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The effect of shearing prestress on the response of a thick membrane 
strip 
Part I. The static case 

V. 0. S. OLUNLOYO (ILORIN) and K. HOTTER (ZURICH) 

THE STATIC response of a prestressed thick membrane (or thin plate) strip is analysed for the 
case when the bending rigidity is small. The full problem must ·necessarily include the case when 
a shearing prestress is applied parallel to the side walls. Singular perturbation analysis reveals 
that for such cases, unless the external load is sufficiently smooth, singular shear layers that 
run across the width of the strip are induced. The solutions in such layers as well as the usual 
core and edge layers are presented. 

Badany jest statycmy problem dla wst~pnie napr~i:onej grubej membrany (lub cienkiej plyty) 
w formie pasma, przy zalo:ieniu malej sztywno8ci na zginanie. W og6lnym sformulowaniu 
wyst~powac musi przypadek, kiedy wst~pne napr~nia 8cinaj~ce przyloi:one s~ r6wnolegle 
do bocznych Scianek. Stosuj~c metodct perturbacji osobliwych wykazano, :ie - z wyj~tkiem 
przypadku kiedy obci<P;enie jest dostatecmie gladkie - powstaj~ osobliwe warstwy Scinania 
biegn~ce w poprzek szeroko8ci pasm. Podano rozwi~ie w tych warstwach, jak r6wnie2: w rdze­
niu oraz warstwie brzegowej. 

l.fcCJie,lzyeTCH CTaTHqecJ<a.a ., 3a,rolqa ,nJ1J1 npe,zmapH'reJII>HO HaiipiDKeHHOH TOJICTOH MeM6pam.I 
(HJIH TOID<OH IIJIHTbi) B <!>opMe DOJIOCbi, npKHHMaH MaJIYIO H3niDH)'lO >KeCTKOCTL. B oomeu 
<l>opMyJIHpoBKe .QOJI>KeH BbiCTYDaTL cnyqaii, KOr.Qa npe.QBaplfl'eJibHbie HaiipiDKeHIDI c,zmura 
npWio>KeHbi napaJIJieJibHO K 6oKOBbiM CTeiD<aM. TipHMeHIDI Me'l'O.Q oco6biX nep-ryp6amrii 
DOKaaaHO, qTQ 3a HCKmoqeHHeM cnyqaH, KOr,Qa Harpy3Ka ,QOCTaTO~O rJia.QKaH, B03HHKaJOT 
OCOObie CJIOH C,!UJHI'a 6erynu1e nonepeK umpmn.I DOJIOCbl. ,I:(aeTCH pememre B 3THX CJIOHX, 
KaK TO>Ke B cep,Qe~e U B rpaHH~OM CJIOe. 

1. Introduction 

THE BEHAVIOUR of prestressed thick membranes is predicted on the competing influences 
of both the prestress mechanism and the bending rigiQity of the membrane. In fact, the 
influence of the former is globally overriding except close to the boundary where the 
latter is just as important. The relative balancing of these forces makes the problem ame­
nable to singular perturbation techniques. For this the entire domain must be divided into 
two regions viz. an outer region where the resistance to extensional deformation is of 
prime importance as well as an inner region where a balance is maintained between exten­
sional and bending forces. This inner region usually takes the form of boundary or edge 
layers, but could sometimes appear within the core. 

Singular perturbations have been successfully exploited in constructing solutions to 
thick membranes. In fact, ScHNEIDER (1972) determines the influence of the bending 
rigidity to the eigenfrequency of an isotropically prestressed rectangular membrane. The 
corresponding problem of the circular drum has been solved by HuTTER in (1972). HUTTER 

http://rcin.org.pl



490 V. 0. S. OwNLovo AND K. HurTER 

and OLUNLOYO (1974) extended the free vibration problem of rectangular membranes 
to include certain special cases of anisotropy in the prestress. Attempts to deal with mem­
branes that were subjected to external loads (statically or dynamically) were thus far 
particularly successful for (infinitely) long strips (see HUTIER and OLUNLOYO (1974}). 

