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Rayleigh-Taylor instability of a Maxwell’s fluid

P.D. ARIEL and B.D. AGGARWALA (CANADA)

THE CHARACTER of equilibrium of an incompressible Maxwell’s fluid of variable density has
been investigated. Two density configurations have been considered: (i) two superposed fluids
of different uniform densities, (ii) a fluid layer having exponentially varying density. In the
latter case, an approximate solution has been obtained using the variational principle which
characterizes the solution. For unstable arrangement it is shown that the stiess relaxation
time leads to an increase in the rate at which the arrangement departs from equilibrium. It
nﬁmherdunonstratedthatltlspmbletohavepmodacmoﬂoninauamﬂsﬂmdfor
some disturbances for which it is not possible to excite waves in a Newtonian fluid.

Rozwaza si¢ rébwnowage niesciSliwej cieczy Maxwella o zmiennej gestodci. Rozpatrywane sq
dwie mgblne konfiguracje gestodci: (i) superpozycja dwu cieczy o réinych, jednorodnych
gestodciach, (ii) warstwa cieczy o wykladniczo zmiennej gestosci. Dla tego ostatniego przy-
padku otrzymano rozwigzanie przyblizone, wykorzystujac odpowiednig zasade wariacyjng.
Dla ukiadu niestatecznego wykazano, Ze czas relaksacji prowadzi do wzrostu szybkosci
oddalania si¢ od stanu réwnowagi. Pokazano teZ, ze w cieczy Maxwella mozliwy jest ruch
okresowy dla pewnych typow zaburzed, dla ktérych nie mozna wywolaé fal w cieczy Newtona,

PaccuaTpHBacTCA PaBHOBECHE HECKHMAacMOl MAKCBEJUTOBCKOH YKHIKOCTH C NEPEMCHHOM II0T-
HocTeI0. Paccmorpens! gee uactHnie xoHdHErypamus norHocTH: 1) cynepnosmumsa ABYX KU~

nepemeHHOM ILBOTHOCTEIO. MONY9eHO MpEGmDKeHHOS
HCHOJB3YA COOTBEICTRYIOMEI BapuanmoRHeIN mpwaipan. Jna Heycroliaupolf CHCTeMEI no-
K2SRHO, YTO BPEMs PENaKCAMH OPHBOAMT K POCTY CKOPOCTH YARJICHHA OT COCTOAHHA PaBHO-
BecuA. [Toxasano T0XKe, YTO B MAKCBE/UIOBCKON MUIKOCTH BOSMOMHO HNEPHOMEYECKOE ABH=
JKCHHE JUIA HEKOTOPBIX THIIOB BO3IMYILCHHN, UIA KOTOPHIX HEJIL3A BBISBATH BOMH B HBIOTO=
HOBCK Off JKHIKOCTH.

1. Introduction

THE CHARACTER of equilibrium of an incompressible, inviscid fluid of variable density, strat-
ified in the vertical direction was investigated by RAYLEIGH (1883) who derived a result of
general validity, namely, that the stratification is stable or unstable as its density decreases
everywhere or increases anywhere in the upward direction. Further, he obtained explicit
solutions for two density configurations: (i) one fluid of uniform density topped by another
fluid of different uniform density, (ii) a fluid having exponentially varying density con-
fined between two horizontal planes.

Taking viscosity of the fluid into account, HARRISON (1908) considered the stability
of two superposed fluids and he obtained the dispersion relation in which the growth
rate of the disturbance was expressed as a power series in the coefficient of kinematic
viscosity. CHANDRASEKHAR (1955) further carried Harrison’s work to give a complete
treatment of the problem. In addition, he demonstrated that the solution was character-
ized by a variational principle.
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Making use of the variational principle, HDE (1955) obtained the approximate solu-
tions for the two aforementioned density configurations. His results for two superposed
fluids were in fair agreement with the corresponding exact results derived by Chandra-
sekhar. REID (1962), however, pointed out that in computing the approximate solution.
Hide had left out an important term and the closeness he obtained of two solutions was
fortuitous. This cast doubts on the usefulness of the variational principle. Nevertheless,
SELIG (1964) derived the variational principle due to Chandrasekhar in a manner which
was free of any ambiguity.

Although considerable attention has been paid recently to the instabilities of a non-
Newtonian fluid, it appears that not enough attention has been paid to the Rayleigh-
Taylor instability of these fluids. It is the aim of the present paper to deal with this
problem. We have investigated the character of equilibrium of a Maxwell’s fluid. Both
density configurations, first studied by Rayleigh, have been considered.

