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The effect of shearing prestress on the response of a thick membrane
strip
Part 1. The static case

V. 0.S. OLUNLOYO (ILORIN) and K. HUTTER (ZURICH)

THE STATIC response of a prestressed thick membrane (or thin plate) strip is analysed for the
case when the bending rigidity is small. The full problem must necéssarily include the case when
a shearing prestress is applied parallel to the side walls. Singular perturbation analysis reveals
that for such cases, unless the external load is sufficiently smooth, singular shear layers that
run across the width of the strip are induced. The solutions in such layers as well as the usual
core and edge layers are presented.

Badany jest statyczny problem dla wstepnie naprezonej grubej membrany (lub cienkiej plyty)
w formie pasma, przy zaloZeniu malej sztywnoéci na zginanie. W ogolnym sformulowaniu
wystgpowaé musi przypadek, kiedy wstepne naprezenia écinajace przylozone s3 rownolegle
do bocznych $cianek. Stosujac metode perturbacji osobliwych wykazano, Ze — z wyjatkiem
przypadku kiedy obcigZenie jest dostatecznie gladkie — powstajg osobliwe warstwy $cinania
biegnace w poprzek szerokosci pasm. Podano rozwigzanie w tych warstwach, jak réwniez w rdze-
niu oraz warstwie brzegowej.

Hccnenyerca cratryeckas-s3ajada JUIA OPeJBAPHTENBHO HANMPSOKEHHOM ToncToi MemOpaHbI
(wmr ToHKO# wmMTI) B opMe MOJIOCHI, MPHHHMAA MATYI0 H3rHOHYIO KecTkocTs. B obweit
¢dopmMy HpoBKe NOIKEH BBICTYNATh CIy4al, KOTa NpeJBapHTe/bHbIe HAIPAXKEHHA CIOBHTA
TNPHIOYKEHBI MapavienbHo K GoxoBbiM crenkam. Ilpmmensini meron ocobbix meprypbarmmit
MOKA3aHO, YTO 33 MCKIIOYEHHEM CITy4asd, KOIJIA HArPY3Ka JOCTATOYHO TMaNKad, BO3HHKAIOT
ocofble oM caBHra Gerylife monepeKk LIHPHHBI IMONOCHL. JlaeTca pellieHHe B 3THX CIIOAX,
KaK TOXK€ B CepeUHMKE H B I'DAHMYHOM CJioe.

1. Introduction

THE BEHAVIOUR of prestressed thick membranes is predicted on the competing influences
of both the prestress mechanism and the bending rigidity of the membrane. In fact, the
influence of the former is globally overriding except close to the boundary where the
latter is just as important. The relative balancing of these forces makes the problem ame-
nable to singular perturbation techniques. For this the entire domain must be divided into
two regions viz. an outer region where the resistance to extensional deformation is of
prime importance as well as an inner region where a balance is maintained between exten-
sional and bending forces. This inner region usually takes the form of boundary or edge
layers, but could sometimes appear within the core.

Singular perturbations have been successfully exploited in constructing solutions to
thick membranes. In fact, SCHNEIDER (1972) determines the influence of the bending
rigidity to the eigenfrequency of an isotropically prestressed rectangular membrane. The
corresponding problem of the circular drum has been solved by HUTTER in (1972). HUTTER
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and OLuNLOYO (1974) extended the free vibration problem of rectangular membranes
to include certain special cases of anisotropy in the prestress. Attempts to deal with mem-
branes that were subjected to external loads (statically or dynamically) were thus far
particularly successful for (infinitely) long strips (see HUTTER and OLUNLOYO (1974)).

The above mentioned problems are still too restrictive and they should be extended on
several different levels. There are various possibilities to achieve such extensions. One
possibility is to increase the complexity of the loadings, but such extensions do not lead
to essentially new effects. Another possibility is to enlarge the complexity of the bounda-
ries of the membranes.