The above mentioned problems are still too restrictive and they should be extended on 
several different levels. There are various possibilities to . achieve such extensions. One 
possibility is to increase the complexity of the loadings, but such extensions do not lead 
to essentially new effects. Another possibility is to enlarge the complexity of the bounda­
ries of the membrane~. 

The latter problem is to a certain extent akin to a change in the anisotropy conditions 
of prestress. Indeed, if the normal prestress in the x- and y-directions of a Cartesian 
coordinate system is denoted by N" and N, , respectively, and if the shearing prestress N"' 
vanishes, then it is easy to determine the prestress tensor with respect to a rotated coordi­
nate system (X, y). From such a calculation one concludes that in general N;7 =F 0. It is 
thus interesting to investigate the inftuence of the shearing prestress in one of the above 
mentioned well-known pro'blems. 

For this purpose let us consider a membrane strip in the (x, y)-plane, bounded at 
y = 0 and y = b. At this stage we are not interested in the physical conditions of these 
boundaries, but we might mention that usual boundary conditions manifest themselves 
either as clamped edges or cylindrical hinges. The governing equations derive from the 
von Karman-.equations 

(1.1) 

where 

(1.2) 

and where for our case of constant prestress conditions 

(1.3) l/> = ~ (Nxx2-2Nx1 xy+N1 y2). 

Therefore, Eq. (1.1) becomes 

o2w o2w o2w 
(1.4) DV

4
w = q(x, y)+N" ox2 +2N"' oxoy +N, oy2 

which must be complemented by appropriate boundary conditions at y = 0 and y = b. 
In Eq. (1.4) D denotes the bending rigidity, w the transverse deflection, q the transverse 
loading and N", N,, N"' the (constant) prestress. Finally, V4 is the bipotential operator 
which in Cartesian coordinates reads 

(1.5) 
o4w o4w o4w 

V4w = ox4 +2 ox2oy2 + oy4. 

We non-dimensionalize the above equation (1.4) by introducing the transformation 

(1.6) (x,y, x) = (xfb,yfb, wfb). 
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Denoting 

(1.7) Pz - N%, 
%7- No ' P2 N, 

'=No' 

where N0 is an apprQpriately chosen reference prestress (e.g. N0 = max(NJ" N,) ), and 

(1.8) 
z D 

6 = Nob2 

we readily obtain from Eq. (1.4) 

(1.9a) zv ~ " pz B2x 2P2 azx pz o2x (" " 
e (1,x)x- % ox2 - %7 oxoy - '. oy2 = p x,y). 

In the following we shall only deal with Eq. (1.9a) and shall for brevity henceforth drop 
the hat and write (x, y) for (x, y). Moreover, we shall solve Eq. (1.9a) in the strip 0 ~ y ~ 1 
under the restriction 

(1.9b) 

This condition guaranties that the assumptions of matched asymptotic expansions are 
satisfied. 

Usual boundary conditions that are accompanied with Eq. (1.9a) are those of built-in 
ends. For the strip under consicleration they are 

(1.9c) ox ox x(x, 0) = x(x, 1) = Ty (x, 0) = oy (x, 1) = 0. 

The purpose of this paper is to demonstrate that the structure of the layers of the 
boundary value problem (1.9) depends on the operator 

(1.10) 
02 az· az 

L = P~ ax2 + 2p~, axay + P: oy2- · 

If y = PiP:- P!, > 0, then L is elliptic, otherwise hyperbolic. Using the Mohr circle 
arguments it is easy to show that the differential equation 

(1.11) 

corresponds to pure prestress conditions when L is elliptic. If L is hyperbolic, there exists · 
a distinct direction for L, the corresponding proper value of which is negative. Physically 
it means that the in-plane force in that direction is a pressure (prepressure). In the fol­
lowing we shall restrict ourselves to cases in which L is elliptic, but we shall not assume 
that the coordinates x and y are parallel to the principal directions of L. As we shall see, 
this implies that there exist not only boundary layers, but also free (shear) layers which 
are induced by the external loading p(x, y). The demonstration of this latter phenomenon 
is the main goal of this paper. 
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492 V. 0. s. 0LUNLOYO AND K. Htmmt 

