), &(s./€)
etc. because of the form of the relaxation functions G(¢), Eq. (1.49) and the argument
following Eq. (1.56).

It remains now to solve the functional equation (1.57) subject to the matching require-
ments that the far field should match with Eq. (1.50) written in inner coordinates. This
leads to the requirement that

(1.59) Ug . Az(_X)"z as X- --'a.'),
and

(1.58)

K, _(s,) =

T22~A1X—l;’2 as X = 400.
These matching conditions will be satisfied if the transforms have the behaviour

2
U_ ~ 57224, em*
(1.60) ass; — 0.
f; ~A,_u”ze"”"si‘ﬂz

Using Eq. (1.58) in Eq. (1.57) gives
T,

(1.61) Nis) = %

+

=K.U..

6 Arch. Mech. Stos. nr 6/79
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The function N(s,) defined by both sides of Eq. (1.61) is analytic in the whole s, plane
except possibly at s; = 0, and for large s, each side of Eq. (1.61) is bounded on account
of the usual condition that the stress should be no more singular than r~1/2 at the crack
tip. Matching the stress boundary condition on T, from Eq. (1.60) and using Liouville’s
theorem specifies N(s;) as
1/2 ,x1/4
(1.62) NGs) = A—"‘—;ﬁi_.
Then, from Eq. (1.61) the transforms T, and U_ are determined, and using Tauberian
theorems the stress and displacement at the crack tip can be determined. The resulting
expressions are on X, =0, |x;| €1
Ty ~ A, X712
(1.63) and
A4;(=X1)"*0*R,0
2c30po(1 —v2c30)' /2"
Referring these expressions to the (x,, x,) coordinate system and evaluating the energy
flow to the crack tip via a local work argument at the crack tip gives the result
_ nA2v?R,
T Auocho(1—v2cho)' 2 °
If we now substitute in for 4; given from Eq. (1.51) and simplify, we get the result

| L G1 Rio (1-0%/c3))'2 { f }
(1.65) G 2U20 ‘UO Czo ‘Rll (l —7)2]‘:20)”2 (‘Z+2F’)l

Uz""’

(1.64)

This expression can be simplified a little particularly if we write
2U3,

= --—i-—-———-
dx;
"; (A+2p),

for the elastic strip; then the expression (1.65) becomes

(166 o B S (=0l | {(1—v2/ch)I(1 —v¥/ch )~ (1 —0?/2ck,)?)
P e T e Ge A ANT  {(T—07 (o) (1 =02 [cR) P —(1—v? 230}

Again we remind the reader that the subscript zero refers to short times (see Eq. (1.26))
and the subscript one to long times (see Eq. (1.34)). This result should be the same apart
. from some misprints with the result derived in [3] for the standard linear solid. Note the
presence of the Rayleigh factor top and bottom of the expression (1.66), hence G tends
to zero as © tends to the long time Rayleigh velocity. Note further that Eq. (1.66) arises
from only the first terms in the asymptotic expansions; we expect, however, that the Ray-
leigh factors will be present in higher order terms also. We have derived the result (1.66)
using Eq. (1.51) as if in the long time limit the material were elastically inhomogeneous.
The argument should still work for this case provided the crack propagated in a homo-
geneous viscoelastic layer (thickness |x,| < & < 1) such that the limit //e — o, for the

-0

G

inner coordinates (X, X,) so the inner problem would still be as described above.
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2. Concluding remarks

The main results of this paper relate to the short and long time behaviour of constant
velocity dynamic crack propagation in a linear viscoelastic solid. For the short time behav-
iour the results of Egs. (1.35) and (1.41) for the various loadings are intuitively clear.
For early enough times we expect the material to behave like an elastic solid with the cor-
responding “short time” moduli. The limit (1.25) eventually leads to the result that the
crack tip field will always possess a velocity factor which is like the usual Rayleigh factor
encountered in the elastic problem but involving the “short time” moduli and wave speeds.
A, result of this kind should also apply to the case of non-uniformly moving cracks. To see
this use the differential operator form of the constitutive equations (1.6) and (1.7), and
substitute into Eq. (1.8). An eigenfunction expansion in coordinates based at the moving
crack tip will then result in equations governing the coefficient of the r* (leading term)
in the crack tip displacement which depend on the highest derivatives in the differential
equation. The highest derivative terms in Eqgs. (1.6) and (1.7) involve the “short time”
moduli and the resulting equations are then just as in the elastic situation.

More intriguing are the results (1.36) and (1.42), for the long time behaviour, which
show the presence of a factor (Cg;—v) in the numerator of both stress and displacement
at the crack tip in addition to the presence of the factor R,, (discussed above). We re-
mind the reader that Cg, denotes the Rayleigh velocity calculated from the “long time”
wave speeds and Ry, is in terms of the “short time” wave speeds. (The denominator
of R, has a zero at Cgo, the “short time” Rayleigh velocity).

