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Response of constrained visco-elastic beams to random excitation

Notations

8*

O.N.KAUL (SRINAGAR), K.N. GUPTA and B.C. NAKRA (NEW DELHD)

THE PAPER deals with analytical formulations for flexural vibrations of simply supported three-
layer beams which have a constrained viscoelastic core and are subjected to random excitation
of white noise and turbulent boundary layer types, respectively. By applying the usual analytical
techniques of random vibration, the expressions for the mean square displacement response
of the beam are obtained in terms of its transfer function and the spectral density of the input
process. In the case of turbulent boundary layer excitation, Bull’s model is used for the spec-
tral density. The influence of some geometrical and physical parameters on the response has
been studied. The response of the sandwich beam has been compared with that of a reference
homogeneous beam so as to determlne conditions under which minimum response can be
obtained. Experiments have been conducted on a few samples of the sandwich beam for both
types of excitation and the test results are being compared with the corresponding theoretical
results. A reasonable agreement between these results has been observed.

Niniejsza praca dotyczy sformulowan analitycznych dla drgadi gigtnych swobodnie podpartych
trojwarstwowych belek, ktore maja zamocowany lepkosprezysty rdzen i poddane s stochastycz-
nemu pobudzaniu typu bialego szumu i turbulencyjnej warstwy brzegowej. Stosujac zwykte
techniki analityczne drgad stochastycznych otrzymano wyraZenia na éredni pierwiastek kwa-
dratowy przesunigcia — odpowiedZ belki, w funkcji przepustowosci i gestosci spektralnej
procesu wejsciowego. W przypadku wzbudzenia typu turbulencyjnej warstwy brzegowej
dla gestoéci spektralnej wykorzystano model Bulla. Zbadano wplyw niektérych parametrow
geometrycznych i fizycznych na reakcje. Reakcja warstwowej belki poréwnana zostala z re-
akcja wzorcowej jednorodnej belki dla okre§lenia warunkéw, przy ktérych otrzymuje sie
reakcj¢ minimalng. Przeprowadzono eksperymenty na kilku warstwowych belkach dla obu
typow wzbudzenia, a wyniki por6wnano z odpowiednimi wynikami teoretycznymi. Zaobserwo-
wano dobra zgodnoéé miedzy tymi wynikami.

Hacronilian paGora KacaeTcs aHAMATHIECKHX (hopMyHpPOBOK WA Koneba:ui Harnda cBo3 IO
IIOMIEPTHIX TPEXCIOMHLIX 610K, KOTOPHIE MMEIOT SAKPEIUICHHBIA BASKO-YNPYTHl CTEPKEHb
M MOJBEPTHYTHI ,CTOXACTAYECKOMY BO30Y)KAeHHI0 THma Gesoro LIymMa ¥ TYPOY/IeHTHOMY Mo~
TPAHHYHOMY CJIOK) COOTBETCTBeHHO. IIpumeHAs oOLIUHBIE AHANHTHYCCKHE TEXHHKH CTOXACTH-
YeCKHX KomeGaHuil, MoTyYeHbl BRIPRXKERUA A CPE/JHETO KBAJPATHOI'O KOPHA MepeMellleRus —
OTKIMK OanxH, B QYHKLUHH MPONYCKHON CIIOCOOHOCTH M CIIEKTPaIBHON IIIOTHOCTH BXOXHOTO
mpouecca. B ciryyae BosGyrxaeEus Tuma TYPOY/NIEHTHOrO MOTPAHHYHOIO COOA /A CHEKTPaTh-
HOM IIOTHOCTH HCTIONB30BaHA Mofens Byiuia. MccimenoBano BiauAHWE HEKOTOPHLIX TeOMETPH-
HecKHX H (PHINUeCKHX mapameTpoB Ha OTKIAK. OTKIMK CII0SBOMH 0aIKU CPaBHEH C OTH/IMKOM
ITANOHHOH OXHOPOMHON GayKH [UIA Ompede/icHUA YCIOBHH, HPH KOTOPAIX MOJIYIAETCH MUHH-
MATBHBIH OTKJMK. [IpOBeIeHBI 3KCIEPUMERTHI HA HECKOJILKAX CI0EBBIX Ga/IKax H pesyIsTaThl
CPaBHEHBI C COOTBETCTBYIOLIUMH TeOpeTHUCCKHMH pesynsraramu. Habmopgamock sHauuTens-
HOE COBHAJCHHE MEHUIY ITHMH pe3y/bTaTaMH.