2. 1be strip under static loading 

Let tJl C R2 be the open strip [- oo < x < oo, 0 ~ y ~ 1]. We are interested in 
solutions of the boundary value problem 

e2V4 x-Lx = p, £ ~ 1' (x, y) Eat, 

(2.1) 

wherefL,gL,fu and gu are smooth functions on R. The known function p(x,y) will be 
assumed to have the form 

p(x, y) = Po6(x-xo), 

where 6(x-x0 ) is the Dirac distribution. The construction of solutions that are asym­
ptotic approximations for small e -will be simplified if we resort to Fig. 1 which shows 

FIG. 1. Strip with core region and boundary and shear layers. 

the strip together with the subdivision in various regions. In each of these regions differ­
ent asymptotic approximations of the solution of Eq. (2.1) will hold. Solutions in the 
regions I..t and I8 will be calle<;l outer solutions, while those in the regions n..t,B and III,.·8 

are termed inner solutions or boundary layer solutions. Of special interest are the regions 
IV" and IV8

• 

2.1. Outer soludons (regions IA and IB) 

Following the usual procedures in singular perturbation problems away from the 
boundaries, the solution is assumed to have the expansion 

00 

(2.2) X(X, y; e) = }; £"1p,(X, y), 
,=0 

which, when substituted into Eq. (2.l)~t gives 

{ 

-p(x,y), 
L1p, = 0, 

V4
"Pr-2' 

(2.3) 
V= 0, 
,; = 1' 
V~ 2. 
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At each stage a second-order differential equation has to be solved so that only two bound­
ary conditions can be satisfied. It follows that in general the boundary conditions will 
be violated. 

Solutions of Eq. (2.3) are most easily constructed by the Fourier-transform technique 
whereby we use the definition 

CO 

(2.4) F) = J ( ·)e-i~xdx 
-eo 

with the inverse 

(2.4') 
-eo 

It is then straightforward . to show that when L is elliptic, 
CO 

(2.5) X= 2~ J {[(Ao+eAt)cosh(~Ey)+(B0 +§B1)sinh(~Ey)]e-'«< 
-eo 

+V'~ ( E, y)} e1~x dE+ 0( e2), 

where A-, and B., (v = 0, 1) are as yet unknown functions of E, and where ipg(E,y) denotes 
the Fourier-transform of a particular solution of Eq. (2.3}1 to the given p. Furthermore, 

(2.6) _ p;, .t = Jir = Ji PiP: - P!, 
a. = Pf' u - P: - Pi . 

The first two terms in Eq. (2.5) correspond to solutions of the homogeneous equation 
L1p, = 0 (v = 0, 1). The arbitrary function A, and B, (v = 0, I) will be determined from 
subsequent matching in the neighbouring side layers. · 

2.2. Boundary layer solution near f = 0 (regiODS IIA and liB) and y = 1 (regions m..t and illB) 

In order to balance out the two terms e2 V4 x and Lz, coordinate stretchings are needed. 
Of the two possibilities 

Y = yfe213 and Y = yfe 

the former does not allow matching with the outer solution, so that we introduce near 
y = 0 the coordinate transformation Y = y I e which, together with the expansions 

(2.7) 
CO 

p ~}; e"p,(x) Y", 
'1=0 

transforms Eq. (2.1) into the following hierarchy of differential equations: 
11 11 11 11 11 11 

(2.8) 
~4::' ~2::' ~2::' ~2::' ~4::' Il ~4::' 

CJ a-;:2 -Pi CJ a-;;2 = 2Pi, CJa;a~l +P; ~;· -2 a:2;~2 +p,(x)P- CJ ;;2 , 
, = -2, -1,0, 1, .... 

4 Arch. Mech. Stos. nr 4n9 
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Here and everywhere else henceforth we shall adopt the convention that terms with neg­
ative indices be set to zero. The two lowest order solutions of Eq. (2.8) (, = -2, .... 1) 
assume the form 

(~.9) 
n n n n -fJ r 
E0(x, Y) = C0(x)+D0(x)Y+E0 (x)e y 

and 

where exponentially growing terms have been suppressed since they would be unmatchable 
otherwise. -

A similar stretching must be introduced near y = 1. The coordinate transformation 
here is 

f = (1-y)fe 

so that if we introduce the asymptotic expansions 

eo m 
x(x, y) = 2 e" E,(x, Y), 

(2.11) 

we obtain the recurrence relations 

(2.12) 

with the solutions 

.,=0 

CO 

~ ... m 
p(x) = LJ e"r p.,(x), 

"=0 

Ill 
~4,... 