We stress that these results, although they involve fairly general viscoelastic moduli,
have been derived in a heuristic way and moreover only at short and long times. A complete
analysis based on equations (B.3) of Appendix 2 would be desirable although it would
then probably only be possible to treat particular constitutive equations. We hope to do
this in the future. In support of the above mentioned results, however, are the exact results
of Appendix 1 which are valid for all time.

The results in Sect. (1.4) generalise and correct some misprints in [2]. As a final remark
note that the energy release rates calculated in the paper have been based on local work
calculations at the crack tip; the effect of the medium has been involved only in determin-
ing what these crack tip fields will be.

Appendix 1

We consider here mode 3 (longitudinal shear) analogues of the mode 1 situations
of the main text to guide the approximations used there. The mode 3 situation was first
considered in [1] where an exact analysis was given for certain model viscoelastic solids.
We expect properties of the exact analysis given here to agree qualitatively with those
of the approximate method given in the text.

Because mode 3 conditions are assumed, we have in place of Eq. (1.15) the conditions

0y3 = —a(x,, 1) x, <0, x,=0, >0,

(A.1)
: uy =0, x,>0, t>0.

6*



844 C. ATKINSON

Following the procedure outlined in the main text leads to the functional equation
(A2) —2(s, p)+H. (s) = K(s, p)JI_(s),
where H, and J_ are now respectively the transforms of the unknown o,; stress ahead

of the crack and the unknown opening u; of the crack. Following [1] we consider the
constitutive model

d .\ d  \*
(A3) (-a,;-+ﬂ) Op3 = 244 (W'I'Gl) gs, Jj=1,2,

where x,, « and f are constants. This model was originally suggested by ACHENBACH
and CHAO [10] as an alternative to the standard linear solid; it is used here as it
simplifies the analysis a little.

For this solid K(s) can be factored as K = K, K_ where with gc? = y,,

Ko () = [s+iX, ]2

(A4) and
K.(s) = — 1 (1 =0 [c)'2[s —i(a+p) /0] [s —iXo)'1* [s —iX5) 1 [s —iXa]' /2
- [s—i(p+p) o) ’
where
l r , 4U 1/2
X; = 0 —v/0) {[(v:’c)(?-p+ﬂ)—(p+m)] "'".:_(l ~vIC)p(p+ﬁ)}

i{”(2p+ﬁ)ff-'-(P+a)}].

1
3 2u(1+9/o)

L{% (2p+ﬂ)+p+a}¢{[(v/c) @ +P)+ (p+a)]?

1/2
-2 (+olope+n)

Thus ReX; > 0, j=1,2,3,4 and the radicals in Eq. (A.4) have branch cuts from s
= —iX; to —ioo in the lower half plane and from iX;, iX; and iX, to +io in the upper
half plane. Further,

lim K, (s) - s}/?,

| 8] —+c0 -

lim K_(s) » —p (1 —v?/c?)1 2512,

|s]—+00

We now consider particular examples which correspond to the loadings treated in the main
text.

(A.5)

(A.6) ex(Da(x;, ) =T for t>0 so g(s,p)= %
Corresponding to Eq. (1.30) we now get
' . —Ts; 112
lim H,.(s5)— —'—L— 3
rvhell i & ()

A.
( 7) umJ_(s) . T(l -t;z,!c’)“”zs:m

lsl=+o0 ipK, (O)py
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with
K+(0) = [EXI]-II-Z'

From the exact factorisation above we have lim X, —» and
P (c—v)
limX, » —2 —  provided ©<ca/f, and we note that s, a?/p?
p-0 ca
— -0
(5
is the long time shear modulus of the model (A.3) and hence cx/g is the long-time wave-

speed.
Inverting Eq. (A.7) for the stress at the crack tip gives

T(aux,)~ "2 Tm e
= - dp

(A.8) T23

2ni e pXxlr
and for the displacement
—X, ki (1—22/c?)~2 1 e er’
(A.9) U = 2( = ) - 5t g:[,, PXI72 dp.

From the behaviour of X, as p tends to infinity or zero it is straightforward to deduce
from Egs. (A.8) and (A.9) that

a3 = % ()P (c—v)" 20112,

A,
10} 4T (=x)'? c

B T (c+v)'?

at the crack tip for small 7, and

12
023 = % (x,)~12 (% —ﬂ) e,

112

(A.11)

1/2

ca
AT (—xy \F "")
Ta T (=07
for large time. Results for intermediate times are tabulated in [1] giving the stress intensity
factor as a function of time.
From Eqs. (A.10) and (A.11) and a local work argument one gets for the energy release
rate

1
2‘“

_ 4 ., c (c-v)”
A.12) G= ;—T 5 e

for ¢ small, and

co 'v)t
_4AT? 1 B

(A.13) ~ i (oA
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for t large.

T
i(s—ipfo) "

For this problem following the steps outlined in the text one gets the results (A.7)
with pK, (0) replaced by K, (ip/v) and

ex(ii) a(xy, 1) = To(x,+ot)H(t) so g(s,p) =

(A.14) K, (ip/v) = [i(p/o+X,)]'2.
Furthermore using the expression for X; one can deduce that
pc
PIU+X 1 m as p— 0
and
_, _ pealp
v(ca/B—v) s p—0.