area of cross section of i-th layer,
width of beam,

operator d/dt,

operator d/dx,

E, Young’s modulus of i-th layer,

Syges
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mathematical expectation of the random quantity inside the brackets,

external loading of distributed type,

shear modulus of 2nd layer,

impulse response function,

transfer function,

semi-thickness of i-th layer,

longitudinal stiffness of i-th layer (=Ea),
length of beam,

bending moment,

modal number,

auto-correlation of w and f,

correlation of f for turbulent boundary layer excitation,
spectral density of white-noise random excitation,
spectral density of f,

time variable,

convection velocity of air,

constants of the visco-elastic* model,

elements of the visco-elastic model,

o, mass density of i-th layer,
p# mass per unit length of beam,
¢ slope of beam,
o angular frequency,
T time delay,
T, HiH,,
A dash over a variable represents its derivation with respect to x.

1. Introduction

IN MosT of the modern machines the use of high speed and high power has given rise to
a severe vibration environment spread over a wide range of frequencies. This is further
augmented by the use of light weight structural members. Such severe vibrations, if not
suitably controlled, may result in fatigue failure and malfunctioning of the machine ele-
ments and cause noise radiation and discomfort.

Viscoelastic damping materials like long chain polymers, rubbers and plastics, which
possess high energy dissipation capacity, have been found most successful in the control
of vibrations [1). These materials are used in a composite construction with a structural
member for adding damping to the system either as an unconstrained arrangement or as
a constrained arrangement. In the unconstrained arrangement viscoelastic damping
layers are applied to the surfaces of the structural member, whereas in the constrained
arrangement the viscoelastic material layers are sandwiched between two layers of the
structural member. The unconstrained arrangement is particularly useful for adding damp-
ing to an existing structural member, while the constrained arrangement has proven to
be more suitable for producing integrally damped structural members. Constrained visco-
elastic layers provide more damping than unconstrained layers for-the same total weight
of the structure [2].

Multilayer structures have diverse uses as, for example, in aircraft fuselage structures
missile frames, shock attenuation equipment etc. Most of these structures are subjected
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to random loads in addition to conditions of free and forced vibrations and shock exci-
tation. Considerable work has been reported on the free and forced vibrations and shock
excitation of multilayer structures [2-8], but the work reported on the response of such
structures to random excitation has been rather meagre. However, there have been some
reports on the response of homogeneous structures to random excitation. The use of
viscoelastic damping compound in the control of jet-efflux excited vibrations has been
reported by MEAD [9). This author used a complex modulus representation for represent-
ing the dynamic properties of the viscoelastic material: however this is applicable to
harmonic excitation only. SAUNDERS |10] has determined the response of multilayer plat-
es to spatially-distributed random force. The light damping assumption made by him
in his analysis is not applicable to constrained viscoelastic layers.

In this paper the response of constrained viscoelastic beams (3-layer types) to random
excitation is determined. Two types of random excitation, namely the *’white-noise” type
and the ,,turbulent boundary layer” type, are considered. The effect of various geomet-
rical and physical parameters on the response is evaluated and simply supported end
conditions are considered. Some experimental results are also reported.

2. Equation of motion of a general three-layer sandwich beam
The equation of motion for a three-layer beam, shown in Fig. 1, has been derived in

[11, 12] on lines similar to those of D1 TARANTO [4]. These are based on the following
assumptions:

xu
0 y,v
zZw b
a
U ——a 5_
1 Face lai t=2Hy
XXX ol i

V| 2 core lager | ty=2H,

j b

3 Face layer t3=2H3

z
FiG. 1. Three-layer laminated beam. a) Layer arrangement.

i) The face layers bend according to the Bernoulli-Euler theory.

ii) No slipping occurs at the interfaces of the layer when the beam bends.

Jjii) In face layers only extensional and bending effects occur while shear deformations
are negligible.

iv) Transverse displacement at a transverse section is constant along the thickness.