Ill y u .:,_2 
+p, -~, 

m _ m m .. m -fl r 
E0 (x, Y) = C0 (x)+D0 (x)Y+E0 (x)e y , 

(2.13) 

2.3. Matdalag at the bomldary layers 

, = -2, -1,0, 1, ... 

Next we invoke Van Dyke's matching principle to match the outer solution (2.5) 
wit the zeroth and first-order inner solutions, Eqs. (2.9) and (2.10). We then obtain the 
results 
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a) In the regloos n.t aad n•, respectively: 

D 

D0 = 0 

- ll 
Ao+VJ~1o = Co, 

(2.14) - jf 

At-Ct = 0, 
- - u 

;pgt + Bof5E- iaEAo = Dt, 

where overhead bars denote Fourier-transforms and where the Taylor series expansion 

00 00 

(2.15) ~{~, Y) = ~VJ:~(E)Y' = ~ V'!!(~)ffY" 
-o ,.o 

has been used. 

b) lo the regloos ID"' aad m•, respectively 

m 
D0 = 0, 
- - Ill 
A0 cosh(~E)+B0sinh(t}~) = -@~1J-C0)e1~, 

- - m 
A1 cosh(f5E)+B1 sinh(~~) = C1 el«l, 

(2.16) 

- . - Ill 
'VJ~1fe'~+A0 ~(iacosh(~~)- ~sinh(~~))+B0~(iasinh{~~)- f5 cosh(~~))= D1 e'rz4, 

. . 

where the functions 'VJ~1J and 'ij1~1f are taken from the Taylor-series expansion 

(2.17) 

The results (2.14) and (2.16) constitute a system of 8 equations for 12 unknown functions. 
If in addition we introduce the four boundary conditions ·at the lower and upper bound­
aries, all unknown functions can then be uniquely determined. It is at this stage of the 
calculation that differences in the solutions in the regions n.t and n• or III"' and 111• 
might emerge depending on the mode of bounding. In particular, if the upper and lower 
edge are the same in the regions A and B, there is no difference in the solutions. Indeed, 
for clamped edg~s Eq. (1.9c) must hold which implies 

11 n 11 n n ll 

(2.18) C0 = E0 = 0, Dt = -{J,Cl' E1 = -Ct, 
ID Ill ID Ill Ill Ill 

C0 = E0 = 0, Dt = -{J,Ch E1 = -Ct. 

It then follows, with the aid of Eqs. (2.14) and (2.16), from a tedious but straightforward 
calculation that 

(2.19) At = -V"~1o, 

B0 = (V'~10 cosh(~E)-'VJ~1Je'~)/sinh(f5E), 

At = { f5E {li~~ el«l- Vi~~ cosh(~~))- sinh( ~~) (ia~'VJ~10 + ':11)} {/J, sinh( ~E)} -t , 

4* 
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(2.19) 
[cont.) 

V. 0. s. OLUNLOYO AND K. HUTTER. 

B1 = { ~E[V'b'o (1 +cosh2
( ~E) )-2VJ"~1Je'~cosh(~E)] +icxEsinh(~E) (v;~•Je'~ + ip~10 

TI -
cl= At, 
TI -
Dt = -P,Al, 
11 
Et= -At, 
Ill 

x cosh(~E))-sinh(~E) (v;~•:e'«E -1p~11 cosh(~E) )} {P1 sinh2 (~E)}- 1 , 

C 1 = { ~E (Vi~1t-Vi::A e'~ cosh( ~E)) e-'~ + (i~E;pgJ- ip~1D sinh( ~E)} {P, sinh( ~E)} -t, 

Ill Ill 

D1 = -p,c., 
Ill Ill 

Et= -Ct. 