So in'place of Egs. (A.10) and (A.11) we now get

e o\12
Oa3 = = (x,)~112 (—E) (c—v)/2e- 12,

A.15
19 _r (=x)'?  (vo)'? -112

Uy =
? B (c+o)

at the crack tip for small ¢, and

G33 = £, (xy)~12 (L)m (ca/p—v)' 12112,
7 caff
s T2 (=x)'P ( v )l"'2 (cajf—v)'/? (-112
L calf | (1-0*[c?)'?
for large time. From Eqgs. (A.15) and (A.16) one gets for small time
_T?* 9 (c—-v)'2 _,

sl) O o

(A.16)

and for large time

3 _Ti ] (ca/f—v) _,
(A.18) O = e oty
CX(lll) o’(xl 5 f) = Te**: for > 0, $0 g(s’ P) - yp(TsTm'

The steps of the solution are the same as before; now in Eq. (A.7) we replace pK, (0)
by pK, (i%), hence in Eqs. (A.8) and (A.9) we have 4 +X, in place of X, . It is straighfor-
ward to deduce that

; P ; P

From these limits it is clear that the results (A.10) and (A.12) hold for short times. The
long time result follows from Eqs. (A.8) and (A.9) as
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023 = T(mxy)~'2A-12,

(A19) 12 21.2y-1/2
U3 = ZT( — ) S A1z
7‘ My
with
—p? 12
(A.20) ¢=r "f) A1,
1

We assume here as before that the crack is running at a speed less than the long-time
wave speed ca/f of the medium, i.e. © < ca/f. If instead we consider the situation when
[pB/c—a]

v 2 caff, then A in the above long time results is replaced by A+ -8

Appendix 2

In this appendix we give a formal derivation of the factorisation of the expression
K(s, p) and make some deductions about the behaviour at long and short times.
From Eq. (1.20) one gets

(B.1) lim K(s, p) = Is]{ —4cioto(1 —v?/c3o)" }
’JI-OGO . ﬂleo
So we define
—o?R,o K(s,p)
B.2 N(s, p) = Vo ;
52 .7) dcaopo Y20
with

q1/2

rzo=(1-v=fc§o)”‘[5‘ (UHZO)J [ m

; ip
and the square roots having cuts from s = ———
a g (c20+92).
respectively. (We remind the reader that the subscript zero refers to short time wave speeds,

i.e. p —» o0, see the definition (1.26)). From the above follows the result lim N(s, p) — 1

ls|=c0

to ico and s = —ip/(c0—7) to —ic0,

where the limit is taken in the strip of regularity of N(s, p). However, for all p we do not
know precisely what this strip of regularity is without closer investigation of the detailed
viscoelastic moduli so we denote this strip by —d, < Ims < d,, where —d, < 0 is above
all the singularities (including branch points) in the lower half s-plane. Similarly, 4, is
to be below all singularities in the upper half s plane. The factorisation of N into the pro-
duct of plus and minus functions thenefollows in a standard way as

0 = idy
N+(S,P)=exp{ f Mf&vﬂ}’
(B's) _w—!::‘d‘
N—(S.p)=exp{—- f h)g_.f\;(i_,;o)_dC}’
—o+idy

with —d;, < —d; <Ims <d < d,.
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Then
(B.4) K.(s,p) = [s+ (c—’!a] NoGs,p)
and

- ip v 2/.2 \1/2 4820#0

K_(s,p) = —[5—ml (1—-v?%/c30) JR1

Clearly these expressions are consistent with the limits given in Eq. (1.25). Although this
completes a formal factorisation any further analytical progress requires detailed knowl-
edge of the viscoelastic moduli. We restrict ourselves to the behaviour for long (p — 0)
and short times (p — o0). If in the relations (B.3) we make the substitution { = p{,,
then

w-.ida

log N(pcl,p) a, }

(B.5) N.(s,p) = exp{ “F i

—o-ldy,
We now consider the singularities of the function N(p{,, p). As p - 00 we expect that these
singularities coincide with the singularities obtained for an elastic solid with the “short
time” wave speed and moduli ¢%4, ¢3¢, po- This assumption leads to the result
(B.6) lim N, (s, p) = Fou (5),

p—0

where F, is defined in Eq. (1.24) and the subscript zero is used to denote that the velocities
€y, €3, Cg in Eq. (1.24) are to be replaced by ¢y0, €20, Cro-

On the other hand, as p — 0 (t = ) we expect that the singularities of K(p,, p)
will tend to those obtained for an elastic solid with the “long time” wave speeds and moduli
31, €31, py (cf. Eq. (1.34)).

With this assumption the following result is obtained from Egs. (B.5) and (B.2),

[ ]

(B'.’) IID;N+(S,p) “* 1/2 F1+(3)
[ (c20 -9)]

Note that F,, is defined as F,, except that the velocities are now ¢;, ¢;; and cg;. Also
the above expression is a function only of s/p and lim N, (s, p) — 1 is still retained.

|s|—=c0
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