878 0. N. Kaur, K. N. GuetAa AND B. C. NAKRA

v) Longitudinal displacement at a transverse section varies linearly with layer thickness
but its rate is different in different layers.

vi) All displacements are small and conform to the linear theory of elasticity.

vii) Rotational and longitudinal inertia terms are negligible and only transverse inertia
terms are included.

viii) The material of the viscoelastic layer is linear, i.e. its characteristics are strain
independent and its dynamic properties are represented by a 4-element model.

These equations of motion are derived by first considering the equilibrium of forces
(Fig. 2) and the assumed pattern of deformation (Fig. 3). From these we have

2.1) DM = pD*w—f(x,1),
u,s uy
2:2 = = :
(2.2) ¢ PR
o
| dx i
| . R oM
M W_ N1+ f-‘})l:ldl M+ -é-’-‘-dx
N1z Ni2
v
v Layer 2 v+ a?dl
Nis N3
=
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N3 Layer -3 Ngf%dx '
2 Fi(x)

Fi16. 2. Force qeuilibrium.
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Fic. 3. Relative deformations in the composite beam.
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and
(2.3) = —(K, é,u; +K¢"),
where

s = (K +K3)/Ks,

6, = H +2H,+Hs,,
&4 r = Gb|2H,K),

K=K, +K;.
Substituting the value of M from Eq. (2.3) into Eq. (2.1), we obtain
(2.5) K, 8, u)' +Ky' +uD?w = f(x, 1).
Differentiating both sides of Eq. (2.2) three times with respect to x and rearranging, we get
(2.6) uy’ = ry 8, (rys—=DY) 19"

Substituting from Eq. (2.6) into Eq. (2.5), we get after simplification the following equa-
tion:

@) {r Ky 81+ (ry s =D K)$" + p(rys— D) Dw = (rys—DIf(x, 1).
But
ow
§ = =DyW,
therefore
2.8) ¢’ = Diw

Using Eq. (2.8) in Eq. (2.7) and dividing both sides by K and putting ¥ = x/L, we get
the following equation of motion in the non-dimensional form for a general three-layer
sandwich beam, when undergoing flexural vibrations:

(2.9) g_‘: —5(1+Y) 5, a‘"’ af:aﬁ —PJ, ‘Z, = P,ﬁz%—ﬂm&, 7,
where

Jy=rys =T;£;%Gz = CG,,

Y = K, 82/(sK),
(2.10) P, = L*/K,

P=Pu,

C = bL*s|(2H, K,).

3. Sandwich beam having a viscoelastic core
3.1. Equation of motion

The core layer is assumed to be of a linear viscoelastic material with its dynamic
properties in shear represented by a four-element model of the type shown in Fig. 4.
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FiG. 4. Four-element viscoelastic model.

The dynamic shear modulus G, of the viscoelastic material is [12]

_ B+yD+yD?
- 1+aD 8

where «;, #, ¥ and y are the model constants and their values in terms of the elements of
the model are

3.1 G,

a=n3/ls, P=20,
Y =m+n+lns/ls, v =n2m3/Ls.

Substituting -the value of G, from Eq. (3.1) into Eq. (2.9) and rearranging, the following
equation of motion of a three-layer sandwich beam having a viscoelastic core is obtained:
] o*w

W U+ B+yD+9pDY) L+ P+ aD) LY
e ~CUHDE+yD+9DY) 7 7%201°

(32)

33) (1+aD)

2 (x, t
—PC(f+yD+vD?) 63:}: = P,(1+aD) —fg—(;—) —P, C(B+yD+yD)f(%, t).

3.2. Transfer function

The transfer function of the system (i.e. the beam) is obtained from its equation of
motion assuming the external loading f(X, t) to be of the form

34 f(x, 1) = e'sinnnx
and the displacement response w(x, t) of the form
(3.5) w(x, ) = H, (n, w) e sinnax

which satisfies the end conditions of a simply supported beam. H,,(n, ®) is termed as the
transfer function of the beam. Substituting Egs. (3.4) and (3.5) into Eq. (3.3), the following
is obtained:

o —szgv'!‘ ICOB] +.Bo
(XJ4A4 —fw-"A; —CﬂzAz + fCUA] +AD ’

(3.6) H,(n, ) =
where

B, = CyP,, B, = (an*n*+Cy)P,,

By = (n’n?+Cp)P,, Ay = uB,,

As = uBy, A; = uBo+n*n*Cy(l+Y),

Ay = n®aa+ntn*Cy(1+Y), Ao = n®a’+n*n*CB(1+Y).