The latter problem is to a certain extent akin to a change in the anisotropy conditions
of prestress. Indeed, if the normal prestress in the x- and y-directions of a Cartesian
coordinate system is denoted by N, and N,, respectively, and if the shearing prestress N,
vanishes, then it is easy to determine the prestress tensor with respect to a rotated coordi-
nate system (x, y). From such a calculation one concludes that in general N;; # 0. It is
thus interesting to investigate the influence of the shearing prestress in one of the above
mentioned well-known problems.

For this purpose let us consider a membrane strip in the (x, y)-plane, bounded at
y =0 and y = b. At this stage we are not interested in the physical conditions of these
boundaries, but we might mention that usual boundary conditions manifest themselves
either as clamped edges or cylindrical hinges. The governing equations derive from the
von Kirman-equations

(1.1 Vi = S @Hb W), V0,

where
_ P w P Pw P Pw
1.2 (bW =53 a2 +2 axdy dxdy | ByF oxF

and where for our case of constant prestress conditions

1
(1.3) ¢ = ?(N,x‘—2N,,xy+N,y’).
Therefore, Eq. (1.1) becomes
*w *w *w
=
(1.9 DV*w = gq(x, y)+ N, e +2N,, 3xdy +N, 37

which must be complemented by appropriate boundary conditions at y = 0 and y = b.
In Eq. (1.4) D denotes the bending rigidity, w the transverse deflection, g the transverse
loading and N, N,, N,, the (constant) prestress. Finally, V* is the bipotential operator
which in Cartesian coordinates reads

a*w *w a*w

4y =
(15) Viw = P +Zax23y2 + ay‘ )

We non-dimensionalize the above equation (1.4) by introducing the transformation
(1.6) (%3, 2) = (x/b, y[b, w[b).
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Denoting

il e gs M g B
(1'7) P—' No, ﬁx"' ND’ ﬂl’_ NO ] ﬁ’ == h“o’

where N, is an appropriately chosen reference prestress (e.g. No = max(N;, N,)), and

D
2
(1.8) e? = Nob?
we readily obtain from Eq. (1.4)
2wt a2 Ot o BPX L, Pp s s
(l'ga) € ().x)x ﬁx 3‘%3 _2ﬁxy a;faj; ﬁr_ 35"2 —p(x,y).

In the following we shall only deal with Eq. (1.9a) and shall for brevity henceforth drop
the hat and write (x, y) for (X, ). Moreover, we shall solve Eq. (1.9a) in the strip0 < y < 1
under the restriction

(1.9b) e < 1.

This condition guaranties that the assumptions of matched asymptotic expansions are
satisfied.

Usual boundary conditions that are accompanied with Eq. (1.9a) are those of built-in
ends. For the strip under consideration they are

(190 2,0 = 265, 1) = (6,0 = 5,0 = 0.

The purpose of this paper is to demonstrate that the structure of the layers of the
boundary value problem (1.9) depends on the operator
% , &2
xdy +5 ayt’

92
= B2 2
(1.10) L= g2 P +2p%, 3

If y = p2f;—P2y > 0, then L is elliptic, otherwise hyperbolic. Using the Mohr circle
arguments it is easy to show that the differential equation

(1.11) e2V4y—Ly = p

corresponds to pure prestress conditions when L is elliptic. If L is hyperbolic, there exists
a distinct direction for L, the corresponding proper value of which is negative. Physically
it means that the in-plane force in that direction is a pressure (prepressure). In the fol-
lowing we shall restrict ourselves to cases in which L is elliptic, but we shall not assume
that the coordinates x and y are parallel to the principal directions of L. As we shall see,
this implies that there exist not only boundary layers, but also free (shear) layers which
are induced by the external loading p(x, y). The demonstration of this latter phenomenon
is the main goal of this paper.