Thus it has been possible to determine all unknown coefficient functions. There still remains 
to construct a composite solution and to elaborate on the shear layer. The latter depends 
on the loading as seen by the fact that no existence has emerged so far. It is therefore ad­
vantageous to investigate an example first. 

2.4. Example 

Let us focus our attention on the line load 

p(x, y) = Po~(x-xo) 
for which the Fourier-transform obtains 

p(E) = Poe-~xo 
so that from substituting into Eq. (2.3)1 the following particular solution is deduced: 

(2.20) 

and from this we subsequently find 

(2.21) 

-h -m Po e-texo 
"Poo = 'f/Joo = PiE2, ' 

Vi~~ = :;p~~· = 0, if p. or Jl #: 0. 

By substitution into Eqs. (2.14) and (2.16) the unknown coefficient functions may be 
determined and when this is done one obtains 

(2.22) 

A _ -p e-tex"p-2t-2 
0- 0 X 'i> ' 

Bo = Po e- fixo (cosh( ~E)- e1~)p; 2 ~- 2 sinh -t ( ~~), 

p e-fiXo 

A1 = PiP,e2sinh( ~E) [ ~E ( e1~-cosh (~E))- icxE sinh (~E)], 
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(2.22) Ii -
[cont.] E1 = -Al, 

m p e-i~xo 
E1 = p;p,;2sinh(~~) [ ~~(cosh(~~)-e- 1~)-ia~sinh(~~)]. 

The result obtained by inserting Eq. (2.22) into Eq. (2.5) can be written as 

(2.23) X = Xo + e~ X1 + 0( e2
), 

where 

and 
00 

Po J e'E<x-xo> { 1 • • cosh( ~~y) 
Xt = 2p;p,n- ~2 [~~(e~-cosh(~~))-za~smh(~~)] sinh(~~) 

-oo 

+[~~(I +cosh2(~~)-2ei«E cosh(~~)) 

+ia~{e1~+cosh(~~))sinh(~~)] s~nh(~Ey) le- 1~"d~. 
smh2 (~~) 

The above integral expressions are best evaluated by contour integration in the complex 
E-plane. The details are somewhat lengthy and we therefore refrain from presenting the 
pertinent calculations but rather list the results. They are 

(2.24) 

(2.25) X1 = 

00 

1!!!._ ~{[z(-~+ x-xo --~-)(I-(-I)me+m"a.f~) 
P2P ~ mn mn m2n2 

x 1 m=l 

X-X0 < 0, 

X-X0 > 0; 

- __!___ (( -I)mem"a./6 -I)] sinmny+ _i_ {I- ( -I)mem"a.'")(2y-I)cosmny} 
mn ·· mn 
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The expressions (2.24) ·and (2.25) determine the outer solution of the deftection X· It is 
seen from these formulae that they a~e not uniformly valid in x. Indeed, for the above 
series to be convergent the exponentials in the sums (2.24) and · (2.25) must be smaller 
than 1. This implies 

(2.26) (x-x0 ) ~ !XY and (x-x0) ~ -!X(l-y}. 

We thereby conclude that the expressions (2.24) and (2.25) are invalid in the parallel­
ogram of Fig. 1. This implies that there is another layer apparently induced by the line 
load whose size depends on the coefficient !X. As a -+ 0, this layer (of area ex) becomes 
vanishingly small. According to Eq. (2.6) this means that the shearing prestress is small 
in comparison to the prestress in they-direction. For !X = 0, the only case treated thus 
far, this layer disappears. Conversely, if a becomes large, then the shearing prestress 
N~1 is much larger than the prestress N1 • In the limit N., = 0, a becomes infinitely large 
in which case the parallelogram of Fig. I covers the entire strip. This case corresponds 
to a membrane strip that carries· vanishing prestress in the y-direction. In our earlier 
papers this situation was termed the degenerate case but could not be explained. On the 
other hand, when we set ex to zero we easily r~over results previously derived in our earlier 
paper (1974). 