3.7
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3.3. Determination of response

To obtain the response to a random loading the impulse response function A,,(r, )
is first determined from the system transfer function H,(n, w) by the relation

(3.8) hy(n,t) = —21; f H,(n,w)edw.

The displacement response w(x,?) corresponding to the excitation f(x,?) is now
obtained in terms of the impulse response function by using the convolution integral [13] as

(3.9 w@E, 1) = [ fG, Dhy(n, t—7)dr.

Since the transfer function Eq. (3.6) is based on a loading whose space variation is
sin n7x, we decompose the loading also into similar space modes and so we write

(3.10) fGx, ) = j_ﬁ,(t)sinnm?,

where "~

(3.1 () = fo(?c, t)sinnmx dx .

Combining Egs. (3.9), (3.10) and (3].11):J we get

(3.12) w(x, t) = i:sinnnf fhw(n, t—17)2 ofl fE, ©)sinnnEdEdr.

Equation (3.12) represents the formal solution for the response to each sample excitation,
The statistical average over the sample space of the product w(x,, #,) - w(¥5, t;) which
reduces to the mean square of w, when X, = X, t, = t,, is given by

o0

(3.13)  EWGE, 1) wEs, 1)] = D) D, sinnn¥, sinmak,

n=1m=1
0 4] 11
< [ [ by, ty=7)- hlm, ta—5)- 4 [ [ EIfE, 1) £, )]
-0 —C0 00

xsinnmé, sinmnézdadzzd‘rld'rz ;

Equation (3.13) shows that the statistical average of the response is related to a similar
statistical average of the excitation.

3.3.1. White-noise random excitation

(i) Distributed load type

Let the excitation process be stationary and be such that spacewise it is completely
uncorrelated, but timewise there exists some correlation, i.e. the term E[f(£;, 71) * f(é2, 72)]
can be expressed as

(3.19) E[ﬂgn 7y) 'f(gz, 72)] = R (7, —72) 5(’=E.t —gz)-
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where d is the Dirac’s delta function. Now, substituting Eq. (3.14) and putting 1, —1, = 7,
t, = t in Eq. (3.13), we have, using the Wiener-Khintchine relationships

_ _ 1 e o
(3.15)  E[w(,, t+7) wXy, )] = T Z sinnzx, sinnsmx, f |H (1, ©)|2SH(w) e do,
n=1 -

where Sy(w) is the spectral density of the excitation process. For white-noise random ex-
citation this remains constant over the entire frequency range. Denoting this value by S,
the mean square displacement response of the system at a location X is obtained by put-
ting ¥, = X, = x and 7 = 0 in Eq. (3.15),

e " -
(3.16) E[WHz)] = %‘; D sinnaz f |H.o(n, )|2des.
n=1 o0
If it is averaged over the space, then
3
3.17) Ew?] = %"? D' | 1 o,
n=1 —-om

The integral in Eq. (3.17) is evaluated by means of the method of residues and the general
formula for evaluation of such integral is given in [14].
(ii) Point load type

Let the excitation process be stationary and of point load type acting at a single point @
on the beam, then it can be expressed as
(3.18) f(x, 1) = F(t)d(x—a).
Substituting Eq. (3.18) into Eq. (3.13) and simplifying with the aid of the Wiener-Khint-
chine relationships, we have mean square displacement at any point on the beam as

o0

o
(3.19) E[w*(x)] = :1 2 Z sinnzx sin mmx sinnnasinmaa
n=1 m=1]

x| B, @)Hyn, ~) S (@)do.