492 V. 0. S. OLunLoyo AnDp K. HUTTER

2. The strip under static loading

Let # C R? be the open strip [— 0 < x < 00, 0 < y < 1]. We are interested in
solutions of the boundary value problem

eViy—Ly=p, €e<1, (x,p)e3,

2.1)
Z=f1.: x=fU1
ox y=0, dx y=1,
3—y-8:.s '3}‘—80,

where f;, g1, fu and gy are smooth functions on R. The known function p(x,y) will be
assumed to have the form

p(x,y) = pod(x—xo),
where d(x—x,) is the Dirac distribution. The construction of solutions that are asym-
ptotic approximations for small ¢ will be simplified if we resort to Fig. 1 which shows

me A
o 14
o o

Fic. 1. Strip with core region and boundary and shear layers.

the strip together with the subdivision in various regions. In each of these regions differ-
ent asymptotic approximations of the solution of Eq. (2.1) will hold. Solutions in the
regions I* and I® will be called outer solutions, while those in the regions II4-2 and III4-2
are termed inner solutions or boundary layer solutions. Of special interest are the regions
IV# and IVZ.

2.1. Outer solutions (regions I4 and I5)

Following the usual procedures in singular perturbation problems away from the
boundaries, the solution is assumed to have the expansion

w

@2 206359 = D &v,(x,),

y=0

which, when substituted into Eq. (2.1),, gives

'_p(x, y)’ Y= 0’
(2'3) L'pv = 09 ¥ = 1,
V‘lﬁ,__z, v = 2
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At each stage a second-order differential equation has to be solved so that only two bound-
ary conditions can be satisfied. It follows that in general the boundary conditions will
be violated.

Solutions of Eq. (2.3) are most easily constructed by the Fourier-transform technique
whereby we use the definition

2.4 ) om f ()e~"xdx
with the inverse
@4) ()= [ (e,

It is then straightforward to show that when L is elliptic,

@9 1= [ (oted)cosh(3)+BoeB)sinh(dp)e

+5(¢, y)} e dE +0(e?),
where A4, and B, (v = 0, 1) are as yet unknown functions of &, and where % (£, y) denotes
the Fourier-transform of a particular solution of Eq. (2.3); to the given p. Furthermore,

(2.6) = Th = 'F = —ﬂ'i'_'—

¥y ¥y ¥y
The first two terms in Eq. (2.5) correspond to solutions of the homogeneous equation
Ly, = 0 (v = 0, 1). The arbitrary function 4, and B, (v = 0, 1) will be determined from

subsequent matching in the neighbouring side layers.
2.2. Boundary layer solution near y = 0 (regions II4 and II®) and y = 1 (regions ITI4 and III7)

In order to balance out the two terms &2 V* x and Ly, coordinate stretchings are needed.
Of the two possibilities
Y=y/e?®* and Y =yle
the former does not allow matching with the outer solution, so that we introduce near
y = 0 the coordinate transformation ¥ = y/e which, together with the expansions

x= je'g.(x, Y),
v=0

2.7) ®
p= ZS’P!(x)Y,,

r=0

transforms Eq. (2.1) into the following hierarchy of differential equations:

11 I II 1 I 11
3‘3,4.2 2 3237+2 — 2 3251+1 2 3255 3“5" n a‘sv-z
@8y B Gy = 2oy th g 2 g P - —5a
vr=-2,-1,0,1,....

4 Arch. Mech. Stos. nr 4/79
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Here and everywhere else henceforth we shall adopt the convention that terms with neg-
ative indices be set to zero. The two lowest order solutions of Eq. (2.8) (» = =2, ~1)
assume the form

I n I 11 -BY
29 Eo(x,Y) = Co(x)+Do(x) Y+ Eg(x)e

and

I
I I I 1 -8,Y p%, aD p? JE
10) E = Tty L2 0
(2 ) s (x! Y) Cl(x)+Dl(x)Y+El(x)e ﬁ; ax ﬁ, ax
where exponentially growing terms have been suppressed since they would be unmatchable
otherwise.
A similar stretching must be introduced near y = 1. The coordinate transformation
here is

Ye

Y=(1-yle
so that if we introduce the asymptotic expansions

© m .
x(x,J’) = ZE’E,(X, Y),

r=0

(2.11) )
p() = Y ePp),

r=0

we obtain the recurrence relations

95 95 95 Ig 5,
73 b - .'” = —282 o 3 3 =2
@12) aye ~F 72 & oxdY P x29Y7?