2. Formulation of the problem

Consider a Maxwell’s fluid of density p, depending on the vertical coordinate z stratified
in the vertical direction. For a Maxwell’s fluid the constitutive equation is

2.1) (1+1£—) Ty =2ney,

where A is the stress relaxation time, 7 is the viscosity of the medium, z,; is the deviatoric
stress tensor and e; is the rate of the strain tensor given by
1 [ oy o
22 21;"—'—2“ "E+a—x')
In Eq. (2.2) u; denotes the velocity at a point.
The basic equations of motion are:
The equation of conservation of momentum

d __ o
(2.3) Q? = - 73?; + Bx, Tij—80¢;-
The equation of incompressibility
e % _
(2-4) ——a}— +uj }E =0.
The equation of continuity
ouy _
@5 7=

where p denotes the scalar pressure, g is the acceleration due to gravity and ¢; (= 0,0, 1)
is & unit vector in the vertically upward direction.
The equilibrium state is characterized by u; = 0.



RAYLEIGH-TAYLOR INSTABILITY OF A MAXWELL'S FLUID 697

To investigate the character of equilibrium, we give the system a small disturbance,
which produces a velocity field w; (= u,», w). Let the corresponding perturbations in
¢,n and p be dp, 8y and dp, respectively.

The linearized equations of perturbation are

3!:; _ 0 d _
(26) Q'—a-;--— —-Ez-ép'l'—'agfu gﬁge,-,
d _ dp
and
Ouy
.8) = 0.

Analysing the disturbance in normal modes, we seek the solutions of Egs. (2.6)-(2.8),
in which perturbed quantities have the form

(2.9 (some function of z)xexp(ik;x+ik,y+nt),

where k; and k, are the horizontal components of the wave vector k;, and n denotes
the rate at which the system departs from equilibrium.

The z-component of the curl of Eq. (2.6) can now be written (on making use of Egs.
@.1), 22), 2.7) and (28)) as

(2.10)  n[k?ew— D(eDw)]— 3—:1- (Do)w+ p(D*— k?)*w+2Du(D*— k*) Dw

+D*u(D*+kH)w =0,
where D stands for d/dz, and

= 1 4
@1 =

4 can be termed as the modified coefficient of viscosity which takes into account the
effects of the non-Newtonian parameter A.

3. Boundary conditions

On a rigid boundary a fluid can not slip. Further, following RAYLEIGH (1883), if we
disregard the phenomenon of surface waves, we can take the vertical component of
velocity zero at a free surface, thus

(3.1) w=0 on a boundary rigid or free.
Further, on a rigid boundary, in view of the equation of continuity
(3.2) Dw=0 on a rigid boundary.

On a free boundary the tangential stresses 7, and 7,, must vanish. Now
Txz = ,u(Du+ik,w) and Tys = p(DU*{’Ik,W)
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therefore,
33 —iky Tas—iky Tys = p(D*+k%)w.

Since w has been assumed to vanish on a free boundary, it follows that
39 D*»w =0 on a free boundary.

Should there be discontinuities, as in the present problem, we must require the con-
tinuity of velocity, tangential stresses and pressure at an interface. This amounts to
(3.5) w, Dw, pD*+k>w
are continuous across a surface of density discontinuity and the last boundary condition,

namely, the continuity of pressure across the interface can be made to satisfy, if we inte-
grate Bq. (2.10) across the interface. This gives

69 nA,(0DW)+ B A, ()~ A,1u(D*~24%) Dw) = 0,

where 4, denotes the jump a quantity experiences in crossing the surface of discontinuity
z = z,, and w, is the common normal component of velocity there.

It may be remarked here that the eigenvalue problem defined by Eqgs. (2.10)-(3.6) is
exactly similar to the one considered by Chandasekhar, if gz is interpreted according to
Eq. (2.11). We shall, therefore, deal with the next section very briefly.

4. A variational principle

Multiplying Eq. (2.10) by w and integrating across the vertical extent of the fluid
(denoted by L), we obtain the following variational formulation after a series of integra-
tions by parts:

gk?
“.1) nfg[(Dw)’+k’w’]dz— = f Dow?dz + fp{[(D’+k2)w}’+4k’(Dw)=}dz =0
L L L
the integrated parts vanishing because of the appropriate boundary conditions.
Consider a small change dw in w compatible with the boundary conditions. The cor-

responding increment dn in n can be found from Eq. (4.1). We have to the first order
of smallness.