-

On averaging over the space, the double summation will reduce to single summation
because of the orthogonality of functions sin nzx and sin max and we have for white-
noise excitation

oo o0
S . =
(3.20) Elw] = 22 E sini f |H, (1, &) [2des.
n=1 -
3.3.2. Turbulent boundary layer random excitation

Measurements of wall pressure correlation by WILLMARTH [15], TACK ef. af [16], BULL
et al. [17], BAKEWELL [18] and CRockEeR [19] indicate that
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() the fluctuating pressure field is a random process which may be considered station-
ary in time and homogeneous in space, so that the pressure correlation is a funct-
ion of spatial separations and time difference only, and

(b) the spatial correlation along each of the longitudinal and lateral directions can be
represented by an exponentially damped cosine wave.

In view of (a) above, the correlation function of the turbulent boundary layer excita-
tion can be expressed as

(3‘21) E[ff‘f_l ) 1:1) 'ﬂgl: 1'.2)] = RI(Z.; Ty _12)1

where £ = the spatial separation = &, — &,. Substituting Eq. (3.21) in Eq. (3.13) and sim-
plifying it with the aid of the Wiener-Khintchine relationships, we have

(3.22) E[wx,,t—7) w(x,, )] = — Z 2‘ sinnax, sinmmx,

n=1 m=1"
X wa(n,w)Hw(m, —w)e*‘“ffs_r(f, w)sinrmflsinmngzdgldgzdw,
i 00

where the spectral density of pressure fluctuations is

(3.23) Sy(E, ) = Sp()Q4(C, w).
In view of (b) above
(3.24) 04(, ) = exp (—B; D)cos(7D),

where [17, 19]

wl _ oL

3.25 =
( ) ﬁl IOU ? Uc L

From Eq. (3.22) the mean square displacement at any point X is obtained as

(326)  EW()] = —;ZZSinmﬁ:sinmnE f SH(@) Hyln, @) Hillm, o)
n=1 m=1 -

11
% f fQ_,—(E, w)sinnmﬂ sinma&,dE, dé,de
00

which, averaging over the space, reduces to

(3.27)  E[WwY ——_Z f Sy(w)|H,(n, w)lszQI £, w)sinnak, sinmnk,df, df ,do.

n=1 —w
Substituting for Q,(C , w) from Eq. (3.24) and introducing
Etb, =7, &-6=C and

(3.28) L= = N
sinnmé, sinnné, = 5 (cos nal —cosnzmij)
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in Eq. (3.27), and then applying a coordinate transformation siniilar to that suggested by
Crocker and WHITE [20], we get after simplification

(3.29) E[w?] = —2’ f |H,(n, 0)[2S (0)(I, + 1) dw,
=1 -—-m

where

330) I, = e PP, Sin(m+ﬁ—t_m+¥) cos(fn+?’)} +na(l+8)+7
nm{(nm+y)*+ f1}?
e P [{B2 — (nm+7)?} cos (n+7) —2B, (n+7) sin (n7+7)] ﬁ2+(mz+")’
[(n+72)+ B3P
I, is obtained from Eq. (3.30) simply by replacing ¥ by —7%.
For Sy(w) the Bull’s model [20, 21] is used. This model or similar ones have been used

by several authors [17, 19, 22] as the best empirical fits to the experimental data obtained
by these authors from their investigations.

+

4. Influence of some geometrical and physical parameters on the displacement response

Figures 5 to 7 and 10 to 12 show the variation of the mean square displacement re-
sponse with the coefficient of unsymmetry, core-thickness ratio and the elements of the
model for white-noise random excitation.

]

)

cm’?
* kg¥rps.

E[w?]/s, (

0 02 o4 ' 06 o
Coefricient of unsymmetry

FIG. 5. Vibration of the ratio of M.S. displacement to force spectral density (E[w?]/S,) with the coefficient
of unsymmetry. .

Some of the parameters common to Figs. 5 to 7 and 10 to 12 are the following except
the ones that have been varied in each case.
Tiswl, Tagwl, Thp=00088, gis=1, = 04285,
E ;=1, p;=028x10"%kgsec?/cm*, E;=Tx10° kgfem?,
H; =015 cm, b=25cm, {/E;=0.1314x10"3.
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FiG. 6. Variation of the ratio of M.S. displacement to force spectral density (E[w?])S,) with T:.5.