=
m. 845, ,

+PIY- ax‘, ] y= _2,‘—1,0,1,...

with the solutions

5

. m . m 0¥
o(%, Y) = Co(x)+Do(x) Y+ Eo(x)e ~,

It

(2.13)

I
Ei(x, T) = )+ Dy T+ Ese ™ + B2 Do 5_ By 2o g,

T8 o By 0

2.3. Matching at the boundary layers

Next we invoke Van Dyke’s matching principle to match the outer solution (2.5)
wit the zeroth and first-order inner solutions, Eqs. (2.9) and (2.10). We then obtain the
results
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) in the regions 114 and II?, respectively:
II
.Dg = 0
R |
AO +vl!:l'0 e COv
214 _ @
Ai—Cl = 0,
= i ji
1}5‘1 +Boae"l¢EA0 = D,,
where overhead bars denote Fourier-transforms and where the Taylor series expansion

CO

@.15) P V)= 2 ey = 43 ) Yl () e Y
has been used. .
b) in the reglons III4 and ITI®, respectively

Dy =0,

Ao cosh(8)+ Bysinh(88) = — “'—Co)e'“*

(2.16) _ — m

Al cosh(df)+318mh(6{") Clellé

Poie™+ Ay £ (incosh(88) — ésmh(JE))+B°E (iasinh(8&) — é cosh(88)) = Jl.’.')1 e,
where the functions pgg and yg; are taken from the Taylor-series expansion

@17) W(E.y)=2ﬁi‘(f)(l—y)" 2‘"'(5)( )

=0

The results (2.14) and (2.16) constitute a system of 8 equations for 12 unknown functions.
If in addition we introduce the four boundary conditions at the lower and upper bound-
aries, all unknown functions can then be uniquely determined. It is at this stage of the
calculation that differences in the solutions in the regions II# and II* or III* and III®
might emerge depending on the mode of bounding. In particular, if the upper and lower
edge are the same in the regions 4 and B, there is no difference in the solutions. Indeed,
for clamped edges Eq. (1.9c) must hold which implies

I II 1n n n 1I
(2.18) Co=E,=0, D, =-§C,, E =-C,

m ur - I i I 111
Co=E =0, D,= "ﬂycn E, = -C,.

It then follows, with the aid of Egs. (2.14) and (2.16), from a tedious but straightforward
calculation that

(219 A4y = -9,
Bo = (%ocosh(df)—ﬁﬁgem)lﬂnh(ﬁﬂ,
= {8 (p5oe™ —pyocosh(8£))—sinh(88) (inpgo + o1 )} {B, sinh(d8)}~*,

4
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([2, 1 9!) B, = {8&[wbo (1+cosh?(88))—2ypbae'™ cosh (08)] +iak sinh (08) (phae'™ + by
' x cosh(8¢))—sinh(8€) (b'f e — 8, cosh(8€) )} {8, sinh?(88)}*,

Cy = 4,,

Bl s
Dl = -ﬁrAl ]
11 =

E, = —4,,
11

Ci = {66(%‘1-iﬂ%‘&e‘“*cosh(éﬂ)e*“"+(ME%'JH%‘{)smh(éf)}{ﬁysinh(ﬁf)}",
m

Dl. = "'ﬂycl ]
i m

EI = = C1 .

Thus it has been possible to determine all unknown coefficient functions. There still remains
to construct a composite solution and to elaborate on the shear layer. The latter depends
on the loading as seen by the fact that no existence has emerged so far. It is therefore ad-
vantageous to investigate an example first.