@2 - %&:H f o[(Dw)? + k*w?dz + 3:’: f Dow3dz
L L

+ ! g_‘:([(pz+k=)w1=+4kz(nw)=)dz} = ! {u[k’ew—v(ebw)l

- :2? (Do)w+ p(D?— k2)?*w+ 2Dpu(D? ~ k?) Dw+ D*u(D? + k?) w} dwdz.

We observe that a necessary and sufficient condition for dn to be zero to the first
order of smallness for a small variation in w compatible with the boundary conditions
is that w satisfies the characteristic value problem. Thus the present problem is charac-
terized by a variational principle.
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5. The case of two superposed fluids of constant densities separated by a horizontal boundary
—an exact solution

In this section we consider the stability of a Maxwell’s fluid of density o, occupying
the region z < 0, topped by another Maxwell’s fluid of density g, occupying the region
z > 0. The two fluids are separated by a horizontal interface z = 0. Let the coefficients
of viscosity and the relaxation times for the lower and upper fluids be 7,, 4; and 7,, 2,
respectively.

Following CHANDRASEKHAR (1955) and keeping in mind the new meaning of 4 as
defined by Eq. (2.11), the following dispersion relation is derived (cf. Chandrasekhar,
Eq. (44)):

gk ﬂlk2
(5.1) == (g =) +1] (@291 + 019, —k)—dka, 2 + —— (v, = 2,7 [229,

-0y Q’z'f‘k(“l—“z.)]‘l' (“1"1-0‘2"2)2@1"") (2—k) =

where
% = e;i—lez’ “‘=E€:?’
52) hrvits il e oy
Qi=k‘+£-, q§=k’+;;

and for boundedness of the solution we require

(5.3) Re(q;) >0 and Re(g,) > 0.
We define
N1+172
54 e L L
G ’ 01+p:

and measure n, k and ¢ in terms of (g2/v)'/3 sec™?, (g/»*)'/* cm™, respectively. In di-
mensionless form Eq. (5.1) becomes

(@r—a3) s 8
(505) - [ !nz 2. +1 (qul +Cllqz—k)—4k¢l a2+ ___n_ 1+;1"
62 4k3 él
5 —“1+r,n] %@ —R)—au(@ =Rl + <5 [‘“ﬁ;ﬁ

where
M N2

é =
(5.6) T * N+

e 1/3 1/3
Tt —_ 11 '"") ’ T, = Az(i)

v



700 P.D. ARIEL AND B. D. AGGARWALA

and g, and g, are now given by

% ";: (14 Tyn).

For a full discussion of Eq. (5.5) it must be squared repeatedly; which will result
into an equation of the 26th degree in n. This equation will contain some trivial roots
and some extraneous roots which will violate the requirement (5.3). The roots left after
rejecting these spurious roots will be termed as admissible roots.

If the lighter fluid lies beneath the heavier. fluid, i.e. if a; < a5, it will be found that
Eq. (5.5) has only one admissible root with a positive real part, thereby implying instabil-
ity. Indeed this root is positive and its asymptotic behaviour for small and large values
of k is

(5.8) n? = k(e;—ay), k-0,
and

(1+Tyn), ¢=k+

5.7 ¢ =K+

n— (a,—a;)2k, k- 0.

It is apparent that n does not depend upon the non-Newtonian parameters either
for k - 0 or for k — co. Further, we note ‘that n tends to zero for extreme values of k,
hence a mode of maximum instability must exist which is expected to assert itself in the
initial course of the motion. In order to study the effect of the non-Newtonian parameters

FiG. 1. Hlustrating the influence of non-parameters
in the unstable case when the heavier fluid lies atop
the higher fluid. The growth rate » is plotted against
k for ay = 0.2, ; = 0.2, and various values of T,
and T,. For curves I: T; =05, T, =05; 2: T
=10, T;=05; 3: T, =05 T;=10; 4: T,
0 04 a8 12 16 K =10, T; = 1.0.

T, and T, on the mode of maximum instability, the positive root of Eq. (5.5) was com-
puted on CDC 6000 at the University of Calgary, Canada, for different values of T,
and T;,. The results are depicted in Fig. 1 in which » has been plotted against k. It can
be seen that an increase in the value of either T, or T, leads to an increase in the value
of n, the difference being most pronounced at the maxima of the curve, i.e. for the mode
of maximum instability. Hence we conclude that a non-Newtonian unstable arrange-
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ment departs at a faster rate from equilibrium as compared to a similar Newtonian ar-
rangement.