Another interesting feature of Eqs. (2.24) and (2.25) is the fact that the deflection 
x is not symmetric with respect to (x-x0 }. Otherwise stated: x(x-x0 ) #: 'x(x0 -x). 
This is due to the presence of the terms depending on ex, even though for a = 0 we re­
cover symmetry. Of course "it is physically obvious that a change in the direction of the 
shearing prestress must alternate the values of x at the antipodal points (x-x0 } and (x0 -x}, 
respectively. Changing the sign of ex must therefore alternate the expressions that are 
applicable in the formulae (2.24) and (2.25) for (x-x0 ) > 0 and (x-x0) < 0. This feature 
may also serve as partial check ofthese results. 

The inducement of the shear layer is a most interesting fact and may be attributed 
to the high singular character of the line load distribution. It is therefore conceivable to 
presume that smoother loading functions might lead to zeroth and first-order outer so­
lutions that are valid for all x. We have, however, found that this is not the case for strip-like 
loads and for ~roof-shaped" loading functions. The results for these cases are easily derived 
from the above formulae by mere integration. They are presented in the appendix. 

11 Ill 
Before turning to these shear layers, let us determine the two functions E1 and E1 

that govern the boundary layer solution. Their Fourier-transforms are listed in Eq. 
(2.22). Inversion gives 

(2.27) 

In contrast to the outer solution the boundary layer solutions are therefore symmetric 
with respect to (x-x0 ). However, in spite of the symmetry of the loading function in 
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y, the upper and lower boundary layer solutions are different. The reasod is again due to 
the shearing prestress. The transformation IX --. -!X should alter the solution of the upper 
boundary layer into that of the lower and vice versa. The result (2.27) is surely in agree­
ment with this condition. 

In the next subsection we shall need expressions for Xo and Xt as the lines 

(x-x0 ) = !XY and (x-x0 ) = !X(Y-1) 

are approached. For IX > 0 a straightforward calculation shows that by the Taylor-series 
expansion one obtains 

(2.28) Xo ~ J 

x [t+ "'; ((x-x0)+«(1-y))+ .. .]. if x-x0 - IX(y-1), 

and 

Po~ 200 

[ ( 2 11/d) . 2y-1 ] 
{J2p - ----r-2 + - sm tmny) + --cos (nmy) 

:I'Y mn mn mn 
m• I 

(2.29) Xt ~ 
x[1-(-l)"'e-m.atfcJ1[1+0{11Xy-(x-x0)I)J, if (X-Xo) > 0, 

00 

Po~ ~ [- - 2-- sin(mny)+ 2Y- 1 cos(mny)]..,e-•.atfcJ 
{J2p ~ m2n2 mn 

JC ',. •• 

x [1-( -1)"'e-m•«l6l[1 +0{11X(Y-1)-{x-x0)1)], if (X-Xo) ~ 0. 

l.S. Shear layer solutions 

We now turn to the determination of the solution in the layers IV" and IV8 (see Fig. 1). 
To this end the governing differential equation must be subjected to a stretching transfor­
mation in the x-direction that accounts for the large changes occurring in the neigh­
bourhood of X = Xo. We expect different solutions in the regions IV"' and IV8 as well 
as in the hatched regions (see Fig. 1). 

a. Solution in Region IV.t 

Introducing the coordinate stretching 

(2.30) (x-x0 ) = eX 
and the asymptotic expansion 

(2.31) 
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the differential equation (1.11) with the loading function p0~(x-x0) may be transformed 
into the following system of recurrence relations: 

11=0,1, .. . ,00. 

As before, we apply the convention that functions with a negative index vanish. The so­
lutions to the zeroth and first-order equations read : 

q>~vA = d~(y)+~~(y)X+~~(y)e-fl~, 
(2.33) 

rp~v• = .r41{y} + <f1(y)X H'1{y} e -~.x- 7; a:~ X2 + 7; a~g Xe -~.x, 
where d~ through ~1 are still to be determined. 

b. Solution in region IV8 

In this region we introduce the coordinate stretching 

(2.34) (x-x0 ) = -EX 
together with the asymptotic expansion 

00 

(2.35) '\1 •v• .. X= L,; s"tp, (X, y), 
r=O 

which transforms Eq. (1.11) into the differential equations 

(2.36) 

whose first-order solutions read 

q>~v• = dg(y) + ~g(y)X + Clg(y) e -fJ1tX, 
(2.37) 

m•v• = JIB(y)+~B(y)X+~B(y)e-fJ1ti+ }i!_ a£Vg jz_ {Ji., a~5 Xe-fJ1ti 
T" 1 1 1 Pi ay fJi ay . 