2.4. Example

Let us focus our attention on the line load
p(x, ) = pod(x—Xo)
for which the Fourier-transform obtains
P(§) = poe™"%
so that from substituting into Eq. (2.3); the following particular solution is deduced:

- e~#xo
(2.20) 0 = E‘lﬁi—fz—
and from this we subsequently find
e T poe” 't
(2.21) Yoo Yoo ﬁ;sg , ’

=% =0, if pu or »#0.

{13
By substitution into Egs. (2.14) and (2.16) the unknown coefficient functions may be
determined and when this is done one obtains
;o = —poe~t*p 2E~2,
By = poe~"*o (cosh(8¢)— ') 2£~2sinh™" (8¢),

¢a . Poe” e jog A
4, = F28, s (38) [6& (¢ —cosh (8&) )— iagsinh (38)],
B, poe™ %o ,
= 377, Ersini o) L% (1 +cosh?(8) ~2¢cosh(36))

+iak (¢ +cosh(0€) )sinh(88)],
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222) 1
([cont.]) El = —A,,
M pEe e
El = ﬁ:ﬁyszslnh (65) [JE(COS]I((,E) e ) ;assulh(af)] J
The result obtained by inserting Eq. (2.22) into Eq. (2.5) can be written as
(2-23) X = xo+eExl +‘0(82),
where

. lE(:l' Xq)
%o = p"z f {(l —e~®cosh(8£y))
x

mp; J &
—laky _ Hlaf(1-3)
(msh(aei;h(as)e )sinh(am}df
and
_ _Po ; =) i jak si p0hiiey)
fi= zﬁiﬁ,n_fm £ {[as(e«e—coshtés))—mésmh(‘m]m

+[6& (1 +cosh?(8&) —2¢"™ cosh(8£))

tiak (% -+ cosh(88))sinh(58)] % e

The above integral expressions are best evaluated by contour integration in the complex
&-plane. The details are somewhat lengthy and we therefore refrain from presenting the
pertinent calculations but rather list the results. They are

pod' 0 sin(muy) e—ml(x—xa}ﬁ[e—nmﬂ__(__l)memm(l—})ﬁ], X—Xo < 0’

ﬁ; — m2m? em(x-xo)fd[emmu W (_ l)m e—nm(l-.’n,fd] ’ X—Xo > 0;

B -2 55 -ao-cmemn

o m X H é "
s (- 1yme™ ""-l)] smmny-{-a(l—(—l) e "")(2y-—l)cosmy}

Q24) o=

X e-""[‘”—(*-’on-‘“’ X—=Xg < 0,

225 n= 2

+ % ((—1)ymem=é — 1)] sinmmy+ % (1= (=1)me~mmei¢)

X (2y—l)005my} MY -(x=x0  x_ x4 > 0.
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The expressions (2.24) and (2.25) determine the outer solution of the deflection . It is
seen from these formulae that they are not uniformly valid in x. Indeed, for the above
series to be convergent the exponentials in the sums (2.24) and (2.25) must be smaller
than 1. This implies

(2.26) (x—xg)Zzay and (x—xp5)< —a(l—y).

We thereby conclude that the expressions (2.24) and (2.25) are invalid in the parallel-
ogram of Fig. 1. This implies that there is another layer apparently induced by the line
load whose size depends on the coefficient a. As a — 0, this layer (of area o) becomes
vanishingly small. According to Eq. (2.6) this means that the shearing prestress is small
in comparison to the prestress in the y-direction. For « = 0, the only case treated thus
far, this layer disappears. Conversely, if « becomes large, then the shearing prestress
N, is much larger than the prestress N,. In the limit N, = 0, « becomes infinitely large
in which case the parallelogram of Fig. 1 covers the entire strip. This case corresponds
to a membrane strip that carries’ vanishing prestress in the y-direction. In our earlier
papers this situation was termed the degenerate case but could not be explained. On the
other hand, when we set « to zero we easily recover results previously derived in our earlier
paper (1974).