When the lighter fluid lies atop the heavier fluid, Eq. (5.5) does not have any admissible
root with a positive real part, which is to be expected, and we have the stability of the
system. The discussion of every admissible root for all parameters is somewhat cumber-
some, therefore, we have restricted ourselves to the investigation of motion of a single
Maxwell’s fluid occupying the lower z-plane.

6. Gravity waves in a Maxwell's fluid

Taking the limit of Eq. (5.1) as p, — 0, at the same time assuming that the coefficient
of kinematic viscosity of the upper fluid remains finite and non-zero, we obtain the follow-
ing dispersion relation in the dimensionless form for gravity waves:

(6.1) Tn"+3T2nS+ Tn®(3+2kT? +8k2T) +n*(1+6kT? + 16K2T)
+ k3 (6T+ 8k + kT +8k2T? + 24K3T) + k2n (2 + 3k T2 + 16k T+ 24k3)

+Kk2n(3T+ 8k +8k3T+ 16k*)+k2(1+8k%) = 0,
where

~ 2 1/3
6.2) T=2 (T) .

The assumption that the coefficient of kinematic viscosity of the upper fluid remains
finite and non-zero when we take the limit is justified on the ground that Eq. (6.1) passes
to the corresponding relation obtained by Chandrasekhar for the case T = 0.

When T = 0, i.e. for a Newtonian fluid, Chandrasekhar has demonstrated that Eq.
(6.1) has only two admissible roots. He has further shown that there exists a critical
value of k (say k,) such that for k < k,, these two modes correspond to periodic motion
and for k > k,, they correspond to aperiodic motion. In the latter case Chandrasekhar
named the two modes as “viscous mode” and “creeping mode”, the “viscous” mode
decays rapidly and the “creeping mode” decays slowly.

Now we make allowance for non-vanishing values of T. In this case it was found
that Eq. (6.1) has three admissible roots. The asymptotic behaviour of these three roots
is given by

1

(63) ny = - +0.9126k%,

L1 O O O 1
4+

ny ny = —(2k2—27k )+ik’ +26°T-2k*), k-0

and

1

M=

(6.4) " "
nya = — "i"j.,— j:l'xo.9553 = k — 00,

vk
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From the above it follows that periodic motion takes place for both short wave-
lengths and large wave-lengths. In constradistinction, for short wave-lengths there is an
aperiodic motion for a Newtonian fluid. Hence we conclude that one effect of non-
Newtonian parameters is to excite waves for disturbances corresponding to short wave-
lengths. It may be further noted that for ¥ — o0, we no longer have a “viscous” mode.
Instead, we have what we can term a “Maxwell’s” mode which is responsible for oscilla-
tory motion for k — co. This mode, however, gives rise to the aperiodic motion for k — 0,
the oscillatory motion being caused by the “creeping” mode.

Since we have oscillatory motion for both k — 0 and k — 0, it would be of interest
to know the nature of the motion for intermediate values of k. Keeping this in mind,
n was computed from Eq. (6.1) for increasing values of T'; the results are presentsd in
Fig. 2. It appears that there exists a critical value of T (say 7*) such that for T < T*

-Re(n) b

100

0 04 a8 - 12 16 i

Fro. 2. Illustrating the variation of —Re(n) the rate of damping of gravity waves with k, the wave-number
for a Maxwell's fluid for different values of ¢, the stress relaxation time.

we do not have oscillatory motion in the intermediate range of values of k; however
for T > T*, waves always arise, therefore we can generalize our earlier observation and
state that for the value of relaxation time exceeding some critical value, it is always
possible to excite waves on a Maxwell’s fluid for any disturbance.

7. A continuously stratified fluid of finite depth — an approximate solution

Consider a layer of a Maxwell’s fluid confined between the planes z =0 and z = d,
for which ¢ and % have the following dependence on z in the undisturbed state

(.1 @ = @oexppz
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and

(7.2 7 = v0oexpfz,

where f,» and g, are appropriate constants.
We assume the following trial function for w(z):

(7.3) w(z) = Wsinlz.
VanisHing of w at the upper boundary requires that

s
(1.4) 1=,

where s is an integer.
We shall further make the assumption

(7.5) 18d] <1

which implies that the density variation in the fluid is a good deal lower than the average
density of the fluid.