The coefficient of unsymmetry has been defined as the ratio (Hs—H,)/(H;+H,).
The thicknesses 2H; and 2H, are varied while (H,+.H,) is maintained constant. For
a symmetrical configuration H; = Hj, this coefficient is zero. It is seen from Fig. 5 that
the response ratio increases as the coefficient of unsymmetry increases and the least re-
sponse is obtained for a symmetrical configuration. Figure 5 has been plotted for the
above parameters except for -H, = 0.159 cm and (H,;+ H;) = 0.314.

In Fig. 6 the response ratio is seen to decrease continuously with increasing values of
T, 5 initially at a faster rate at low values of T, ; and then at a slower rate for higher val-
ues of T, ;. The initial rapid decrease of response is due to an increase of the overall
loss factor of the beam with the increase of T, ;. With a continued increase in T ; the
overall loss factor reaches a maximum and then decreases at a uniform rate [2]. This
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F1G. 7. Variation of the ratio of M.S. displacement to force spectral density (E[w?]/S,) with £,/E;.

decrease of the loss factor would tend to increase the response but this is offset by an
increase in stiffness associated with the increase of T, 3, thereby resulting in a slowly de-
creasing nature of the response for higher values of T, ;.

Figure 7 shows the variation of the response ratio with increasing values of the modulus

ratio £, /E,. It shows a typical behaviour of the response, which is unlike that for sinusoidal
and impact excitations. This typical behaviour can be explained with the help of Figs. 8
and 9 which show the variation of the model loss factor and rigidity, respectively, with £,

as the frequency of vibration is varied.
Corresponding to the data of Figs. 5 to 7, the first natural frequency of the sandwich

beam with an elastic core and G, = £; = 210 kg/cm?, works out to be nearly 485 rad/sec.
This is of interest since it is seen in Fig. 8 that the loss factor is low at about 485 rad/sec.
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23=110.02 kg/cmz
no=0.069 kg sec/em?
3= 0.0346 kg sec/om®

Loss factor (pg)

ra

% ¢ = 5000kg/cm’

+ T T 1 | 1 L

1
a 2000 6000 8000

4000
Frequency w (rad/sec)

FiG. 8. Variation of ¢ with w and p,.
This minimal value of the loss factor results in the peak in Fig. 7 at {;/E; = 3.0% 1074,
which corresponds to £, = 210 kgfcm? because E; = 7X10° kg/cm?.

Figure 8 also shows that at all frequencies the loss factor is high at small values of ¢,
and it decreases as {, increases. This fact results in a low value of the response at small
values of £, and a subsequent increase of the response as {, increases till the response
reaches the peak value as explained above.

The decrease of response from the peak value to a minimum is caused by the increase
of rigidity (associated with increasing values of &, as shown in Fig. 9), which predominates
over the effect of decrease of the loss factor associated with an increase of ¢,. For the
increase of response beyond the minimum, the effect of decrease of the loss factor predom-
inates over the effect of increase in rigidity as the modulus ratio is further increased.

The variation of response with the other elements of the model, i.e. {3, 7, and 73 is
shown in Figs. 10 to 12. While the response is seen to decrease continuously with {; in
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Fig. 10, it is seen to attain a minimum value with increasing values of %, and 53 in Figs. 11
and 12. In these figures only one of the elements is varied at a time, while the other three
are kept fixed.

In the case of turbulent boundary layer excitation, the results obtained are similar
to those for white-noise excitation discussed above.
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5. Displacement response based on some design criteria

The evaluation of the displacement response based on the following criteria has been
carried out.

a) Constant size criterion.

b) Constant weight criterion.

c) Constant static stiffness criterion.

For these criteria the performance of a three-layer sandwich beam (having face layers
of equal thickness) is compared with that of a reference homogeneous beam whose material
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FiG. 16. Block diagram of testing equipment for white-noise random excitation.
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is the same as that of the elastic face layers of the sandwich beam. For constant size, con-
stant weight and constant static stiffness criteria, the thickness, weight and static stiffness,
respectively, of a sandwich beam is taken equal to that of the reference beam.

The variation of these criteria with the core thickness ratio is given in [5]. The beha-
viour of response for each of these criteria under random excitation is shown in Figs. 13
to 15. It is seen from Figs. 13 and 14 that the response attains a minimum on constant
size and the constant weight basis, whereas on the constant static stiffness basis the re-
sponse decreases continuously for all values of T,.; considered in Fig. 15.