Another interesting feature of Eqs. (2.24) and (2.25) is the fact that the deflection
% is not symmetric with respect to (x—x,). Otherwise stated: x(x—x,) # x(Xo—X).
This is due to the presence of the terms depending on «, even though for « = 0 we re-
cover symmetry. Of course it is physically obvious that a change in the direction of the
shearing prestress must alternate the values of  at the antipodal points (x— x,) and (x, —x),
respectively. Changing the sign of a must therefore alternate the expressions that are
applicable in the formulae (2.24) and (2.25) for (x—x,) > 0 and (x—x,) < 0. This feature
may also serve as partial check of these results.

The inducement of the shear layer is a most interesting fact and may be attributed
to the high singular character of the line load distribution. It is therefore conceivable to
presume that smoother loading functions might lead to zeroth and first-order outer so-
lutions that are valid for all x. We have, however, found that this is not the case for strip-like
loads and for “roof-shaped” loading functions. The results for these cases are easily derived

from the above formulae by mere integration. They are presented in the appendix.
11 141
Before turning to these shear layers, let us determine the two functions E; and E,

that govern the boundary layer solution. Their Fourier-transforms are listed in Eq.
(2.22). Inversion gives

II -
s pod \1 1 (1M p—ma[d] ,—mE[x—X |8
Ex—ﬁ;,’“——[l (=DMNe-mmi]mwiz-vailt,

@27

<P

In contrast to the outer solution the boundary layer solutions are therefore symmetric
with respect to (x—x,). However, in spite of the symmetry of the loading function in

I o
Pod }_1 1 3 — —x,|/8
E — gt | [l_(_l)me-‘-mlﬁ} ]e Jlllix xn” y
' ? =l
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y, the upper and lower boundary layer solutions are different. The reason is again due to
the shearing prestress. The transformation & — —a should alter the solution of the upper
boundary layer into that of the lower and vice versa. The result (2.27) is surely in agree-
ment with this condition.

In the next subsection we shall need expressions for y, and y; as the lines

(x=xp) =ay and (x—xo) = a(y—1)

are approached. For « > 0 a straightforward calculation shows that by the Taylor-series
expansion one obtains

o0
Pod sin(zmy)
2 =
ﬁ‘ m=l IR

[1~(-Dre™)

x [I - "—?—- ((x—x0)—ay)+ ], if x—xo~ ay,

(228) o =
;;f 2 sm(mn::y ) gl — (— 1ymemei]
x[l+—n-g:-((x—xo)+m(l—y))+...], if  x—xo ~ a(y—1),
and
i |-G+ s+ 2L o
R x[1=(=)"e =P [1+0(lay—(x—xo)|)], if (x—x0) 20,

5[ w2

x[(I=(=1"e ™ [1+0(la(r~ D~ (x=xo))], if (x=x0) <O.

L cos (ﬂmy)] =Y

2.5. Shear layer solutions

We now turn to the determination of the solution in the layers IV# and IV® (see Fig. 1).
To this end the governing differential equation must be subjected to a stretching transfor-
mation in the x-direction that accounts for the large changes occurring in the neigh-
bourhood of x = x,. We expect different solutions in the regions IV# and IV® as well
as in the hatched regions (see Fig. 1).

a. Solution in Region TVA

Introducing the coordinate stretching

(2.30) (x—xp) = eX
and the asymptotic expansion

@.31) 1= y eV (X, »),
'=o
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the differential equation (1.11) with the loading function pod(x —x,) may be transformed
into the following system of recurrence relations:

a 1?4 I‘f‘ aztp‘ll.t (pl\u 34‘;,:24 anl I\M
() ax‘ *ﬂ" axz = +2 oy b oy oX2yr oyt