Here again, .s;~g through ~fare still unknown functions of y. 

c. Determination of the functions d~ etc. 

We now turn to the determination of the unknown coefficient functions d~ ... 
... ~1, .s;~g, ... , ~f. To this end, the systems (2.33) and {2.37) must be matched with the 

core solutions Xo and x1 as X and i grow indefinitely. Moreover, the functions X = 
00 

L s" 9'!v ... ·• must be joined appropriately at X = i = 0. The correct conditions are ob-
•=O 
tained, if one observes that x as a function of x is ·of class C2 , while the third derivative 
suffers a finite jump at x = x0 • This jump condition reads 

(2.38) sz{~l - a3!1 } = Po ax3 
X= +xo ax3 

X= -Xo 
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and is obtained from an integration of Eq. (1.11) between -x0 and +x0 • Introducing 
the shear layer variables (2.30) and (2.34) and the expressions (2.31) and (2.35), respective­
ly, the above condition requires that 

(2.39) 
., = 0, 

., = 1' 

.,~ 2. 

Since x is of class C2 at x = x0 , one also has 

IV" IV8 0 
lp, -qJ., = ' 

a lV" O IV
8 

~ + _!!!_.,_ = o ~ x x"' o ax ai , Ior = = , (2.40) 

a2lfJ!v" a2lfJ!v8 
ax2 - ai2 = o. 

Equations (2.39) and (2.40) form 4., equations for the determination of the free coefficient 
functions .sJ/:•8 through rc:• 8

, lt is a Simple matter tO prOVe that they imply 

(2.41) 
re~= rcg = o, 

.911 = df, gj1 = -gjf- ~~ ' fl11 ='If= - f;i 
so that the zeroth and first-order solutions now read as follows: 

(2.42) 

and 

(2.43) 
rniv8 

_ .JA 111JAX"' 
TO -.l4Jo-.::¥o , 

rn•lv8 
= .fi1Al -lgjAl + Po} i- Po e -P:X - p;,_ a&~~ X2 

T Pi 2Pi P~ ay · 
In deriving Eqs. (2.41) and (2.42) we have also assumed that p0 #= p0 (y). 

It remains to match the above solutions with the outer solutions of regions JA and 18, 
respectively. In particular, this matching must be carried out as X-+ oo along the line 
(x-x0 ) = ay at the edge of region JA and as X~ oo along the line (x-x0 ) = - a(I-y) 

at the edge of region 18
• The first few terms of the outer expansions near these lines are 

listed in Eqs. (2.28) and (2.29). A straightforward two-term matching alon~ these lines 
then gives 

(2.44) g.J~ = 0' 

00 

llpo 2 sin(niny)(l-(-l)m -mKa.fl) + p2 2 2 e ' " mn m=1,3,5 
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- ,! (2y-J) COS(1113Zy)]. 

CO 

£1_.
1 

= _ p0(1- y) _ dp0 ~ 2sin(nmy) ( -m•«/6 -I) 
{Jz cxfJ2 L.J m2n2 e • 

JC JC m-2,4,6 

This completes the construction of the solution up to order e-terms. 

Concluding remarks 

In this paper we have investigated the response of a thick membrane strip to static 
loadings for the case when the membrane forces contain a contribution due to shearing 
prestress. Our main interest was to determine the influence of a small bending rigidity 
and the mathematical technique to account for it was the method of matched asymptotic 
expansions. We found that the prestress conditions dictate to a large degree the boundary 
layer structure. In fact, we found that the existence of shearing prestress parallel to the 
side walls resulted in what we Called shear layers. These layers are induced by the external 
loading fun~tion and occur away from the boundaries. The prestress conditions considered 
here embrace all cases of constant prestress from isotropic prestress to uniaxial prestress 
in a preferred direction. If the direction of the latter is parallel to the strip wall, the entire 
strip consists of the shear layer and the solution becomes invalid. This degeneracy was 
already observed earlier. 