6. Experimental work

Experiments were conducted on a few samples of the sandwich beams subjected to
white-noise and turbulent boundary layer excitations. The block diagram of the testing

b

To manomelter <—

— lest specimen
Extented end of upper
melallic layer oF specimen

Pilot tube . . _

~"_ ~7 Ms. plate
N Air Flow = 35 funnel wall

SCrEwS

F1G. 17. Wind tunnel test section for turbulent boundary layer excitation. a) Details of slot and grooves
in the mild steel wall-plate, b) Specimen in the wall-plate with box cover, pickup and pitot tube, c) Details
of fixing of beam’ end.
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equipment for white-noise random excitation is shown in Fig. 16. The ends of the test
specimen are held in the clamps of the rigid stand which is placed over a concrete base.
The specimen is excited at its mid-point by an exciter E held inside an annular magnet.
It receives its power from a random noise generator through a d.c. power amplifier. The
displacement response of the vibrating system sensed through a proximity inductance
pick-up is fed through a F. M. amplifier system to a RMS voltmeter for measurement.
The spectral density of excitation is measured with the help of an A. F. spectrometer as
shown.

Experiments carried out on the sandwich beams to determine response to turbulent
boundary layer excitation have been conducted on a 30 cm X 30 cm subsonic wind tunnel
of the induced flow nonreturn type, driven by two exhaust fans down stream of the working
section. The working section was suitably isolated from the exhaust section and the labor-
atory floor, so as to keep the vibrations of the test section to a minimum. To isolate
further any vibrations of the tunnel wall itself due to air flow, a portion of the plywood
wall of the tunnel was replaced by a 75 cm long mild steel plate in which a slot was cut to
accommodate the test specimen as shown in Fig. 17. Details regarding the fixing of the
beam ends and the positioning of the proximity pick-up are also shown therein. When the
exhaust fans are switched on, the turbulent flow of air in the tunnel eXcites the specimen.
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| while-noise point foad excitation
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~|a F o Experimental
Sl — Thearetical
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Fic. 18. Variation of the ratio of M.S. displacement to force spectral density (E[w?]/S,) with T3.s.
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The displacement response is measured just in the same way as for the white-noise exci-
tation case, whereas a manometer is used for measuring the pressure head so as to deter-
mine the velocity of air flow required for response calculations.

The details of the specimens, tested for both types of excitations and for which the
results are being reported here, are given in Appendix A.

The experimental results and their corresponding theoretical values are shown in
Figs. 18 and 19. A reasonable agreement between the experimental and theoretical results
is seen.

Appedix A. Details of beam specimens tested

S. No. L b Layer No. H, Material
(cm) (cm) (1) (cm)

A) White-noise random excitation

1 30 2.5 1 0.081 Al
2 0.050 PVC
3 0.081 Al

2 30 2.5 1 0.081 Al
2 0.100 PVC
3 0.081 Al

3 30 2.5 1 0.081 Al
2 0.150 PVC
3 0.081 Al

4 30 2.5 1 0.081 Al
2 0.200 PVC
3 0.081 Al

B) Turbulent boundary layer excitation

1. 13 2.5 1 0.017 Al
2 0.050 PVC
3 0.017 Al

2 13 2.5 1 0.017 Al
2 0.100 PVC
3 0.017 Al

3 13 2.5 1 0.017 Al
2 0.150 PVC
3 0.017 Al

4 13 2.5 1 0.017 Al
2 0.200 PVC
3 0.017 Al
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7. Conclasions

The mean square displacement response is minimum for a symmetrical beam and it
increases as the unsymmetry increases. As the core thickness increases, the response de-
creases rapidly at lower values and gradually for larger values of the core thickness.

The variation of the response with the elements of the model shows that it is possible
to find such values for these elements individually, so as to give rise to a minimum or a low
value of the response, while the other three elements are kept fixed. This fact will be helpful
in designing the viscoelastic sandwich beam for obtaining a predetermined value of re-
sponse by specifying the values of elements of the model for the viscoelastic core material.
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