»=0,1,..,0
As before, we apply the convention that functions with a negative index vanish. The so-
lutions to the zeroth and first-order equations read:
o = S40)+ BOIX+€40) e,

—BaX ﬁxr a@‘ ﬁn 3%’0 —5;1
— X2y Xe
B oy Bz oy

(2.33)

o' = 10)+BLO)X+€10)e
where o/4 through %4 are still to be determined.
b. Solution in region IV®
In this region we introduce the coordinate stretching

(2.34) (x—xo) = —eX
together with the asymptotic expansion

(2-35) x st l\l’ (X, y)’
r=0
which transforms Eq. (1.11) into the differential equations
4 Ive 2 \r' 2 1B o 1vE 4y
(2.36) . qj} —p% g (P’ ﬁ:} ‘le +ﬁ; § Pra = a,_'p"'z e a2
ax* ox* aXdy dy? ox2ay: 0

whose first-order solutions read
b = 30)+ BO) R+ €B) e,

-ﬁ.:f ﬁxr aa o 2 ﬁx! wﬂ —BX
5 Xe
ﬁ x By ﬁ x 3)’

Here again, /¢ through 7 are still unknown functions of y.

2.37)

A" = A20)+ BT+ €2 )e

c. Determination of the functions o4 etc.

We now turn to the determination of the unknown coefficient functions <4 ...
. %1,48, ..., €% To this end, the systems (2.33) and (2.37) must be matched with the
core solutions z, and y, as X and X grow indefinitely. Moreover, the functions x =

z; e':p!""' must be joined appropriately at X = X = 0. The correct conditions are ob-

tained, if one observes that y as a function of x is of class C2, while the third derivative
suffers a finite jump at x = x,. This jump condition reads

By

7 1,
X= —Xg

2y
20 A i
(2.38) £ { - -

ax?
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and is obtained from an integration of Eq. (1.11) between —Xx, and +x,. Introducing
the shear layer variables (2.30) and (2.34) and the expressions (2.31) and (2.35), respective-
ly, the above condition requires that

3,1V 3 Ve 0, v=0,
S A
Since y is of class C? at x = x,, one also has
oV - =0,
(2.40) a‘g;‘ +a—§? =0, forX=X=0,
P B o,
ox? ax?

Equations (2.39) and (2.40) form 4» equations for the determination of the free coefficient
functions &/# through €.-5. It is a simple matter to prove that they imply

A4 = A8, Bl= -3, €4 =%8 =0,
(2 41) 0 (1] 0 [1] 0
St=of, @=-@-T, el=¢l=-75
so that the zeroth and first-order solutions now read as follows:
V4~ oA BEX,
(2.42)
vA A A Po_ —ﬂxx ﬁxr aﬂo 2
= A1+ BIX— —XZ,
: 2ﬁx ﬁx By
and
oY’ = S4-BAX,
(2.43)

" 2 P
? - tt-fate i f - e
In deriving Eqgs. (2.41) and (2.42) we have also assumed that p, # po(»).

It remains to match the above solutions with the outer solutions of regions I and I®,
respectively. In particular, this matching must be carried out as X —» co along the line
(x—x,) = ay at the edge of region I and as X — oo along the line (x—x,) = —a(l—y)
at the edge of region I2. The first few terms of the outer expansions near these lines are
listed in Eqgs. (2.28) and (2.29). A straightforward two-term matching along these lines
then gives

44) BL=0,
_ po(1=y)y  dp S 2ysin (mzny) - maa
BTt 2 T €D
= * m=2,4,6

+ o 3 - 1re),

m=1,35
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=~ g, 2(' g

s:n(my)

o ar=D os(um),

1- o 2sin (mx .
@t = _po(ﬂz ») _F{?: m£n= y) (e _1),
= ¥ m=2,46

This completes the construction of the solution up to order e-terms.