Of course, the problem treated in this paper is to a certain extent · academical; it 
only deals with static solutions and excludes dynamic effects. From a practical point 
of view such effects are more interesting. Their treatment is complex, however, so that 
we shall present the corresponding solutio11s in a different paper (Part 11). 

Appendix 

The purpose of this appendix is to demonstrate that the existence of the shear layer 
is preserved even if the loading functions are of class C1• We shall list the zeroth and 
first-order solutions to strip-like loading functions and to roof-shaped loading functions. 
The solutions are obtained by merely integrating Eqs. (2.24) and (2.25). The calculations 
are tedious, even though they are straightforward and for that reason we only list the 
results: 

(i) for the strip-like loading function 

p(x) = p =constant, lxl:::;;; a 
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the solution · reads 

Xo = 

X1 = 

2:::; ..t{sin(mny::(-T) [e_•;• -(-1)•/• .. <;-n]}e·;·, 
mal 

x< -a, 

CO 

2p9~2 ~ sin(mny) {eh (mna.y) _ (- 1)mCh (mna. (1- >) 
n3 p~ k.J m3 ~ ~ y 

mml 

ko:, t. /{[ -2(,: + m2~2 )(1-(-l)•e";" )- ;:,.(( -l)'"e•;--I)] 

x sin(mny) + ! (1- (-I )'"e ";" )(2y -I) cos (mny) 12 exp (- m~n (<Xy- x)) 

(
mna) 2 _m;oc -m:OC'{ "'t,"<x-4) 

x Sh -~- +,mn (1-(-1)me )sin(mny)e (x-a)e 

y<x-4 > ~ -~ mna 
- (x-a)e + mn e Sh (-~-)} , x < -a, 

mJC mJCx , I 
~"p, (}.; :.!2 sin (mny) I ( a(2y -I) Sh ( "":,"'Y) + (-1 )"a(2y -I) 

x Sh( ""'"'~ - y)) + 2Ch ( mn~ay )[ :,. - I]+ 2(- I )"Ch ( mna~ - y)) [ :,. + I ]I 
+e- ";' {- «(2y+ I)Sh(m; (ay-x)) -( -l)'"a(2y+ I) 

xsh( ~"( a(l-y)+x)) +2Ch('7 (ay-x))[~+l ]+2(- W 

xch(m~n (tx(l-y)+x)) [~,.-1] +x [eh('; x)-< -I)"Ch (";r<x+ a))] 

-a [ Sh (";;' x)- ( -I)"Sh(m; (x+«)) ]}j 
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+ i; ~:;, (2y -I) cos (nmy) { Ch (m~ IX y) - ( -l)•Sh ( "';" (I- y)) 
m= I 

~ \ 
-e- • [ Sh( m; (<Xy+x)} +(-I)•sh(":;' ( <X(I-y)+x)}]l ). -a~ x ~a 

I 

~~ t. \{[2(:- m:,.,)(!-( -I)•e-... -)+m: (( -!)•e-";"-I)] 
• ·~ ( - ~1Ca } (mn ) 

x sm(mny)+ mn 1- ( -l)me )(2y-1)cos(mny) 2exp T (cxy-x) 

m~~ mKa1 m~ 

(
mna) 2 --~- -~-{ --,<x-a> 

x Sh -~- - mn (1-(-1)me )sin(mny)e (x-a)e 

- ~~ <x +4> 6 m;x · ( mna )}j 
-(x+a)e +2mne Sh - 6- , x >a. 

By mere inspection we see that the above series expansions are convergent everywhere 
in the strip except in the shear layers 

{ 
(x-a)-ay ~a} and { (x+a)-a(l-y) ~ 0 }; 
x >a x <-a 

(ii) for the roof-shaped loading function 

p = I Po (I - : ) , 
Po (I+ : ). 

0 ~ x ~a, 

O;?;x;?; -a 

no new features are observed and it is indeed easy to show that the shear layers lie in the 
same region. 
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