Substituting for o, 4 and w(z) in Eq. (4.1) and evaluating the integrals, we obtain
the following eigen-value relation between n and k:
(1.6) n2(k? +12) + 1_:-",“1}:‘ (k2 +122—gpk? = 0.

Equation (7.6) reduces to the corresponding dispersion relation derived by HIDE
(1955) for a Newtonian fluid (1 = 0).

It will be found convenient to deal with Eq. (7.6) in a non-dimensional form. Meas-
uring » and k in terms of (n%s%/d?) sec™! and (ns/d)cm™*, Eq. (7.6) takes the follow-
ing dimensionless form:

' Gk? Gk?

3 — — =
amn ™ +n=+n(k=+1 1+k=) = =0
where

gpa*
(1.8) G = ?‘:—‘v—,
and
Iyn2s?
(1.9 - _J;‘_.

Here G has the form of the Grashoff number and 7 can be regarded as the non-dimen-
sional relaxation time.

7.1. Unstable stratification

If G is positive, i.e. if the density increases in the upward direction, Eq. (7.7) admits
one positive real root thereby implying instability; the other two roots being either real
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and negative or complex conjugate with negative real parts. The behaviour of the positive
root for small and large & is
(7.10) n->Gk* for k-0,
n-Glk? for k- oo.
So it can be seen, as in the case of two superposed fluids, that the disturbances cor-

responding to large or short wave lengths remain unaffected by the non-Newtonian para-
meter 7. To see the effects of r on the mode of maximum instability in Fig. 3, n has been

T=0.5 Y
n n, Q/ &
" Ry «"Q' &’%
T=02 o
¢
=0 p
a4 l— 20
03 - 15 -
02 10 »
a1 - as
1 1 1 I 1 L =
o o5 * 10 15 k 0 50 00 50 G

Fi1G. 3. Illustrating the influence of the non-Newton- Fic. 4. Illustrating the behavior of nw. The

ian parameter in the unstable case of continuously maximum growth rate against G, the non-

stratified fluid. The growth rate n is plotted against dimensional measure of buoyancy forces for dif-

the wave-number k for G = 2.0 and several values ferent values of 7, the dimensionless stress
of . relaxation time.

plotted against k for G = 2.0 and various values of 7. We observe that an increase in 7
leads to an increase in the value.of # and »n,, the maximum growth rate. Thus, what we
stated in the case of two superposed fluids is still valid, namely, that a non-Newtonian
stratification departs from the steady state at a faster rate as compared to a Newtonian
stratification.

To obtain n,, we differentiate Eq. (7.7) with respect to k and set dn/dk = 0. The
equation governing n,, is

(7.11) (1+zny) (n2—G)*—4n,G = 0.
The behaviour of n,, against G for different values of 7 has been exhibited in Fig. 4.
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7.2. Stable stratification

If G is negative, i.e. if the density decreases in the upward direction, Eq. (7.8) admits
either three negative real roots or one negative real root and a pair of complex conjugate
roots with negative real parts. In any case, the stability of the system is assured. To study
the manner in which the equilibrium is restored we proceed as follows.

The cubic
n*+bn?+cn+d =0
with real coefficients has three real roots or one real and a pair of complex roots accord-

ing to whether
4(b= )’ (d be 26%\*
7 R B e S 2—7)
is positive or negative.

(7.12) X
On substituting for the coefficients from Eq. (7.7), we find that
k%G,

4 [ kG | TKGE ’
s = - —1
(713) X 78 {(1+k3)3 + 527 [2437(1+Kk3)]+ 11k [
1
—5t(1+k?)+672(1+ k%] + (1 +k3)? [1‘(1 +k%)— T]}’
where
(7.14) G, = —G.
z
i |
10
a8 =015
0s
04 - T=(
az |- =025
FiG. 5. Illustrating the plot of z against k, the wave T=027
number for several values of 7, the dimensionless , . i i
stress relaxation time. 0 04 08 12 16 g

X can be regarded as a cubic polynomial in G,. Let any of its zeros be 1/z. In Fig. 5
z is plotted against k for various values of 7. The curve divides the first quadrant in the
k—z plane into two regions one of which is bounded if 7 is greater than 1/4. If 7 < 1/4,

8 Arch. Mech. Stos. ar 519
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periodic motion is possible in the region lying below the curve, and when 7 > 1/4,
periodic motion takes place outside the closed region. It can be further seen that if 7 = =,
(= 0.29616), X is negative for all values of k, hence we can conclude that for the values
of relaxation time exceeding some critical value, waves can always be excited in a Max-
well’s fluid.
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