Concluding remarks

In this paper we have investigated the response of a thick membrane strip to static
loadings for the case when the membrane forces contain a contribution due to shearing
prestress. Our main interest was to determine the influence of a small bending rigidity
and the mathematical technique to account for it was the method of matched asymptotic
expansions. We found that the prestress conditions dictate to a large degree the boundary
layer structure. In fact, we found that the existence of shearing prestress parallel to the
side walls resulted in what we called shear layers. These layers are induced by the external
loading function and occur away from the boundaries. The prestress conditions considered
here embrace all cases of constant prestress from isotropic prestress to uniaxial prestress
in a preferred direction. If the direction of the latter is parallel to the strip wall, the entire
strip consists of the shear layer and the solution becomes invalid. This degeneracy was
already observed earlier.

Of course, the problem treated in this paper is to a certain extent academical; it
only deals with static solutions and excludes dynamic effects. From a practical point
of view such effects are more interesting. Their treatment is complex, however, so that
we shall present the corresponding solutions in a different paper (Part II).

Appendix

The purpose of this appendix is to demonstrate that the existence of the shear layer
is preserved even if the loading functions are of class C!. We shall list the zeroth and
first-order solutions to strip-like loading functions and to roof-shaped loading functions.
The solutions are obtained by merely integrating Egs. (2.24) and (2.25). The calculations
are tedious, even though they are straightforward and for that reason we only list the
results:

(i) for the strip-like loading function

p(x) = p =constant, |x|<a
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the solution reads
o Z
P2 4

55 5o Ep)-crof o)

[] L] []

—(=1)"e

sm(m:ty)Sh( ) _mxay 1oy | omx
]e , X<-—a,

Yo = —¢ [ on (™ ema) - -1 (T )

—a< |x| € +a,

mRXx

sm(my)Sh(m)[_- (T _";—""u-n]]e S
—1)"e : .

23|
§°§Z|l[ (m = z)(l (=1)e

mxx

x sin(zmy) + % (1-(- l)"'eT)(?.y-— 1)cos (nmy)} 2exp( s (uy—x))

) (wre’ )

—(x —-a)

x Sh( ) +—(1=(=1"e m“)sin(m:ty)e {(x-a)

-——(:—.n) it
_(x—a)e‘ +%e ? Sh(ﬁ";_“)}]’ x < —a,

p [ 1 26 may
ﬁiﬁy\ = sin (mny) la(2y—l)Sh( 3 )+(—1)"'u(2y—l)

sl safep - ol o)

+e ° i—a(2y+ 1)Sh (’"—;’ (o:y-—-x)) —(=)"ax(2p+1)

xSh(f’—" (a1 - y)+x)) +2Ch (’"T" (ay—x)) [i+ 1]+2(— 1"

X =

o ) [t e[ el

fol (o)
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262
m2n?

mimao mn

+ (2y—1)cos (mny) {Ch (T )—(--l)"Sh (Ta (1 -y))

_e“?[sh(f;f (ay+x)) +(—1)~Sh(%(u(1 —y)+x))]}>, —a<x<a

(-]

é’% z “[2(% » ;f?)( I —(—1)“.«.»_"“’_“) +;ﬂ"—((— 1)’*.«:_?- 1)]

x sin(mmy) + %(l —(- l)"'e— T)(Zy —1)cos (mny)} 2exp (%JE (a:y—x))

_mna mxay LT
x Sh(?)—;}% (1=(=Dme : )sin (mny)e 4 {(x—a)e :
—ﬂ{xq-n) e
—(x+a)e = +2—6—e * sh (—)} y X4,
mn é

By mere inspection we see that the above series expansions are convergent everywhere
in the strip except in the shear layers

{ (x—a)—ay<a (x+a)—a(l-y)<0
| f

X >a X < —a

(ii) for the roof-shaped loading function

po(l—'%): 0"~<-..x-<-..a:

pu(H%), 0=2x> —a

no new features are observed and it is indeed easy to show that the shear layers lie in the
same region.
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